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Abstract 

Background Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic 
challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. 
However, serous OC lacks effective biomarkers. We aimed to identify novel biomarkers for OC and their pathogenic 
causes.

Methods The present study used the differentially expressed genes (DEGs) obtained from the “Limma” package 
and WGCNA modules for intersection analysis to obtain DEGs in OC. Three hub genes were identified—claudin 3 
(CLDN3), interferon regulatory factor 6 (IRF6), and prostasin (PRSS8)—by searching for hub genes through the PPI 
network and verifying them in GSE14407, GSE18520, GSE66957, and TCGA + GTEx databases. The correlation 
between IRF6 and the prognosis of OC patients was further confirmed in Kaplan-Miller Plotter. RT-qPCR and IHC con-
firmed the RNA and protein levels of IRF6 in the OC samples. The effect of IRF6 on OC was explored using transwell 
invasion and scratch wound assays. Finally, we constructed a ceRNA network of hub genes and used bioinformatics 
tools to predict drug sensitivity.

Results The joint analysis results of TCGA, GTEx, and GEO databases indicated that IRF6 RNA and protein levels were 
significantly upregulated in serous OC and were associated with OS and PFS. Cell function experiments revealed 
that IRF6 knockdown inhibited SKOV3 cell proliferation, migration and invasion.

Conclusion IRF6 is closely correlated with OC development and progression and could be considered a novel bio-
marker and therapeutic target for OC patients.
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Introduction
Ovarian cancer (OC), one of the most common gyneco-
logical cancers, ranks seventh worldwide among malig-
nant tumors and fifth among female cancer-related 
deaths [1, 2]. According to the World Health Organiza-
tion, over 220,000 people worldwide are diagnosed with 
OC annually, and 150,000 die from OC [3]. Ultrasound 
is the most widely used method for detecting early-stage 
OC [4]. Ultrasound assessment of tumor echo-morphol-
ogy (cyst wall thickness, papillary projections, septae, 
solid/cystic components within cysts, bilateralism, cyst 
diameter, etc.) [5]. Several methods, such as surgery, 
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chemotherapy, radiotherapy, and molecular targeted 
therapy, treat OC [6]. Although the results of OC treat-
ment have improved with the diversification of treat-
ment strategies, most OC patients are diagnosed at a late 
stage with cancer metastasis, leading to a very low 5-year 
overall survival (OS) rate or recurrence [7]. Therefore, 
early detection and diagnosis are crucial for the treat-
ment outcomes of OC patients. Although classic targets, 
such as PD1 and EGFR, have been proven to be available 
for treating OC patients, not all patients are sensitive to 
these targeted therapies [8]. Consequently, to better diag-
nose and treat OC patients, we must explore new bio-
markers to guide healthcare professionals in predicting 
patient prognosis and developing precise, personalized 
treatment plans, which may contribute to an increase in 
the survival rate.

Recently, the establishment of large databases such 
as TCGA, GTEx, and GEO has enabled researchers to 
better analyze information in the tumor genome, such 
as mutated genes, fusion genes, CNV, and epigenetic 
changes, to screen for meaningful prognostic biomarkers 
[9, 10]. Therefore, developing bioinformatics has aided 
researchers in deepening their understanding of tumor 
occurrence and development and in conducting patho-
logical mechanism research on diseases. Conventional 
differential expression analysis based on the “Limma” 
package can only identify the changes in individual genes 
within a disease. However, cancer is a multidimensional 
and complex process that involves multiple genes. This 
gap may be filled by Weighted Gene Co-expression Net-
work Analysis (WGCNA). WGCNA is widely used to 
analyze transcriptome data. It clusters genes into dif-
ferent modules based on the correlations among dif-
ferentially expressed genes and establishes connections 
between genes and diseases [11, 12]. WCGNA can also 
be used to analyze the relationship between genes and 
clinical features of diseases [9, 10].

