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Abstract
Objective IR emerges as a feature in the pathophysiology of PCOS, precipitating ovulatory anomalies and 
endometrial dysfunctions that contribute to the infertility challenges characteristic of this condition. Despite its 
clinical significance, a consensus on the precise mechanisms by which IR exacerbates PCOS is still lacking. This study 
aims to harness bioinformatics tools to unearth key IR-associated genes in PCOS patients, providing a platform for 
future therapeutic research and potential intervention strategies.

Methods We retrieved 4 datasets detailing PCOS from the GEO, and sourced IRGs from the MSigDB. We applied 
WGCNA to identify gene modules linked to insulin resistance, utilizing IR scores as a phenotypic marker. Gene 
refinement was executed through the LASSO, SVM, and Boruta feature selection algorithms. qPCR was carried out 
on selected samples to confirm findings. We predicted both miRNA and lncRNA targets using the ENCORI database, 
which facilitated the construction of a ceRNA network. Lastly, a drug-target network was derived from the CTD.

Results Thirteen genes related to insulin resistance in PCOS were identified via WGCNA analysis. LASSO, SVM, and 
Boruta algorithms further isolated CAPN2 as a notably upregulated gene, corroborated by biological verification. 
The ceRNA network involving lncRNA XIST and hsa-miR-433-3p indicated a possible regulatory link with CAPN2, 
supported by ENCORI database. Drug prediction analysis uncovered seven pharmacological agents, most being 
significant regulators of the endocrine system, as potential candidates for addressing insulin resistance in PCOS.

Conclusions This study highlights the pivotal role of CAPN2 in insulin resistance within the context of PCOS, 
emphasizing its importance as both a critical biomarker and a potential therapeutic target. By identifying CAPN2, 
our research contributes to the expanding evidence surrounding the CAPN family, particularly CAPN10, in insulin 
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Introduction
PCOS is a prevalent endocrine disorder, affecting 6–10% 
of women of reproductive age worldwide [1], with 
regional variations in prevalence [2]. At its core, PCOS 
manifests through a triad of symptoms: hyperandrogen-
ism, persistent anovulation, and polycystic ovaries, 
contributing to a wide range of reproductive and meta-
bolic dysfunctions. These primary aspects underscore 
the complex pathogenesis of PCOS, which intertwines 
insulin resistance, chronic inflammation, genetic predis-
positions, and lifestyle factors such as obesity [3]. The 
condition poses significant challenges to reproductive 
health, notably increasing risks of infertility and men-
strual irregularities. Moreover, PCOS patients frequently 
encounter comorbidities like metabolic syndrome, pres-
ent in approximately 35.3% of cases, as well as non-
alcoholic fatty liver disease and mental health issues, 
including anxiety and depression [4]. Current research 
emphasizes the critical role of lifestyle management and 
reproductive health awareness in PCOS, advocating for 
early detection and a comprehensive, multidisciplinary 
treatment approach [5–7].

Insulin resistance characterizes a state in which cells 
respond inadequately to insulin, playing a pivotal role in 
the pathophysiology of PCOS [8, 9]. Rather than being 
pathological, IR represents a challenging condition to 
quantify through conventional markers and is com-
monly regarded as a precursor to diabetes. In the context 
of PCOS, elevated insulin levels stemming from IR can 
further complicate metabolic issues, such as obesity and 
type 2 diabetes, and aggravate PCOS symptoms by pro-
moting increased androgen production. Additionally, IR 
is associated with an elevated risk of cardiovascular dis-
eases and metabolic syndrome among PCOS patients, 
underlining its significance in the broader spectrum of 
metabolic dysfunction [10, 11].

The management of insulin resistance in PCOS, though 
reliant on lifestyle interventions and medications like 
metformin [12], is significantly hampered by an insuffi-
cient understanding of the disease’s underlying mecha-
nisms. This gap is particularly evident in the scarcity of 
detailed genetic studies, including gene expression pro-
files, which are crucial for elucidating the molecular basis 
of insulin resistance in PCOS [13]. The current shortfall 
in research into these mechanisms restricts the devel-
opment of more effective and personalized treatment 
approaches. Advanced genetic research, especially focus-
ing on the molecular intricacies of insulin resistance, is 

therefore imperative to overcome these limitations and 
enhance treatment efficacy in PCOS.

In this study, we embark on an innovative path by 
applying WGCNA and leveraging the MSigDB for a 
quantitative analysis of insulin resistance states. Our 
objective is to dissect the transcriptomic profiles of 
granulosa cells in PCOS patients, with a special focus 
on quantifying the insulin resistance status. This quan-
titative framework aims to facilitate the identification of 
critical hub genes that play a pivotal role in linking insu-
lin resistance with PCOS. By mapping out the regulatory 
networks of noncoding RNAs associated with these cen-
tral genes, we aspire to uncover new dimensions of the 
molecular mechanisms at play in PCOS. The ultimate 
goal is to illuminate the intricate genetic landscape gov-
erning insulin resistance within PCOS, thereby guiding 
the development of targeted and personalized treatment 
strategies. This endeavor contributes to the broader 
initiative of improving PCOS management through 
enhanced understanding of its underlying genetic factors.

