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FSH in vitro versus LH in vivo: similar genomic
effects on the cumulus
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Abstract

The use of gonadotropins to trigger oocyte maturation both in vivo and in vitro has provided precious and
powerful knowledge that has significantly increased our understanding of the ovarian function. Moreover, the
efficacy of most assisted reproductive technologies (ART) used in both humans and livestock species relies on
gonadotropin input, mainly FSH and LH. Despite the significant progress achieved and the huge impact of
gonadotropins, the exact molecular pathways of the two pituitary hormones, FSH and LH, still remain poorly
understood. Moreover, these pathways may not be the same when moving from the in vivo to the in vitro
context. This misunderstanding of the intricate synergy between these two hormones leads to a lack of
consensus about their use mainly in vitro or in ovulation induction schedules in vivo. In order to optimize their
use, additional work is thus required with a special focus on comparing the in vitro versus the in vivo effects. In
this context, this overview will briefly summarize the downstream gene expression pathways induced by both
FSH in vitro and LH in vivo in the cumulus compartment. Based on recent microarray comparative analysis, we are
reporting that in vitro FSH stimulation on cumulus cells appears to achieve at least part of the gene expression
activity after in vivo LH stimulation. We are then proposing that the in vitro FSH-response of
cumulus cells have similitudes with the in vivo LH-response.
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Introduction
Mammalian female reproductive function is finely regu-
lated by a set of coordinated endocrine signals that allow
successful events of oocyte developmental competence,
granulosa cells differentiation, extracellular matrix (ECM)
production, ovulation, fertilization, and early embryonic
development. Gonadotropins (mainly FSH and LH) are
the main extra-ovarian endocrine factors involved in the
control of these ovarian functions [1-6]. The release of
these two anterior-pituitary hormones is governed by the
hypothalamus via the GnRH (gonadotropin-releasing
hormone) and modulated by other ovarian factors such
as activin and inhibin [7]. Following a gonadotropin-
independent phase, the mammalian follicular growth first
becomes FSH-dependent at the secondary stage and then
LH-dependent prior to ovulation [8-12]. While FSH is
mainly involved in follicular growth, cellular proliferation
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and oestrogen production (aromatase activity), LH induces
androgen biosynthesis, final maturation of the oocyte and
ovulation [13-19]. To achieve their functions, FSH and LH
trigger multiple downstream cascades of intra-ovarian
pathways that are necessary for proper female fertility
[13,14,17,20-23]. In addition, it has been shown that
the efficiency of most assisted reproductive technologies
(ART) used in both humans and livestock, including
ovarian stimulation and oocyte in vitro maturation
(IVM), relies on gonadotropin input [24-31].
Interestingly, successful gonadotropin-induced matur-

ation of oocyte was shown to require de novo mRNA
synthesis in follicular somatic cells. This gene expression
activity aims at supplying the oocyte and follicular cells
with crucial factors to achieve subsequent events of mat-
uration and ovulation [32-35].
In vitro, it has been demonstrated that FSH improves

oocyte maturation (both nuclear and cytoplasmic), cumu-
lus cell (CCs) expansion, in vitro fertilization (IVF) and
early embryo development in several mammalian species
including cattle [30,36,37], mouse [38], pig [39-41] and
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human [22,42,43]. Since FSH has improved significantly
the oocyte maturation and developmental competence, its
receptor, FSHR, was assumed to be expressed in mural
granulosa cells (MGC) and CCs starting at the secondary
follicular stage in most mammals, including mice, pigs,
sheep, cows and humans [13,40,44-47]. FSH is also used
to trigger the follicular growth during the preovulatory
stage. Once they reach the fully grown stage, the super-
ovulation is thereafter induced by LH in livestock animals
and human [25,27,28,48-50]. Assuming that functional LH
receptors are absent in CCs in the in vitro context
[37,51,52], FSH has been the major gonadotropin used in
IVM to trigger oocyte maturation fulfillment [16,30,53].
To be effective, LH signaling thus depends on the