In this study, we obtained OC-related microarray 
datasets from the GEO database. Through collabora-
tive analysis of the “Limma” package and WCGNA, we 
obtained differentially expressed genes (DEGs) between 
normal ovarian and OC tissues. We then conducted 
functional enrichment analysis of DEGs through data-
bases such as GO, KEGG, Reactome, and WikiPathways 
to deepen our understanding of the pathological mecha-
nisms of OC. Next, hub genes were identified using the 
STRING database and Cytoscape. We then validated 
the hub genes using external GEO and TCGA + GTEx 
datasets and found that only CLDN3, IRF6, and PRSS8 
had consistent trends in all datasets. Furthermore, the 
Kaplan–Meier Plotter database revealed that CLDN3 and 
IRF6 were associated with OS and PFS in OC patients. 
We conducted a series of analyses, including developing 

a competitive endogenous RNA (ceRNA) regulatory 
network, immune-related analysis, and drug sensitiv-
ity analysis. Finally, we confirmed the role of IRF6 in the 
oncogenic effects of OC. In conclusion, we discovered 
that IRF6 could serve as a biological marker for OC, 
which is could provide theoretical and experimental evi-
dence for future clinical research in OC.

Methods
Gene expression data collection
The GEO database (https:// www. ncbi. nlm. nih. gov/ geo/) 
was used to analyze mRNA expression levels in OC 
patients. This study used the datasets GSE66957 (Nor-
mal: 12, Tumor:57), GSE14407 (Normal: 12, Tumor: 12), 
and GSE18520 (Normal: 10, Tumor: 53). The TCGA data-
base (https:// portal. gdc. cancer. gov/) only contains cancer 
tissue samples from 587 OC patients; therefore, we intro-
duced 88 normal ovarian tissue samples from the GTEx 
database (https:// www. gtexp ortal. org/) as a control for 
TCGA-OC. All detailed information of patients were 
listed in Supplementary File 1.

Identification of differentially expressed genes with Limma
Differential gene analysis was performed on GSE66957 
using the “Limma” package, with |logFC|> 1 and a 
p-value < 0.05 indicating significance. More details are in 
Supplementary File 2.

Weighted Gene Co‑Expression Network Analysis (WGCNA)
This study analyzed GSE66957 using WGCNA and con-
structed a co-expressed gene module. The soft threshold 
of GSE66957 was set to 5, the minimum module gene 
was set to 30, the module merge threshold was set to 
0.25, and MM values greater than 0.8 were considered 
disease-characteristic genes. More details are in Sup-
plementary File 3. ‘Venny’ (https:// bioin fogp. cnb. csic. 
es/ tools/ venny/) was used to create the Venn diagram. 
Common DEGs were used for subsequent analyses. More 
details are in Supplementary File 4.

Functional analyses
Following the identification of common DEGs, we con-
ducted a functional enrichment analysis. The following 
databases were used: GO, KEGG, Reactome, and WikiP-
athways. These databases were used to determine the 
biological pathways and functions of common DEGs. 
Statistical significance was set at p < 0.05. More details are 
in Supplementary File 5.

PPI network construction
A PPI network was developed using the STRING data-
base (https:// string- db. org) to analyze the interactions 
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among DEGs. If the confidence setting was greater than 
0.7, non-hidden proteins were hidden.

Screening of hub genes
The results generated using the string database were 
imported into Cytoscape for analysis, and the plugin 
cytoHubba was used to analyze hub genes. The top 10% 
of genes calculated through MCC and Degree algo-
rithms were considered hub genes. More details are in 
Supplementary File 6.

Verification of hub genes
GSE14407 and GSE18520 from the GEO database were 
obtained to further analyze hub gene expression. The 
GEPIA2.0 database (GEPIA2.cancer-pku.cn) integrates 
sequencing data from TCGA and CTEx databases. The 
GEPIA2.0 database was used to evaluate the expression 
levels of hub genes.