Materials and methods
Data resource
For our investigation, multiple datasets from the past five 
years were carefully selected to investigate the molecular 
mechanisms of early localized insulin resistance status 
specifically in granulosa cells of PCOS patients. Data-
sets representing a wide range of body types within the 
PCOS population were included, and those with diag-
nosed insulin resistance were excluded. The goal was to 
identify characteristics of early-stage insulin resistance 
in PCOS. To ensure the accuracy of the study, datasets 
where participants had minimal differences in BMI were 
also excluded.

Ultimately, we chose four datasets from the Gene 
Expression Omnibus database (https://www.ncbi.nlm.
nih.gov/geo/), each consisting of granulosa cell tissue 
samples from both PCOS patients and control subjects. 
It’s noteworthy that the diagnosis of PCOS in these data-
sets adhered strictly to the Rotterdam criteria [14]. Fur-
thermore, control groups were meticulously matched 
with PCOS cases based on age to ensure the comparabil-
ity of the study groups.

The primary dataset utilized was GSE80432 [15], ana-
lyzed with the Affymetrix Human Gene 1.0 ST Array 
(Platform GPL6244), comprising 16 samples split evenly 
between normal individuals and those diagnosed with 
PCOS. This dataset includes a wide array of body types, 
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reflecting varying degrees of metabolic processes, which 
provides a comprehensive overview of the PCOS spec-
trum. Its diverse representation of PCOS variability 
makes it an optimal training set.

As a comprehensive validation dataset, GSE155489 [16] 
was employed, processed using the HiSeq X Ten platform 
(Platform GPL20795), which includes a total of 8 sam-
ples, evenly divided between normal and PCOS groups. 
Despite its smaller size, this dataset played a crucial role 
in further validating the diagnostic markers identified in 
the primary analysis.

To deepen our understanding of the regulatory mech-
anisms in PCOS, we constructed a ceRNA network, 
incorporating the GSE138518 lncRNA dataset [17] and 
the GSE138572 miRNA dataset [17], both analyzed on 
the Illumina HiSeq 2000 platform (Platform GPL11154). 
The former features 6 samples, equally divided between 
normal and PCOS subjects, while the latter comprises 10 
samples, also evenly split between the two groups.

WGCNA
The ssGSEA algorithm calculates IR scores for each sam-
ple by first ranking all genes according to their expression 
levels. It then assesses the relative position of IR-related 
genes within this ranked list to compute an enrichment 
score. This score quantifies the degree to which IR-
related genes are overrepresented at the top of the ranked 
gene list, providing a numerical IR score for each sam-
ple. The approach allows for the direct quantification of 
IR pathway activity in individual samples based on gene 
expression data.

Furthermore, the gene set used for calculating IR scores 
was derived from 80 IR-related genes sourced from the 
MsigDB, specifically selected based on the ‘Insulin Resis-
tance’ keyword within the HP_INSULIN_RESISTANCE 
pathway. MsigDB served as a crucial resource for our 
gene set enrichment analysis, facilitating an in-depth 
exploration of insulin resistance’s molecular basis in 
PCOS.

After quantifying IR scores, we proceeded to prepro-
cess the normalized gene expression data. This prepro-
cessing included the removal of genes that exhibited 
minimal variability across samples, defined by a MAD 
threshold of 0.1 or lower. Subsequently, hierarchical clus-
tering was employed to identify outlier samples, result-
ing in the exclusion of sample GSM2127212 from our 
analysis. This methodical approach ensured the inclu-
sion of only those genes displaying significant variability 
and samples that are representative of typical expression 
patterns.

With a clean dataset, we then proceeded to employ 
WGCNA to identify gene modules closely associated 
with IR. A soft threshold was determined to optimize the 
network topology, which is essential for constructing a 

meaningful gene co-expression network. We set the min-
imum size for each gene module at 70, ensuring a robust 
analysis.

The correlation between these gene modules and the 
quantified IR trait was subsequently calculated. This step 
enabled us to pinpoint key modules that exhibit a signifi-
cant association with insulin resistance, underlining the 
modules’ potential role in the pathophysiology of PCOS 
related to IR. The integration of IR scores derived from 
ssGSEA with WGCNA highlighted the importance of 
a quantitative approach to understanding the genetic 
underpinnings of insulin resistance in PCOS patients.