expression of functional luteinizing hormone/choriogona-
dotropin receptor (LHCGR) in the follicle. LHCGR
expression was reported in theca and granulosa cells
[54-56] but was absent in both oocytes and CCs
[37,51,52]. Therefore, the meiotic induction effect of LH
on CCs was recently proposed to be indirectly mediated
through the EGF-like factors [18,20,56,57]. The addition
of LH into the IVM media might therefore not be needed
in vitro [30,47,58]. However, Peng et al. [59] have reported
the expression of LHCGR in rat CCs after PMSG stimula-
tion. Similar findings confirmed this LHCGR expression
in cumulus cells downstream the FSH pathway in human
[60] and pig [31,61] both in vivo and vitro, raising there-
fore a controversy that needs further exploration.
In this review, we attempt to briefly address the gen-

eral pathways of FSH and LH in follicular cells (mainly
in CCs) that result in downstream transcriptional activ-
ity. Special focus will be given to the common features
between the transcriptionally upregulated genes through
FSH in vitro versus their LH counterparts in vivo. Based
on common structural and functional features between
FSH and LH, the hypothesis of partial replacement or
“compensation” of LH action by FSH in vitro is explored.
Using several findings reported in previous studies and
microarray data in our laboratory, we propose herein an
interesting aspect of the gonadotropin actions that may
increase our understanding of their molecular pathways
as well as their intricate synergy.

Gonadotropin-mediated gene expression and oocyte
developmental competence
In view of the gonadotropins’ beneficial effects, they are
used both in vitro and in vivo to improve oocyte devel-
opmental competence. Although their molecular mech-
anism of action remains ill-defined, we supposed that
their genomic effects in vitro could be different from
those in vivo, where they act in synergy and where both
granulosa and theca cells are present. This hypothesis
emerged from the difference in blastocyst rates between
in vivo and in vitro oocyte maturation. For example, in
cows, if the follicular development is supported by FSH,
the rate of oocytes with successful developmental com-
petence in vivo is between 60 and 80% [27,28]. In con-
trast, if oocytes are recovered from unstimulated antral
follicles (slaughterhouse), this percentage drops to an
average of 25 or 45% in ideal IVM conditions (IVM
Schedule: 6h with FSH + 16 to 18h without any hormone
supplement) [30,62]. It is clear that the in vivo context,
which includes the sequential effects of gonadotropins
(FSH & LH) and the presence of other intrafollicular fac-
tors, is far more suitable to oocyte competence acquisi-
tion. Interestingly, data in our laboratory and elsewhere
showed that adding FSH to IVM media allowed an
increase in blastocyst rate equivalent to half of the
in vivo maturation success rates [45,63]. To explain this
increased development in absence of an LH surge but
in presence of FSH (using recombinant human FSH
(rhFSH) without contamination risk), we assume that
FSH is able to accomplish its own biological function
and to substitute at least part of the effects of LH,
resulting in developmental competence of some oocytes.
In the absence of LH, FSH appears to be able to exert
key functions normally achieved by LH. Our preliminary
data comparing the transcriptomic effects of FSH in vitro
versus LH in vivo highlight the necessity of further in-
vestigation to demystify the molecular overlap between
FSH and LH. Concerning the cell signaling and al-
though, the high doses of FSH in vitro will increase
significantly the cAMP in mammalian cumulus cells
and downstream pathways [64-67] (which may mimic
the LH preovulatory effect), this second messenger rise
is not enough to explain this important FSH functional
substitution of the LH effect.
This possible compensation/substitution of the in vivo

effects of LH by FSH in vitro could be explored at many
levels (metabolic, physiological, morphological, transcript-
omic, etc.). The present work is an overview of possible
transcriptomic compensation of LH by FSH in vitro and
briefly reviews their respective signaling pathways that
may induce gene expression, followed by a case report
of genomic effect comparison of FSH in vitro versus
LH in vivo in bovine CCs.