Prognostic signature of hub genes
The Kaplan–Meier plotter (www. kmplot. com) was used 
to perform OS, progression‐free survival (PFS), and post-
progression survival (PPS) analyses of hub genes.

Immune analysis
The TIMER algorithm was performed to calculate the 
abundances of B cells, Macrophage cells, Dendritic 
cells, Neutrophil cells,  CD4+ T cells, and  CD8+ T cells. 
The MCP Counter algorithm was used to calculate the 
abundance of ten immune infiltrating cells. The Stro-
mal, ESTIMATE, and immune scores were calculated to 
estimate the immune status in OC using the ESTIMATE 
algorithm. Furthermore, CIBERSORT was used to distin-
guish between 22 human immune cell phenotypes.

GeneMANIA analysis
GeneMANIA (http:// www. genem ania. org) is a protein 
database that analyzes the core proteins and their inter-
actions. This database explains the functional networks 
between genes and promotes research on their functions.

Construction of ceRNA network
The Starbase (https:// starb ase. sysu. edu. cn/ starb ase2/ 
index. php) and TargetScan (http:// www. targe tscan. org/ 
vert_ 72/) databases were used to predict the hub gene 
miRNAs. Common miRNAs were used in the Starbase 
and TargetScan databases to predict lncRNAs. The col-
lected miRNAs, lncRNAs, and hub genes were con-
nected to construct a ceRNA regulatory network. More 
details are in Supplementary File 7.

Drug sensitibity analysis
The molecular and pharmacological data of the NCI-
60 cancer cell line were downloaded from CellMiner 
(https:// disco ver. nci. nih. gov/ cellm iner/ home. do), and the 
correlation was evaluated between IRF6 mRNA expres-
sion levels and drug sensitivity using Pearson’s correla-
tion coefficient.More details are in Supplementary File 8.

Ovarian cancer tissue and immunohistochemistry
Tumor and normal samples from ovarian cancer 
patients were obtained from the Affiliated Sir Run Run 
Shaw Hospital of Zhejiang University School of Medi-
cine, all detailed information of patients are listed in 
Supplementary File 9. Paraffin-embedded tissues from 
Tumor and normal samples were sectioned for immu-
nohistochemistry. Briefly, sections were deparaffi-
nized in xylene and dehydrated using a graded ethanol 
series. After deparaffinization and rehydration, the 
endogenous peroxidase activity was blocked with 0.3% 
hydrogen peroxide in methanol for 30  min. Following 
heat-mediated antigen retrieval in sodium citrate buffer 
(pH 6.5), the blocked sections were incubated with 
anti-IRF6 antibody (1:100 dilution; Santa Cruz Biotech-
nology, Santa Cruz, CA) overnight at 4  °C. The signal 
was amplified by adding 3–3’-diaminobenzidine to the 
avidin–biotin-peroxidase complex (Beyotime, China). 
Finally, the sections were counterstained with hema-
toxylin and observed under a microscope.

Cell culture and transfection
The human OC cell line SKOV3 (Homo sapiens, human; 
RRID: CVCL_0532) was purchased from the Cell Bank of 
the Chinese Academy of Sciences (Shanghai, China). The 
cell line was authenticated by STR profiling. The cells were 
cultured in DMEM supplemented with 10% FBS, 100 U/
mL of penicillin sodium, and 100 mg/mL of streptomycin 
sulfate. The cells were then incubated at 37 °C with 5%  CO2. 
SKOV3 cells were cultured in 12-well plates and trans-
fected with si-NC or si-IRF6 using Lipofectamine 3000 
(Invitrogen, Carlsbad, CA, USA), according to the manu-
facturer’s instructions. All experiments were performed 
using mycoplasma-free cells. The sequences of siRNA-IRF6 
and si-control were 5ʹ- CTG AGC ATA TTA CCA ATG A -3ʹ 
and 5ʹ- TTC TCC GAA CGT GTC ACG T -3ʹ.