Differential expression genes analysis
In the analysis of the GSE80432 and GSE155489 data-
sets from the GEO, appropriate differential analysis 
methods were selected based on the characteristics of 
the downloaded data. For GSE80432, the limma pack-
age was utilized to assess differential expression between 
PCOS and normal samples within the mRNA expression 
matrix [18]. Limma, known for its robustness in small 
sample sizes and complex experimental designs, fits lin-
ear models and uses empirical Bayes methods for more 
precise variance estimates. In contrast, for GSE155489, 
the DESeq2 package [19] was employed, a method well-
suited for analyzing count data from RNA sequencing 
experiments. This approach also involves fitting models 
to data but is specifically designed to handle the discrete 
count nature of sequencing data. For both datasets, the 
resulting P-values were used to identify significant differ-
ences between PCOS and normal samples, with a thresh-
old of P < 0.05. Hub genes identified from WGCNA were 
then intersected with the DEGs from these datasets to 
identify a set of candidate genes. Enrichment analyses for 
these genes, including GO and KEGG, were conducted 
using the R software package ClusterProfiler [20], adher-
ing to the same significance threshold.

Machine learning refinement of identified DEGs
In the analysis of the GSE80432 dataset, feature dimen-
sionality was reduced using the LASSO [21] logistic 
regression via R’s ‘glmnet’ package, focusing on selecting 
genes based on expression and grouping information for 
effective sample classification. Subsequently, key genes 
were ranked using the SVM [22] algorithm with RFE [23] 
through the ‘e1071’ package, assessing each gene’s impor-
tance and ranking based on error rate and accuracy. 
The Boruta method was then applied to further refine 
feature selection [24]. This algorithm employs Random 
Forest classification to iteratively compare actual fea-
tures against randomly generated shadow features, effec-
tively identifying the most significant ones. The final set 
of characteristic genes was determined by intersecting 
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features identified by LASSO, SVM, and Boruta using the 
jVenn tool [25].

Construction of ceRNA Network and Drug Target 
Prediction in IR-Related PCOS
To further investigate the role of key genes in insulin 
resistance-related PCOS, the study focused on elucidat-
ing the ceRNA regulatory network and identifying poten-
tial therapeutic targets. Differential expression analysis 
of lncRNAs and miRNAs was conducted on GSE138518 
and GSE138572 datasets using the DESeq2 package. 
The analysis concentrated on mRNA-miRNA pairs with 
opposite regulation patterns, and lncRNA predictions 
were exclusively performed using the ENCORI database 
to select miRNA-lncRNA pairs demonstrating inverse 
regulation [26]. This led to the construction of a PCOS-
specific ceRNA network based on the interactions of 
mRNA, miRNA, and lncRNA. The final phase involved 
identifying potential drug targets by querying each key 
gene against the CTD database (https://ctdbase.org/) 
[27], and the relationships between these drugs and key 
genes were visualized using Cytoscape software, form-
ing a comprehensive drug-target network. This approach 
aims to advance the development of targeted therapies 
for IR-related PCOS.

Specimen collection and qPCR procedures
Following approval from the Ethics Committee of the 
First People’s Hospital of Yunnan Province, granulosa 
cell tissues were obtained from patients diagnosed with 
PCOS. These patients were diagnosed based on the Rot-
terdam criteria, encompassing oligo- or anovulation, 
clinical and/or biochemical signs of hyperandrogen-
ism, and the presence of polycystic ovaries. Patients 
with other endocrine disorders or gynecological condi-
tions mimicking PCOS were excluded from the study. 
Informed consent was secured from all participants 
before tissue collection. The granulosa cells were har-
vested during routine oocyte retrieval procedures, typi-
cally part of IVF treatments, and were either immediately 
processed for RNA extraction or stored at -80 °C for sub-
sequent analysis.

For qPCR analysis, total RNA was extracted from 
granulosa cell tissues using the TRIzol method (Thermo 
Fisher Scientific, Waltham, MA, USA). The integrity and 
concentration of the RNA were determined using the 
NanoDrop ND-1000 Spectrophotometer (Thermo Fisher 
Scientific, Waltham, MA, USA). For mRNA and lncRNA, 
the RNA was reverse-transcribed into cDNA using the 
Quantscript RT Kit (KR103, TIANGEN, Beijing, China). 
For miRNA analysis, cDNA synthesis was performed 
using the miRcute Plus miRNA First-Strand cDNA Kit 
(KR211, TIANGEN, Beijing, China).

qPCR was conducted on a Bio-Rad thermal cycler 
(CFX96 Touch, Hercules, CA, USA). The FastReal qPCR 
PreMix (SYBR Green, FP217, TIANGEN, Beijing, China) 
was used for mRNA/lncRNA analysis, and the miRcute 
Plus miRNA qPCR Kit (SYBR Green, FP411, TIANGEN, 
Beijing, China) for miRNA analysis. The qPCR condi-
tions included an initial denaturation at 95 °C for 3 min, 
followed by 40 cycles of 95 °C for 15 s and 60 °C for 30 s. 
Expression levels of target genes and miRNAs were 
normalized to housekeeping gene GAPDH and inter-
nal control hsa-U6 (hsa-U6 qPCR Primer, CD201-0145, 
TIANGEN, Beijing, China), respectively, calculated using 
the 2^-ΔCt method. Primers for hsa-miRNA-433-3p 
(hsa-miR-433-3p qPCR Primer, CD201-0478, TIAN-
GEN, Beijing, China) were used, and details of other 
primers are provided in Supplementary Table 1. All reac-
tions were performed in triplicate to ensure accuracy and 
reproducibility.