Main signaling pathways of FSH in vitro
It has been shown that FSH is a key regulator of ovarian
function, in particular follicular growth and granulosa
cell differentiation [11,68]. FSHβ-deficient mice were
unable to develop past the preantral stage [11]. These
observations confirm that folliculogenesis is gonado-
tropin-dependent starting at the antral stage. The main
functions triggered by FSH in the mammalian ovary are
cell proliferation, apoptosis prevention, estradiol produc-
tion, cell secretion, and regulation of several other genes
[5,16,38,61,69-71]. Additionally, high doses of FSH are
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an essential ingredient in IVM media and was shown to
efficiently promote full oocyte maturation in several
mammalian species in vitro including cow [30,33],
mouse [72] and pig [4,73]. This in vitro FSH effect is
initiated in cumulus-oocyte complex (COCs) via its
receptor (FSHR) on cumulus cells (CCs). It has been
known for decades that FSH has no effect on denuded
oocytes in vitro. FSHR is a GPCR (G-protein-coupled re-
ceptor) with a specific seven-transmembrane domain
that was shown to activate the classical FSHR/AC/
cAMP/PKA pathway. Among the two activated isoforms
of PKA, only PKAII was shown to be involved in the
transcriptional events in CCs required for meiosis re-
sumption (GVBD) [74,75]. This de novo gene expression
is indispensable for gonadotropin-induced oocyte matur-
ation in murine and feline species [75,76] and was
shown to involve the MAPK downstream of the cAMP-
dependent PKA pathway in most mammals including
mouse [77,78], rat [79] and cow [80]. In fact, it was
shown that PKA phosphorylation and, EGF-like factors
overexpression and secretion are both required to the
FSH activation of ERK1/2 in pig and mice cumulus cells
[61,81-83]. Additional signaling cross-talk events be-
tween the cAMP/PKA and the EGFR-MAPKs cascades
were shown to up-regulate the PKA pathway via the
synthesis of PGE2 [84-86]. Additionally, the inhibition
of the MAPK pathway in CCs (or COCs) impaired
gonadotropin-induced oocyte maturation and prevented
the over-expression of crucial genes, such as PTSG2 and
HAS2, required for oocyte maturation fulfillment, CC
expansion, and steroidogenesis [87-89]. Interestingly,
this MAPK effect is dependent on the PKA pathway but
also on some oocyte paracrine factors reported to induce
the EGF-like factors in CCs [90]. Additional PKA gene
expression activity was associated with its two catalytic
subunits that were able to transit to the CC nucleus.
Several key genes were reported to be expressed down-
stream of this pathway, including HAS2, TNFAIP6,
PTGS2, CYP19A1 and EGF-like factors ([75,91-96], re-
cently reviewed in [20,21]). This transcriptional activity
was mediated mainly – but not exclusively – through
phosphorylation of CREB (CRE-binding protein) and
therefore its binding to the CRE (cAMP-responsive-
element) region in the promoter [97]. Additional tran-
scription factors including AP1, SP1 and C/EBP family
were also reported to contribute in the transcriptomics
action of FSH [16,98,99]. FSH-induced PGE2 secretion
is also an additional indirect effect that maintains the
cAMP levels and stimulates the overexpression of the
EGF-like factors [81].
FSH-mediated gene expression activity also occurs in

a PKA-independent manner. In fact, it was demon-
strated that FSH phosphorylates PKB/Akt and SGK1
via the PI3K (phosphatidylinositol-dependent kinase)/
PDK1 (phosphoinositide-dependent kinase1) pathway in
rat granulosa cells [100], mouse CCs [101,102] and por-
cine CCs [103], to support oocyte maturation in vitro.
Interestingly, the PI3K/PKB pathway downstream of FSH
was shown to induce cell survival and progesterone
production in porcine CCs [31,103].
PKC was also reported to mediate the effects of FSH

in CCs by activation of MAPK. This PKC action up-
stream of the MAPK pathway (and possibly through
other pathways) induced the expression of key factors
(de novo proteins) required for meiotic maturation of
the oocyte, including the EGF-like factors in most mam-
malian species [45,104-106]. Similar effects induced by
PMA (phorbol 12-myristate13-acetate), which is a PKC
activator, were shown in CCs. Moreover, induction of
the PKC pathway by FSH was associated with the
mobilization of intracellular calcium that is assumed to
be favorable to oocyte maturation and subsequent
fertilization [23,104,107-110].
In vivo, the EGF like factors overexpression in CCs