Transwell invasion and scratch assays
The migration and invasion of the human OC cell line 
SKOV3 were evaluated using a Transwell assay with a 
24-well, 8-µm pore size Transwell plate (Costa, Cam-
bridge, MA). Before seeding the cells onto the mem-
brane for invasive testing, 100 μL of 1:10 DMEM filtered 
Matrix (BD, USA) was added to each well and incubated 
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at 37 °C for 6 h, then SKOV3 cells transfected with si-NC 
or si-IRF6 (1 ×  105 cell/well) were inoculated in the upper 
chamber (serum-free medium), and 20% FBS culture 
medium was added to the lower chamber. After 24 h, fix-
ation, and crystal violet staining were performed, and the 
migrated cells were photographed under a microscope. 
To assess the cell migration properties of SKOV3, SKOV3 
cells transfected with si-NC or si-IRF6 (1 ×  105 cell/
well) were grown until confluence. When the cell fusion 
reached 80%, the P200 pipette tip was used perpendicu-
lar to the horizontal line to scratch, and the scratch assay 
was observed under an inverted microscope at 0, 24, and 
48  h, respectively. To determine cell migration ability, 
one examined the wound healing percentage (distance 
migrated/original wound distance × 100%).

Cell proliferation assay based on CCK8 (Cell Counting Kit‑8) 
assay
The human OC cell line SKOV3 were seeded in 96-well 
plats with 2 ×  104 cell/well and were cultured for 0 h, 24 h, 
48 h or 72 h. 10 μL of CCK8 solution (Yeasen, Shanghai, 
China) were added to each well and incubated for 2  h 
at 37  °C. A microplate reader was used (Thermo Fisher 
Scientific, Waltham, USA) to measure optical density at 
450 nm (OD450nm).

RT‑qPCR
Human ovarian cancer tissues and adjacent noncancer-
ous tissues were collected, and total RNA was extracted 
using TRIzol Reagent (Invitrogen) according to the kit 
instructions. 1  μg of total RNA was reverse‐transcribed 
to cDNA using the cDNA Reverse Transcription kit 
(Vazyme, Nanjing, China) at 37 °C for 60 min. Real-time 
PCR was performed using TB Green™ Premix Ex Taq™ 
II (RR420A; Takara, China) in a Roche LightCycler®96 
qRT-PCR system according to the manufacturer’s pro-
tocol. Primers for IRF6 (interferon regulatory factor 6) 
were, forward: 5′- CCC CAG GCA CCT ATA CAG C-3′ 
and reverse: 5′- TCC TTC CCA CGG TAC TGA AAC-3′; 
GAPDH was used as an internal reference for the calcula-
tion of IRF6 RNA expression, expression difference was 
calculated using  2−ΔΔCT method.

Statistical analysis
GraphPad Prism 8.0 software was used for data analysis. 
All data are expressed as mean ± standard deviation (SD) 
and mean ± standard error of the mean (SEM). Group dif-
ferences with P < 0.05 were considered statistically signifi-
cant using Student’s t‐test.

Results
Common DEG Identification in OC
The “Limma” package and WGCNA were jointly used to 
search for differentially expressed genes in OC. Accord-
ing to the analysis results of the “Limma” package, there 
were 8045 differentially expressed genes in GSE66957, 
of which 5273 DEGs are upregulated, and 2771 DEGs 
are downregulated (Fig.  1A). By setting a soft threshold 
of 5 (Fig. 1B) and using WGCNA, we identified 16 mod-
ules, each with similar gene co-expression characteristics 
of genes (Fig. 1C). The Spearman correlation coefficient 
between the modules and features was used to calculate 
the importance of the modules (Fig.  1D). The genes in 
the pin module with the most significant P-values were 
selected and intersected with the 8045 genes aforemen-
tioned to obtain common DEGs for subsequent analysis 
(Fig. 1E).