Analyzing the IR-Related Differential molecular markers in 
PCOS
Validation of bioinformatics findings on IR-related 
mRNA, lncRNA, and miRNA in PCOS was conducted 
using Prism 9 (GraphPad Software, San Diego, CA, 
USA). In this part of the analysis, qPCR data from PCOS 
patient samples were examined using non-paired t-tests, 
with a two-tailed P-value of < 0.05 indicating statistical 
significance. Additionally, the capacity of these markers 
to differentiate PCOS was assessed via ROC curve analy-
sis, particularly through the calculation of the AUC. This 
process aimed to align empirical data with bioinformatics 
predictions, thereby confirming the roles of these mark-
ers in the context of PCOS.

Results
Identification of 3050 IR-Related hub genes in PCOS 
through WGCNA
In the WGCNA (Fig. 1), a systematic analysis of over ten 
thousand genes initially resulted in 36 distinct modules, 
which were later refined to 17 key modules. This process 
was integral in mapping the complex genetic landscape 
associated with IR-related PCOS. The ‘darkred’ module, 
in particular, stood out for its strong correlation with IR 
score (|r| = 0.78), as determined by a rigorous threshold 
of P < 0.001. Comprising 3050 mRNAs, this module’s 
significant association highlights its potential impact on 
understanding the genetic underpinnings of IR-related 
PCOS.

Thirteen essential genes identified in IR-related PCOS
Differential gene analysis in the GSE80432 and 
GSE155489 datasets was performed to identify varia-
tions in genes between disease and normal sample 
groups. In GSE80432, 723 DEGs were identified, while 

https://ctdbase.org/
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Fig. 1 WGCNA Reveals Key Gene Modules Linked to Insulin Resistance in PCOS. (A) Plots scale-free fit index against mean connectivity to select the opti-
mal soft-thresholding power, ensuring network accuracy and relevance. (B) The Module-Tree displays merging of similar modules at specific cut heights, 
simplifying the network. (C) Hierarchical clustering of gene modules is shown, with unique color names representing different modules, highlighting 
their relationships and potential functions. (D) An eigengene adjacency heatmap reveals correlations among module eigengenes, showing their network 
integration. (E) Combines sample clustering with a trait heatmap, linking gene module patterns to insulin resistance scores and identifying modules with 
notable correlations. (F) Details module-trait relationships with correlation coefficients and P-values, pinpointing modules significantly linked to insulin 
resistance, guiding focused therapeutic investigation
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in GSE155489, there were 5116 DEGs. Heatmaps were 
used for clustering analysis of these DEGs, illustrated in 
Fig. 2A and B.

In WGCNA, the most significant module, labeled 
“darkred,” contained 3050 DEGs. The analysis first 
involved intersecting the upregulated DEGs from 
GSE80432 with those from GSE155489, followed by a 
similar intersection for downregulated DEGs. These 
groups of intersected upregulated and downregulated 
DEGs were then each compared separately with the 
genes from the “darkred” module in WGCNA (Fig. 2C). 
This stepwise approach was critical to identify relevant 
gene overlaps.

This process identified 13 key DEGs (Fig.  2F), with 7 
upregulated (BCL9, CAMK2N1, CAPN2, NAB2, PTPRH, 
ROR1, SLC20A2) and 6 downregulated (FRA10AC1, 
GALNT3, GTF2H2, GTF2H2C, MTND2P28, QPCT).

Enrichment analyses for these 13 IR-related sig-
nificant DEGs were conducted using KEGG and GO. 
This revealed 5 KEGG pathways and 125 GO path-
ways, including 78 BPs, 27 CCs, and 20 MFs, detailed 

in supplementary Table 2. The top 5 pathways in both 
KEGG and GO were showcased in Fig.  2G. Notably, 
CAPN2 was primarily involved in BP processes like the 
regulation of phosphatidylcholine metabolic process, 
myotube differentiation, and positive regulation of phos-
pholipid biosynthetic process, as well as MF processes 
such as calcium-dependent cysteine-type endopeptidase 
activity.