occurred following the action of LH-induced PGE2
secreted from granulosa cells through the PKA/CREB/
MAPK pathway. This aforementioned pathway raised
PGE2 production also in CCs which in turn amplify
the local expression of EGF like factors amplification
[18,20,56,57]. In vitro, EGF like factors and in presence
of FSH (or forskolin) in vitro were reported to play a
crucial role in IVM. Taken together, the EGF like factors
are key players involved in gonadotropin-induced ma-
turation in mammalian COCs [81,82,105,111,112] and
probably further fertilization [113]. In fact, the EGF-like
factors were shown to act in a positive regulation loop
to overexpress PGE2 in porcine cumulus cells [81]. The
PGE2 will thereafter by autocrine effect increase the
EGF-like peptides that triggered gene expression in
CCs through the extracellular signal-regulated kinases
(ERK1/2/3) and PGE2 pathways [89,91,114,115].
FSH was also able to rapidly (within 1 hour) activate

the MEK/MAPK pathway in mouse CCs to allow oocyte
maturation [77]. The most studied MAPK are ERK1/2,
JNK/SAPK (c-junterminal kinase/stress-activated protein
kinases) and p38MAPK. Several transcription factors
were reported to act downstream of the MAPK and ERK
including AP1 and ATF2, CMYC [115,116]. In this
context, P38MAPK was also phosphorylated by FSH
through the cAMP/Epac(exchange protein activated by
cAMP)/Rap (Ras-like related proteins)/Raf pathway,
which is PKA-independent [100]. ERK1/2 was also
involved in mural granulosa cells and CC steroido-
genesis (progesterone and estradiol) induced by FSH
[117,118]. Once produced, these steroids, mainly pro-
gesterone, were shown to promote gene expression
and contribute to oocyte competence and CC expan-
sion [119-121].
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Several studies were performed to assess the gene
expression patterns in follicular cells induced by FSH
in vitro. These sets of genes induce numerous biological
and molecular functions associated with cell signaling,
CC expansion, steroidogenesis, gene expression, etc.
[23,34,61,91,98,122-125]. Analysis of these gene expres-
sion patterns has yielded insights into the molecular
involvement of FSH in CC function leading to oocyte
developmental competence acquisition.

Do cumulus cells express LHCGR?
Before reviewing the LH pathways, in particular those
leading to gene expression in CCs, it is important to
discuss available data about the possible expression of
LHCGR in this compartment. Some studies have
reported the absence of LHCGR in CCs [37,51,52]. The
addition of LH in FSH-based media for COC maturation
in vitro therefore does not improve oocyte developmen-
tal competence [30,37,126]. In contrast, other studies
documented LHCGR expression in CCs, suggesting that
LH might have a direct effect [59,127]. Additional evi-
dence seem to confirm these aforementioned findings in
CCs of several mammalian species including pig [31,61],
mouse [128,129], rat [130], cow (isoform E) [55] and
human [131]. Beneficial effects of LH on in vitro embryo
yields were even shown but the amount of LH used
(1ug per ml) was likely contaminated by enough FSH
(1%) to questions the conclusion [132,133]. These op-
posite findings may be due to differences in several pa-
rameters such as the COCs’ follicular stage, the tissue
type (granulosa or cumulus), the gonadotropins’ origin
(recombinant versus purified) and the detection tech-
nique and its sensitivity. To resolve this issue, the ana-
lysis of the protein functionality is required as several
isoforms of the LH receptors are present in granulosa
and cumulus cells [55,60,134,135]. It is also possible
that the appearance of such receptor the cumulus is fol-
licle size dependant or follicle differentiation dependant
[60,134] creating an ambiguous response when pools
are used. In the same way, the expression variation of
particular LHCGR isoforms in CCs according to the
follicular stage could also be the cause of this discrep-
ancy. The analysis of a limited isoform’s population
may be insufficient to confirm the absence of these
receptors in CCs. In the mouse, the oocyte is believed
to control the mRNA stability for the LH receptor. Suf-
ficient data about the differential expression of LHCGR
according to both the cell subtype (theca, granulosa or
cumulus) and the follicular stage is still lacking. Pos-
sible reconciliation that reinforces our hypothesis was
reported recently by the sequential culture system (FSH
followed by LH) suggested by Kawashima et al. [61]. In
this study and elsewhere, FSH was shown to trigger the
expression of functional LHCGR that could respond to
the subsequent action of LH and result in greater de-
velopmental competence until the blastocyst stage both
in vivo and in vitro culture [129].