Functional analysis of common DEGs
To further understand the pathological mechanism of 
OC, we conducted an enrichment analysis of the biologi-
cal functions and signaling pathways involved in com-
mon DEGs in OC. The results of GO analysis indicated 
that the following biological processes were influenced by 
common DEGs: translation, DNA template, nuclear acid 
template translation, regulation of translation, DNA tem-
plate, RNA biosynthetic process, RNA metabolic process, 
regulation of nuclear acid template transfer, transport 
along the microtubule, microtubule-based transport, 
regulation of RNA biosynthetic process, and heterocy-
cle biosynthetic process (Fig. 2A). Furthermore, we used 
the GO database to analyze cellular components (Fig. 2B) 
and molecular functions involved in common DEGs 
(Fig.  2C). KEGG analysis revealed that these common 
DEGs were associated with insulin resistance, riboflavin 
metabolism, tight junctions, insulin signaling pathways, 
adherens junctions, lysosomes, viral carcinogenesis, her-
pes simplex virus 1 infection, galactose metabolism, and 
axon guidance signaling pathways (Fig. 2D). We also con-
ducted a signal pathway enrichment analysis in the Reac-
tome (Fig. 2E) and WikiPathways (Fig. 2F). Based on the 
aforementioned functional enrichment analysis results, 
these common DEGs were related to transcriptional reg-
ulation, microtubules, and metabolism.

Identification of Hub Genes
Using the STRING database, 290 common DEGs 
were used to construct the PPI network (Fig.  3A). 
The generated file was imported into Cytoscface, an 
MCODE plugin, for analyzing the core protein network 
(Figs.  3B-C). MCC and Degree algorithms were used 
to identify the top 10% of genes using the hub gene 
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analysis method derived from the cytoHubba plugin 
(Fig.  3D). After intersecting these genes, we identified 
16 hub genes. This finding suggests that these 16 genes 
are essential for OC. On the other hand, we conducted 
KEGG analysis on these 16 genes to further explore the 
pathological mechanisms in OC.

Next, we selected GSE14407 and GSE18520 datasets 
from the GEO database to confirm their differential 
expression (Figs.  4A-B). Meanwhile, considering that 
there were only OC samples in the TCGA database, we 
introduced ovarian samples from the GTEx database 
as controls and calculated their differential expression 

Fig. 1 WGCNA and DEGs analysis. A DEGs between the Normal and OC groups are shown on a volcano from GSE66957 data series downloaded 
from GEO database. B Scale-free fit index as a function of soft threshold power. C Hierarchical clustering of OC genes that are expressed similarly. D 
Module–trait relationships. E Venn diagram shows common genes from DEGs and significant module of WGCNA
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in GEPIA2.0 (Fig.  4C). We only presented differentially 
expressed genes. After analyzing the three datasets, we 
believe that the genes CLDN3, IRF6, and PRSS8, with 
common expression trends, play an essential role in OC 
pathogenesis.

We conducted ROC diagnostic analysis of CLDN3, 
IRF6, and PRSS8 in GSE66957, GSE14407, and GSE18520 
datasets. The results displayed that the area under the 
curve for these three genes was greater than 0.78, indicat-
ing that these three genes have excellent diagnostic value. 
Among them, CLDN3 and IRF6 performed better than 
PRSS8 (Figs. 5A-C). Finally, we investigated the relationship 

between CLDN3, IRF6, and PRSS8 expression levels and 
patient prognosis. The findings of the Kaplan–Meier plot-
ter indicate that the differences in expression levels of 
CLDN3 (Figs. 5D-F) and IRF6 (Figs. 5G-I) are related to OS 
and PFS in OC patients. The prognostic value of PRSS8 was 
not significant (Figs. 5J-L).