Pinpointing CAPN2 in IR-related PCOS through LASSO, 
RFE-SVM and Boruta analysis
In the LASSO regression model, applied to the GSE80432 
dataset and focusing on the 13 key genes identified from 
the differential gene expression analysis, the regression 
was conducted using R’s ‘glmnet’ package with standard 
parameters. This setup facilitated LASSO logistic regres-
sion, enabling the calculation of error rates for different 
features during cross-validation. The results were illus-
trated through a gene coefficient graph and a cross-val-
idation error plot. The analysis identified a lambda.1se 
value of 0.117 as the point of minimum error rate, leading 

Fig. 2 Integrated Analysis of Gene Expression with IR states in PCOS. (A & B) Display DEG heatmaps for datasets GSE80432 and GSE155489, highlighting 
differential expression between PCOS and controls, identifying potential biomarkers. (C) Features a Venn diagram merging “darkred” module genes from 
WGCNA with DEGs, isolating key genes linked to IR in PCOS. (D & E) Present expression heatmaps for lncRNAs and miRNAs in GSE138518 and GSE138572, 
revealing regulatory non-coding RNA changes in PCOS. (F) Box plots of 13 genes showcase distinct expression levels in PCOS versus controls, pinpointing 
IR-related genes. (G) Offers GO and KEGG pathway analyses, elucidating the biological impact of these genes in PCOS.
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to the selection of the following feature mRNAs: CAPN2, 
CAMK2N1, GTF2H2, and GTF2H2C.

The SVM algorithm, implemented through the R pack-
age “e1071,” was utilized to rank the 13 key mRNAs. The 
RFE method was employed to iteratively refine the selec-
tion, focusing on the importance and ranking of each 
mRNA. This process involved calculating the error rate 
and accuracy for each iteration, with the optimal combi-
nation of mRNAs selected based on the lowest error rate. 
The analysis demonstrated peak accuracy and lowest 
error with the selection of the top 1 feature, CAPN2.

To further ensure the robustness of results, the Boruta 
algorithm was employed as an additional validation step. 
This method confirmed the relevance of several genes 
previously identified, solidifying their roles in IR-related 
PCOS. The Boruta analysis resulted in the confirma-
tion of 8 key genes: CAPN2, PTPRH, SLC20A2, ROR1, 
GTF2H2, GTF2H2C, QPCT, and GALNT3, while 6 genes 
were deemed less significant and categorized as rejected.

The methodologies employed in this study demonstrate 
robustness in identifying key mRNAs associated with IR 
in PCOS (Fig.  3). The intersected results reinforced the 
significance of these methodologies. Notably, this inter-
section pinpointed CAPN2 as the singular, crucial gene 
consistently selected across various analytical methods, 
affirming its pivotal role in IR-related PCOS.

ceRNA Network Construction and Drug Target Prediction 
in IR-Related PCOS
In this study, we conducted a differential expression anal-
ysis of lncRNAs and miRNAs in PCOS and normal sam-
ples, using the DESeq2 package in R, applied to datasets 
GSE138518 and GSE138572. Specifically, we identified 
109 significantly different lncRNAs in GSE138518 and 27 
miRNAs in GSE138572, when comparing PCOS to nor-
mal samples. Cluster analysis was performed to visualize 
the distribution of these differentially expressed lncRNAs 
and miRNAs, as shown in a heatmap (Fig. 2D and E).

Subsequently, the ENCORI database was employed 
to predict miRNAs targeting the CAPN2 gene, result-
ing in 127 potential mRNA-miRNA pairs. A subset of 
these miRNAs, specifically intersecting with the differ-
entially expressed miRNAs from GSE138572, yielded 
four miRNAs: miR-146a-5p, miR-20b-5p, miR-433-3p, 
and miR-508-3p. Further database searches identi-
fied lncRNAs corresponding to these four miRNAs. An 
intersection with the differentially expressed lncRNAs 
from GSE138518 revealed five lncRNAs: H19, MALAT1, 
MEG8, NEAT1, and XIST (Fig. 4A).

Considering the mechanisms of ceRNA interactions, 
an inverse relationship is expected between the expres-
sion trends of target genes and lncRNAs, in relation to 
miRNAs. This led to the discovery of a potential ceRNA 

Fig. 3 Machine Learning for Pivotal Gene Selection. (A) LASSO regression is shown via coefficient trajectories against log(lambda) on the left, identify-
ing optimal gene selection parameters: ‘Lambda.min’ for minimal error and ‘Lambda.1se’ for a simpler model. On the right, a misclassification error plot 
indicates the best-performing model against lambda values for robust PCOS gene selection. (B) The RFE analysis correlates the number of features with 
model accuracy (left) and cross-validation error (right). The plots highlight the optimal number of predictive features that correspond to the highest ac-
curacy and lowest error, optimizing the gene selection for PCOS. (C) Boruta’s boxplot assesses gene importance against shadow features to confirm the 
significance of genes in PCOS, distinguishing those with substantial contributions to the pathogenesis of IR.
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network, specifically XIST acting through hsa-miR-
433-3p to regulate CAPN2 (Fig. 4B).