Main gene pathways induced by LH in vivo
Similarly to FSH, the contribution of LH in follicle dom-
inant selection, oocyte final maturation, ovulation and
subsequent fertilization was studied. In fact, LH is neces-
sary in the selection of the dominant follicle in cattle
and horse ([136] for review). This dominance is marked
in cattle by an increasing dependence of the follicle on
LH, mainly at the signalling and transcription levels
[137,138]. While only FSH was able to induce CC ex-
pansion in vitro, LH and hCG were able to promote this
mucification in vivo through the Ras/Raf/MAPK path-
way (downstream of cAMP) as well as oocyte matur-
ation [1,31,78,139,140]. Dr. Richards’ group has recently
shown in vitro that the LH-induced transcriptional
events are required for oocyte maturation, CC mucifica-
tion, ovulation and luteinization are induced through ac-
tivation of some downstream transcription effectors such
as C/EBPβ (CCAAT/Enhancer-binding protein-beta) via
the ERK1/2 pathway [115], reviewed in [21,125,141,142].
Like FSH in vitro, LH was also shown to activate the

PKAII isoform which triggers gene expression events
required for oocyte maturation fulfillment [143-145].
Additionally, LH mediates the overexpression of the
EGF-like factors mainly EREG, AREG (through the p38
MAPK), BTC and NRG1 (via the C/EBP). These growth
factors propagate and amplify the LH signal in CCs
as previously suggested ([56,89], reviewed in [114,146]).
Other key genes were also induced by LH, notably
those involved in CC expansion and prostaglandin syn-
thesis such as HAS2, TNFAIP6, PTX3, CSPG2, PTSG2,
etc. [147]. Knockout of these crucial genes in mouse
causes severe defects in the animal reproductive pheno-
type and subsequent fertility (reviewed in [21].
In porcine and bovine CCs, LH was also shown to in-

duce steroidogenesis, mainly progesterone and estradiol
[15,148]. LH receptor null mice were infertile with
defective steroid production [149,150]. Moreover, the
gene expression patterns in CCs were deeply affected in
PGR null mice supporting a key transcriptional role of
progesterone in oocyte maturation and subsequent ovula-
tion and fertilization. Moreover, PGR is a nuclear receptor
that acts as a transcription factor to mediate the LH
ovulatory response by the expression of key genes
such as ADAMTS1 and Catepsin L [151] for reviews
[87,125,152-154]. The inhibition of PGR or progester-
one action prevents meiosis resumption and ovulation
in pig [155,156]. Moreover the PRKO mice are unable
to spontaneously ovulate, but when the oocytes are punc-
tured and collected prior to ovulation, they are able to
reach the blastocyst stage [154,157,158].
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In addition to the PGR, LH surge also induces various
other transcription factors leading to diverse transcrip-
tional effects and physiological responses [152]. The
PKC pathway was suggested as a possible transduction
mode of this LH stimulation [159]. PKC epsilon was
furthermore shown to induce a survival (anti-apoptotic)
effect on human CCs downstream of the PI3K/Akt
pathway [160]. This PKC action is possibly associated
to the reported LH-induced intracellular rise in calcium
in follicular cells [161,162].
Concerning oocyte competence, the presence of LH

receptor is associated with the dominant status in
bovine and other mono-ovulating species [9,136,163].
The dominant follicle in bovine occurs at the average
diameter size of 8.5 mm and is associated with an
increase capacity to generate competent oocyte. In
contrast, the follicles used for this study and in almost
all study using in vitro maturation of bovine oocytes
are much smaller, normally from 3-5mm size. In these
follicles the cumulus has not been in contact with
granulosa cells responding to any LH signalling al-
though theca cells do have LH receptors at the 3mm
size stage [164,165]. The oocytes from such small
tertiary follicles have a limited capacity to reach the
blastocyst stage in vitro after IVM-IVF and culture.
The addition of FSH in vitro at low doses in a two step
IVM culture system (6 h with rhFSH (0.1 μg/ml) + 18 h
without hormones) in order to mimic the preovulatory
intra-follicle conditions before the LH surge allowed
A