Immune cell infiltration in OC
Because the immune system plays an essential role in the 
pathogenesis of OC, we observed changes in the immune 
microenvironment of patients with OC by evaluating 
the level of infiltration of immune cells. First, using the 

Fig. 2 Functional analysis. A GO terms (Biological Process, BP). B GO terms (Cellular Component, CC). C GO terms (Molecular Function, MF). D KEGG 
Enrichment. E Reactome Enrichment. F WikiPathways Enrichment
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TIMER algorithm, we found that in OC patients, there 
were differences in various immune cells except for CD8 
T cells (Fig. 6A). This finding indicates that the immune 
system in OC patients indeed exhibits abnormalities. 
Subsequently, we used the MCP Counter algorithm to 
continue analyzing the level of immune cell infiltra-
tion and found that CD8_ T_ The cells did not exhibit 
any difference (Fig. 6B). To comprehensively analyze the 
level of immune cell infiltration, we used the CIBER-
SORT algorithm to evaluate the differences in 22 types 
of immune cells between normal individuals and OC 
patients. The results demonstrated that the proportion 
of B cells in OC patients decreased while the proportion 

of macrophages and DC cells increased (Fig. 6C). These 
findings demonstrate the importance of immunology in 
OC development.

GeneMANIA and ceRNA network for CLDN3, IRF6 
and PRSS8
Co-expression network and biological processes of 
CLDN3, IRF6, and PRRS8. GeneMANIA indicates that 
these mechanisms are closely related to the cell junc-
tions. Gene expression is jointly regulated by miRNAs 
and lncRNA. CeRNA is a novel regulatory mechanism 
(Fig.  7A). The miRNAs of the three hub genes were 
predicted using TargetScan and Starbase, and the 

Fig. 3 CytoHubba analysis of PPI network. A 290 DEGs were filtered into the DEGs PPI network through STRING database. B Identify core network-1 
through MCODE. C Identify core network-2 through MCODE. D Identifying hub genes through MCC and Degree algorithms. E Functional analysis 
of common hub genes
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intersecting miRNAs were used for subsequent lncRNA 
prediction (Fig. 7B). A ceRNA network was constructed 
using CLDN3, IRF6, PRSS8, two miRNAs (miR-34a-5p 
and miR-374a-5p), and 109 lncRNAs (Fig. 7C).

Validation of IRF6 in histological and cellular experiments
To validate our bioinformatics analysis results, we per-
formed RT-qPCR analysis and immunohistochemi-
cal staining of IRF6, and the results revealed that the 
RNA and protein levels of IRF6 in tumors were higher 

than those in normal samples (Figs.  8A-B). To further 
verify the importance of IRF6 in OC, we constructed a 
human OC cell line SKOV3 that knocks down IRF6 to 
explore the effect of IRF6 on cell phenotypes of OC. We 
knocked down IRF6 by siRNAs (Fig. 8C). Data from the 
CCK8 detection assay suggested that IRF6 knockdown 
inhibited the proliferation of SKOV3 cells (Fig.  8D). 
The results of scratch wound assay demonstrated that 
knocking down IRF6 decreased the migration ability of 
SKOV3 cells (Fig.  8E). Similarly, the Transwell invasion 

Fig. 4 The identification of hub genes. The expressions of common hub genes in (A) GSE14407, (B) GSE18520, (C) TCGA + GTEx. The GSE14407 
and GSE18520 data series downloaded from GEO database. (* means P < 0.05; **means P < 0.01; *** means P < 0.001; **** means P < 0.0001. Student’s 
t-test, Error bars are ± SEM)
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assay significantly decreased invading cells after knock-
ing down IRF6 (Fig. 8F). This finding indicates that IRF6 
can regulate the migration and invasion of SKOV3 cell 
migration.

Drug sensitivity
Z-score-measured drug sensitivity was evaluated along 
with the mRNA expression level of IRF6. The most signif-
icantly correlated drugs are illustrated in Fig. 9, indicat-
ing that the increased expression level of IRF6 is related 

to the reduced sensitivity of cells to various DNA inhibi-
tors, such as cisplatin, carboplatin, and gemcitabine, and 
increased sensitivity to various drugs, such as SGI-1027, 
Linsitinib, and BAY-876.