To identify drugs targeting the CAPN2 gene (Fig. 4C), 
we queried the CTD database with ‘CAPN2’ as a key-
word, focusing on compounds associated with PCOS. 
The search identified seven drugs: Diethylhexyl Phthal-
ate, Dihydrotestosterone, Estradiol, Folic Acid, Proges-
terone, Testosterone, and Valproic Acid, all relevant to 
endocrine regulation, particularly in reproductive health.

Validation of the expression of CAPN2, XIST, and mir-
433-3P in PCOS
Following informed consent, we recruited 12 patients 
with irregular menstrual cycles and more than 25 antral 
follicles, diagnosed with PCOS. Correspondingly, 12 
patients with regular menstrual cycles and fewer than 
15 antral follicles, seeking IVF-ET treatment due to 
tubal factors, were also enrolled. Table 1 summarizes the 
demographic baseline data of the 24 volunteers, show-
ing that apart from a significant difference in BMI, other 
differences between the PCOS group and the control 
group were not pronounced. Notably, the PCOS patients 
exhibited higher levels of AMH, basal LH, and testoster-
one compared to the control group. After identical con-
trolled ovarian stimulation in all volunteers, granulosa 
cells were collected on the day of oocyte retrieval. Total 
RNA extracted from these cells was analyzed using qPCR 

to validate the expression levels of CAPN2, XIST, and 
miR-433-3p.

The results of our study demonstrated a notable upreg-
ulation in the expression levels of CAPN2 and XIST in 
the PCOS group, suggesting a potential role in the patho-
physiology of the syndrome. In contrast, the expression 
of miR-433-3p was significantly decreased in the PCOS 
group compared to the control group. This differential 
expression pattern may reflect the complex endocrine 
and metabolic dysregulations associated with PCOS, 
potentially offering insights into novel biomarkers or 
therapeutic targets.

Furthermore, the efficacy of these molecular markers 
in distinguishing PCOS was rigorously evaluated using 
ROC analysis. The analysis revealed that CAPN2, XIST, 
and miR-433-3p collectively demonstrated substan-
tial discriminatory power. Specifically, the AUC values 
ranged from 0.7986 to 0.9028, indicating a high level of 
accuracy in differentiating PCOS from normal ovarian 
function. This finding underscores the potential utility of 
these markers in clinical diagnostics. For a detailed illus-
tration of these results, refer to Fig. 5, which graphically 
represents the ROC curves and highlights the sensitivity 
and specificity of each marker at various threshold levels.

This exploration of molecular markers in PCOS not 
only aids in understanding the underlying biological 
mechanisms but also paves the way for developing more 

Fig. 4 ceRNA Network and CTD Drug Predictions. (A) Outlines a ceRNA network with key differentially expressed miRNAs, lncRNAs, and CAPN2, detailing 
their regulatory interactions. (B) Condenses the network into a targeted ceRNA model that clarifies miRNA and lncRNA regulatory patterns with CAPN2, 
suggesting potential impacts on PCOS. (C) Utilizes the CTD to suggest drugs targeting CAPN2, guiding future treatment options based on the ceRNA 
network’s insights
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precise diagnostic criteria and personalized treatment 
strategies. The significant variance in expression levels of 
these markers between PCOS and control groups war-
rants further investigation, potentially leading to break-
throughs in the management of this complex condition.

Discussion
This study delves into the genetic and molecular mech-
anisms linking IR and PCOS, using a combination of 
bioinformatics tools and experimental validation to iden-
tify key genes associated with IR in PCOS patients. Key 
findings include the identification of thirteen genes cor-
related with IR, notably the upregulation of the CAPN2 
gene, as confirmed by qPCR analysis. Additionally, we 
constructed a ceRNA network involving lncRNA XIST 
and hsa-miR-433-3p, linked to the CAPN2 gene. These 
findings not only shed light on the molecular regulatory 
mechanisms of ceRNA networks in PCOS-related IR but 
also provide potential targets for pharmacological inter-
vention in treating this condition.

PCOS is a complex disorder characterized by hyper-
androgenism, irregular ovulation, and polycystic ova-
ries, typically manifesting during puberty. Its etiology 
encompasses genetic predispositions, such as gene vari-
ants influencing steroidogenesis [28] and insulin action 
[29], the latter impacting glucose metabolism, as well as 
environmental factors such as lifestyle choices and prena-
tal toxin exposure [30]. The pathophysiology of PCOS is 
characterized by a dysfunctional hypothalamic-pituitary-
ovarian axis [31], leading to menstrual irregularities and 

infertility. Hyperandrogenism in PCOS, presenting as 
acne and hirsutism, stems from excessive androgen pro-
duction that disrupts ovarian follicle development [32]. 
Oxidative stress, a significant factor in PCOS, contributes 
to tissue damage, inflammation, and an increased risk of 
cardiovascular diseases and cancers [33]. Furthermore, 
AGEs in PCOS exacerbate reproductive and metabolic 
alterations by inducing inflammation and cellular dam-
age [34].