Figure 1 Model of gonadotropin-mediated induction of oocyte comp
FSH in vitro substitute for some of the effects of LH? FSH: follicle stimu
an increase of the oocyte competence from around
20% to close to 45% [45].
Therefore the FSH effect in vitro on cumulus cells

looks to accomplish its role and mimics the in vivo LH-
ovulatory effect especially at higher doses. The rise in
developmental rate in vitro is similar between oocytes
from follicles with or without LH [30]. No report has
been published yet on the comparison of cumulus tran-
scriptome from dominant follicles compared to smaller
ones as used in our study.
Human chorionic gonadotropin (hCG) is another go-

nadotropin that has high affinity for the LH receptor,
named for this reason the LHCGR. In addition to the
same α-subunit shared between LH and hCG, this affin-
ity is primarily due to high similarities between the two
β-subunits. Interestingly, hCG is able to trigger most of
the LH effects for longer periods due to its greater half-
life [166]. This property is desired in the ovarian stimu-
lation drugs since it allows more time, flexibility and
management possibilities during the ovarian stimulation
programs, particularly in human IVF. For these reasons,
hCG has often been used instead of LH due to its
LH-like effect (reviewed in [167]).
Analogous to the FSH effect, the LH activation of sev-

eral signal transduction pathways in CCs leads to diverse
but well organized in vivo transcriptional responses that
contribute to suitable oocyte competence acquisition,
subsequent ovulation and fertilization and early embryo
development. These beneficial effects were confirmed
B

etence in vivo versus in vitro: In addition to its own effects, could
lating hormone; LH: luteinizing hormone.



Table 1 Common overexpressed genes in bovine CCs around the GVBD between FSH in vitro versus LH in vivo

No. Gene name Gene/protein full name (if available) Accession no.

1 ATP1B4 Bos taurus ATPase, (Na+)/K + transporting, beta 4 polypeptide NM_001101919

2 ATP6V1C1 Bos taurus ATPase, H + transporting, lysosomal 42kDa, V1 subunit C1 NM_176676

3 BAMBI Bos taurus BMP and activin membrane-bound inhibitor homolog NM_001046309

4 HSPA8 Bos taurus heat shock 70 kDa protein 8 NM_174345

5 INHBA* Bos taurus inhibin, beta A NM_174363

6 PAPD1 Bos taurus PAP associated domain containing 1 BC104501

7 PSMA2 Bos taurus proteasome (prosome, macropain) subunit, alpha type, 2 BC102206

8 RHOA Bos taurus ras homolog gene family, member A NM_176645

9 RPL3 Bos taurus ribosomal protein L3 BT021012

10 SELK Bos taurus similar to selenoprotein K BC108150

11 SLC25A5 Bos taurus solute carrier family 25 member 5 BC102950

12 TNFAIP6* Bos taurus tumor necrosis factor, alpha-induced protein 6 NM_001007813

13 UBA6 Bos taurus ubiquitin-like modifier activating enzyme 6 NM_001083438

14 CHSY1 Homo sapiens carbohydrate (chondroitin) synthase 1 NM_014918

15 EREG● Homo sapiens epiregulin NM_001432

16 FOXO3A Homo sapiens forkhead box O3 (FOXO3), transcript variant 2, mRNA NM_201559

17 PGR* Bos taurus progesterone receptor NC_007313.4

18 NEAT1 Homo sapiens nuclear enriched abundant transcript 1 EF177379

19 SGMS2 Homo sapiens sphingomyelin synthase 2 (SGMS2), transcript variant NM_001136258

20 AGPAT9 PREDICTED: Bos taurus similar to 1-acyl-sn-glycerol-3-phosphate O-acyltransferase 9 XM_597964

21 RBMX PREDICTED: Bos taurus similar to Heterogeneous nuclear ribonucleoprotein G XM_875611

22 SLC39A8 PREDICTED: Bos taurus similar to Solute carrier family 39 (zinc transporter), member 8 XM_584935

Real-time PCR validation of overexpression following FSH in vitro(*) or LH in vivo (●); α = 0.05%.