Discussion
As one of the three common gynecological malignan-
cies, OC has a high incidence rate and mortality [13]. 
Many factors affect the pathogenesis and prognosis of 
OC patients [14]. However, because of the lack of strong 

Fig. 5 The Survival analysis of CLDN3, IRF6 and PRSS8. The receiver operating characteristic curve analysis of hub genes in (A) GSE66957, (B) 
GSE14407, (C) GSE18520. The GSE66957, GSE14407 and GSE18520 data series downloaded from GEO database. The survival analysis in KM plotter: 
(D) OS of CLDN3. E PFS of CLDN3. F PPS of CLDN3. G OS of IRF6. H PFS of IRF6. I PPS of IRF6. J OS of PRSS8. K PFS of PRSS8. L PPS of PRSS8.
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biomarkers, most OC patients are diagnosed at a later 
stage. The prognosis for patients with advanced OC is 
poor [15]. Although there has been improvement after 
receiving clinical treatment, the 5-year survival rate of 
patients with advanced OC is extremely low because 
of their high recurrence and cancer cell metastasis rate 
[7, 16]. Furthermore, the current treatment targets only 
apply to some OC patients, and the reasons for this situ-
ation remain unclear [17]. Therefore, screening for novel 
biomarkers of OC is crucial.

Recently, establishing various public databases and 
developing bioinformatics have promoted research on 
cancer pathogenesis. The STMN2, ESM1, and COL6A3 
genes have been identified as novel biomarkers for OC 
patients [10, 18, 19]. Our study combined the differ-
ential gene analysis results of Limma and WGCNA, 
and through joint analysis of multiple datasets such 
as GSE66957, GSE14407 [20], GSE18520 [21], and 

TCGA + GTEx, we found that three genes (CLDN3, 
IRF6, and PRSS8) were closely related to the occurrence 
and development of OC. Survival analysis indicated that 
CLDN3 and IRF6 were associated with OS and PFS in 
OC patients, indicating that these genes have prognos-
tic value. We used multiple algorithms to quantify the 
infiltration of immune cells in OC patients. In addition, 
ceRNA networks for CLDN3, IRF6, and PSRR8. CLDN3 
and PSRR8 have been proven to have carcinogenic effects 
in OC, whereas IRF6 has not been reported in cancer. 
Therefore, we also validated the role of IRF6 in OC.

The Claudin family is a recently discovered type of tight 
junction protein, and changes in its expression and distri-
bution directly affect the structure and function of tight 
junctions [22]. Among these, abnormal expression of 
Claudin-3 (CLDN3) is closely related to the occurrence 
and development of tumors [23]. CLDN3 is an essential 
cytoskeletal protein in tight junctions, and it is currently 

Fig. 6 Immune cell infiltration analysis. A Sabundance of six immune filtrating cells evaluated by TIMER. B Iimmune filtrating cells evaluated 
by MCPCounter. C 22 distinct immune cell subtype compositions in OC and Normal samples
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widely believed that the loss of intercellular adhesion can 
lead to the destruction of tight junctions, which is related 
to the infiltration and metastasis of tumor cells [24]. The 
primary function of CLDN3 is to maintain the physical 
barrier function between cells [25, 26]. The exact relation-
ship between abnormal CLDN3 expression and tumors 
is still unclear. In colorectal cancer cells, the expression 
level of CLDN3 is abnormally increased, and its overex-
pression is associated with the deterioration of colorectal 
cancer [27]. In OC, CLDN3 overexpression may promote 

the invasion and movement of cancer cells [28]. There-
fore, the specific role of CLDN3 may depend on the high 
specificity of the tissue and the precise molecular signal-
ing pathway within the cell. Taken together, CLDN3 is 
one of the most highly upregulated OC pathogenic genes, 
which is consistent with our results [29].