Research into PCOS has advanced with efforts to iden-
tify biomarkers, notably through studies like Heidarza-
dehpilehrood et al., which used WGCNA to find novel 
lncRNAs linked to PCOS [35]. These lncRNAs, associ-
ated with key PCOS pathways such as gene expression 
and metabolism, were identified through gene expression 
analysis of patient and control samples. The study further 
identified crucial PCOS biomarkers and therapeutic tar-
gets by analyzing differentially expressed miRNAs [36]. 
Given the complexity of PCOS etiology, merely focus-
ing on overarching biomarkers is insufficient. There has 
been a lack of research on the metabolic abnormalities’ 
mechanisms affected by PCOS. Our work zeroes in on 
the specific metabolic mechanisms and insulin resistance 
in PCOS, aiming to pinpoint precise therapeutic targets. 
This targeted approach intends to improve treatment 
effectiveness by addressing the intricacies of metabolic 
dysfunction.

IR, a critical aspect of PCOS, is characterized by a 
diminished biological response to insulin, adversely 
affecting glucose transfer and utilization. Regardless of 

Table 1 Comparative Clinical and Hormonal Characteristics of PCOS and Normal Subjects
Normal
n = 12

PCOS
n = 12

P-value

Infertility Duration (years) 2.9 ± 1.7 4.3 ± 1.8 0.417
Age (years) 33.6 ± 3.8 28.3 ± 3 0.532
BMI 21.1 ± 2.9 23.5 ± 1.6 0.016
Age at Menarche 13 13 -
Menstrual Cycle Duration (days) 28–31 irregular -
Basal FSH (mIU/mL) 6.6 ± 0.8 6.2 ± 0.7 0.444
Basal LH (mIU/mL) 6.1 ± 1.3 10.1 ± 0.7 0.108
Basal Prolactin (mIU/L) 345.8 ± 170.7 219.8 ± 254 0.238
Basal Estradiol (pg/mL) 102.2 ± 61.8 95.5 ± 55.8 0.994
Basal Progesterone (nmol/L) 1.1 ± 0.9 0.6 ± 0.4 0.265
Basal Testosterone (nmol/L) 0.8 ± 0.5 1 ± 0.6 0.612
AMH (ng/mL) 7.5 ± 1.6 12.9 ± 3.6 0.053
AFC < 15 > 25 -
FSH on COS Initial Day (mIU/mL) 5.7 ± 1.9 6.2 ± 1.1 0.089
LH on COS Initial Day (mIU/mL) 4.9 ± 2.6 9.7 ± 3.3 0.758
Estradiol on COS Initial Day (E2) (pg/mL) 88.8 ± 68.3 94 ± 63 0.747
Initial Dosage of COS (IU) 158.3 ± 35.5 133.3 ± 17.1 0.038
COS Duration (days) 8.9 ± 1.4 9.3 ± 2.1 0.335
Gonadotropin Dosage within COS (IU) 1497.9 ± 472.6 1252.1 ± 391.7 0.38
COS: Controlled Ovarian Stimulation; FSH: Follicle Stimulating Hormone; LH: Luteinizing Hormone; AMH: Anti-Müllerian Hormone; AFC: Antral Follicle Count; Gn: 
Gonadotropin
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body weight, a significant number of women with PCOS 
exhibit insulin resistance, highlighting its prevalence 
across various body types [37]. This condition, not exclu-
sively linked to obesity, is also prevalent in lean individu-
als with PCOS, underscoring its complexity. Insulin plays 
a crucial role in maintaining homeostasis, lipid synthesis, 
and influencing steroidogenesis in the ovaries and adre-
nal cortex [38]. IR leads to hyperinsulinemia, which in 
turn causes excessive androgen secretion and reduced 
SHBG synthesis, thereby increasing testosterone levels 
[39]. Particularly during puberty, the early onset of IR 
and hyperinsulinemia can contribute to the development 
of PCOS phenotypes. Consequently, women with PCOS 
and IR face an elevated risk of developing diabetes and 
cardiovascular diseases, highlighting the importance of 
early intervention and management [40].

IR is a multifactorial condition shaped by a complex 
interplay of genetic, metabolic, epigenetic, and regula-
tory mechanisms, each contributing to its pathogenesis 
and progression. it involves complex disruptions in sig-
naling pathways, prominently featuring genes like INSR, 
IRS1, IRS2, PI3K, Akt, and GLUT4 [41, 42]. The cascade 
initiated by lipid metabolites like diacylglycerol activates 

kinase pathways, impairing the insulin signal transduc-
tion. This disruption is notable in the PI3K/Akt/GLUT4 
pathway, crucial for glucose uptake and metabolism in 
skeletal muscle and adipose tissues, highlighting the 
pathway’s central role in maintaining insulin sensitivity 
[43].