In the present study, we used the KM plot to test the 
prognostic value of PRSS8; however, we did not find 
any association between PRSS8 and OS, PFS, and PPS 
in OC patients. However, according to existing reports, 

Fig. 7 Construction of ceRNA network. A The protein–protein interaction network of CLDN3, IRF6 and PSSR8 by GeneMANIA Analysis. B The Venn 
diagram depicts the overlap between CLDN3, IRF6 and PSSR8. C The integrated lncRNA-miRNA-hub genes network
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PRSS8 is an early diagnostic marker for OC, which may 
be due to inconsistent clinical information data [30]. 
Furthermore, the expression level of PRSS8 significantly 
increased in OC patients and cell lines, which is consist-
ent with the results of our bioinformatics analysis [30]. 
Moreover, Xing Peng et  al. found that knocking down 
PRSS8 inhibited the proliferation, migration, and EMT 
of OC cells, indicating that PRSS8 is a carcinogen of OC 
cells [31]. However, there is still some controversy over 
the role of PRSS8. For example, PRSS8 is a tumor sup-
pressor in colorectal and liver cancer cells [32]. There-
fore, we believe that PRSS8 may play different regulatory 
roles in other tumors.

IRF6 was the biggest gain of this study. As a member 
of the interferon regulatory family of DNA transcription 
factors, IRF6 encodes a highly conserved winged-helix 

DNA-binding protein [33]. IRF6 is primarily associated 
with human craniofacial anomalies, but its association 
with cancer has not been reported [34]. Although stud-
ies have reported a potential link between tooth agenesis 
and cancer, no such link has been established [35]. In the 
present study, we found that IRF6 RNA and protein lev-
els were highly expressed in OC and were related to the 
OS and PFS of OC patients. Given the lack of research 
on IRF6 in OC, we conducted a preliminary exploration 
of its function in OC. The CCk8 assay, transwell migra-
tion and invasion experiments depicted that IRF6 knock-
down inhibited the proliferation, migration and invasion 
abilities of the OC cell line SKOV3. This finding indicates 
that IRF6 may be a cancer-promoting factor in OC and 
become tumor markers in the future to guide OC patient 
prognosis recommendations.

Fig. 8 Experimental validation of IRF6. A The mRNA expression of IRF6 in OC tissues and adjacent normal tissues was measured by qRT-PCR (B) 
Immunohistochemistry of IRF6 based on the OC tissues and adjacent normal tissues. C The mRNA expression of IRF6 in SKOV3 cells was detected 
via qRT-PCR after transfection with siRNA targeting IRF6 for 48 h. D CCK8 experiment results of SKOV3 cells after cell transfection. E The scratch assay 
and statistical analysis of SKOV3 cells for the group original and si-IRF6. F The effect of IRF6 on invasion of SKOV3 cells was investigated by transwell 
invasion assay and statistical analysis. Data are mean ± SD from three independent experiments for D. The scales bar to indicate 50 μm for B. 
(**means P < 0.01; *** means P < 0.001, **** means P < 0.0001, N = 3, Student’s t-test, Error bars are ± SEM)
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However, our study has some shortcomings. First, 
we only used a small sample for IHC staining, which 
was insufficient for identifying IRF6 as a diagnostic 
and therapeutic biomarker for ovarian cancer patients. 
Second, the used dataset was not large enough and 
should include as many datasets as possible for analy-
sis to determine the accuracy of IRF6 as a biomarker 
for ovarian cancer patients. Although we constructed 
a ceRNA network, it has not been studied. Finally, we 
only conducted a preliminary exploration of the role 
of IRF6 in ovarian cancer. However, soon, we will use 
more clinical samples and further experiments to ver-
ify our results.

Conclusion
In summary, our research has identified a new target, 
IRF6, which may be related to the development of OC 
and may serve as an effective diagnostic marker for 
OC. In addition, we established a ceRNA network for 
IRF6 and predicted its association with sensitivity to 
various chemotherapeutic drugs. These findings could 
be applied in future clinical studies.
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