Beyond the signaling pathways, the metabolic dimen-
sion of IR involves crucial genes and mediators like 
GLUT4, adiponectin, and chemerin. These genes and 
adipokines regulate glucose and lipid homeostasis [44]. 
Dysregulation in lipid metabolism genes and adipokines 
contributes significantly to the development of IR, under-
lining the vital role of adipose tissue and its secreted 
factors in modulating the body’s metabolic profile and 
insulin sensitivity [45].

Besides, DNA methylation and histone modifications 
in key insulin signaling and mitochondrial genes, includ-
ing INS, IGF-1/2, IGFBP-1/2, PPARG, and PPARA, 
significantly influence the development of IR [46]. Fur-
thermore, non-coding RNAs, particularly miRNAs like 
miR-375, miR-150, miR-30a-5p, and miR-15a, play a 
pivotal role in regulating these epigenetic changes and 
mitochondrial functions, further complexifying the 

Fig. 5 Expression and Diagnostic Analysis of CAPN2, XIST, and miR-433-3P in PCOS. (A-C) Upper panels: Violin plots illustrate the expression of CAPN2 
(A), XIST (B), and hsa-miR-433-3p (C) in normal and PCOS samples, showing distribution and median expression levels. Lower panels: ROC curves evaluate 
the ability of these biomolecules to distinguish between PCOS and normal conditions, with AUC values indicating diagnostic accuracy. These analyses 
underscore the roles of these biomarkers in PCOS and their diagnostic relevance. * P < 0.05, ** P < 0.01, **** P < 0.0001
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pathogenesis of IR [47, 48]. These miRNAs modulate 
gene expression and epigenetic landscapes, impacting 
insulin signaling, metabolic pathways, and mitochondrial 
health, thereby influencing the overall insulin responsive-
ness of tissues.

The CAPN gene family, which includes the CAPN2 
gene, plays a crucial role in various cellular processes. 
CAPN2 is not only essential in protein degradation 
and modification, vital for maintaining cellular protein 
homeostasis [49, 50], but also significantly contributes to 
cell signaling, affecting cell proliferation, differentiation, 
and apoptosis [51–53]. Additionally, CAPN2 is involved 
in cytoskeletal regulation, which influences cell migra-
tion and morphology [54], and it participates in cell cycle 
regulation, especially in mitosis [55]. Within this gene 
family, CAPN10 has emerged as a novel factor in insu-
lin resistance [56]. Its role in insulin signaling pathways is 
particularly important in the development of type 2 dia-
betes, as it impacts the efficiency of insulin receptor sig-
naling and glucose uptake, thereby modulating the body’s 
insulin sensitivity [57]. Our research introduces the con-
cept of a significant correlation between CAPN2 and 
insulin resistance, akin to that observed with CAPN10. 
However, whether the mechanisms underlying the role 
of CAPN2 in insulin resistance are identical to those of 
CAPN10 warrants further in-depth investigation.

XIST is essential in X-chromosome inactivation, cru-
cial for dosage compensation in female mammals by 
silencing one of the X chromosomes [58]. On the other 
hand, miR-433-3p, a microRNA, is implicated in post-
transcriptional gene regulation, affecting various cellular 
functions such as proliferation, differentiation, and apop-
tosis [59]. In our study, predictions were made using the 
ENCORI database and were validated effectively in data-
sets GSE138518 and GSE138572, as well as in our col-
lected PCOS samples. Although significant correlations 
were found between XIST, CAPN2, and miR-433-3p with 
IR-related PCOS, the regulatory patterns of these mol-
ecules require further validation through more in-depth 
molecular experiments.

Further research could enhance understanding by 
expanding genetic analyses, conducting clinical trials for 
novel treatments, and considering diverse patient popu-
lations. A deeper exploration into molecular mechanisms 
and pathways, coupled with the integration of various 
omics data, would provide a more comprehensive view 
of the disease. Additionally, adopting patient-centered 
approaches would aid in developing personalized treat-
ment strategies, potentially improving outcomes for 
those suffering from PCOS and insulin resistance.

Conclusions
This study has successfully identified thirteen genes asso-
ciated with IR in PCOS, highlighting the upregulation of 
the CAPN2 gene as a notable finding. Through the appli-
cation of various bioinformatics tools and experimental 
validations, we have established a potential ceRNA net-
work. This network, involving lncRNA XIST and hsa-
miR-433-3p, suggests a regulatory linkage with CAPN2, 
a crucial element in the pathophysiology of PCOS. Addi-
tionally, our drug prediction analysis has identified seven 
pharmacological agents, mainly regulators of the endo-
crine system, offering new avenues for therapeutic inter-
vention to address insulin resistance in PCOS patients. 
These findings provide a deeper understanding of the 
genetic and molecular underpinnings of PCOS and open 
up possibilities for the development of targeted treat-
ment strategies, potentially improving the management 
and outcomes of this complex condition.
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