Assidi et al. Journal of Ovarian Research 2013, 6:68 Page 6 of 13
http://www.ovarianresearch.com/content/6/1/68
both in vivo and in vitro [18,28,56,168] and reviewed
by [17,26].
4 7111

Figure 2 Common genes overexpressed by FSH in vitro versus
LH in vivo in bovine CCs around the GVBD, as revealed by
microarray. FSH: follicle stimulating hormone; LH: luteinizing hormone.
Comparative analysis of FSH and LH pathways
Despite their specific biological functions, FSH and LH
share some interesting similarities. In fact, both are
pituitary-derived glycoproteins composed of a hetero-
dimer of two subunits (α and β). These two subunits
are linked by non-covalent bonds. While the α-subunit
is common between all pituitary gonadotrophins, the
β-subunit is specific, and, importantly, binds to the
receptor, thus it exerts the biological effects [14]. Ex-
pression of these subunits is differentially induced by
the pulsatile gonadotropin-releasing hormone (GnRH)
via the PKC/MAPK signaling pathway [169]. Interest-
ingly, both FSH and LH exert their stimulatory effects
through a seven transmembrane receptor (7TMR).
These receptors are members of the G protein-coupled
receptors (GPCR) family that stimulate several sig-
naling pathways mainly through G proteins [170-172].
Moreover and as discussed before, the two gonadotro-
pins are able to induce gene expression events by
targeting numerous transcription factors downstream
of key signaling pathways, such as PKA, PKC, PKB/
Akt, MAPK and PI3K. These transcriptional activities
of FSH in vitro or LH in vivo are essential to achieve
successful oocyte developmental competence. These
similarities in molecular structure, the specific receptor,
and the transcriptional pathways and gene targets lend
support to the hypothesis of possible overlapping gen-
omic roles between these two gonadotropins.
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Evidence of genomic effects’ similitude between LH
in vivo and FSH in vitro
In addition to their structural and functional (receptor
and downstream pathways) similarities, the goal here is
to look for common genes that are transcriptionally
upregulated (directly or indirectly) by the two gonado-
tropins and that could support our hypothesis of an
LH-like effect of FSH in vitro. These transcriptomic
similitudes between the action of LH in vivo and FSH
in vitro. To this end, we compared the FSH-induced genes
in CCs in conditions associated with an increase of oocyte
competence in vitro [23] to the in vivo context 6 hours
after the LH surge. Because finding a timeline to compare
cumulus cell status and gene expression patterns in vivo
versus in vitro can be difficult, we used the meiotic status
of the oocyte as a suitable reference. Thus, our analysis fo-
cused on the comparison of CCs gene expression patterns
in vitro at 6 hours of IVM (oocyte entering GVBD stage)
[23] versus the overexpressed genes in CCs at 6 hours
after the LH surge in vivo (when the oocyte is again enter-
ing the GVBD stage) [173].
Figure 3 A summary of a gene network including common gene cand
revealed by the IPA software. FSH: follicle-stimulating hormone; LH/hCG: lu
TNFAIP6: tumor necrosis factor, alpha-induced protein 6; INHBA: inhibin, beta
laevis); FOXO3: forkhead box O3; RHOA: ras homolog gene family, member A;
rapidly induced by IL-1 beta; BTC: betacellulin; ITIH3: inter-alpha (globulin) inhi
VEGF family: vascular endothelial growth factor; PLCL1: phospholipase C-like 1
O-acyltransferase 9; EIF4EBP1: eukaryotic translation initiation factor 4E bindin
For the in vitro study, the focus was on the definition
of the FSH-induced gene expression effect in bovine
CCs (around GVBD) associated with oocyte competence
in vitro [23]. Although the whole molecular pathway of
FSH action in CCs is not fully defined, we supposed that
this genomic effect in vitro (Figure 1B) could be different
from its counterpart in vivo, where FSH acts in synergy
with LH (Figure 1A). The in vitro versus in vivo differ-
ences in blastocyst outcome support this assumption.
Concerning the subsequent in vivo study, we have ana-
lyzed the LH-induced gene expression effect in vivo
(close to the GVBD) again on bovine CCs [174]. This
latter in vivo context should better reflect the real mech-
anism of CC contribution to oocyte competence acquisi-
tion. In fact, LH was reported to induce final maturation
of the oocyte in vivo by acting on CCs which express
and deliver competence inducers to the oocyte [28,59].
Keeping all these considerations in mind, our analysis
focused on the comparison of the genomic action of
FSH in vitro versus LH in vivo. A non-exhaustive list
of common molecular genes between LH and FSH,
idates induced by both FSH in vitro and LH/hCG in vivo as
teinizing hormone/human chorionic gonadotropin; EREG: epiregulin;
A; BAMBI: BMP and activin membrane-bound inhibitor homolog (Xenopus
TGFB1: transforming growth factor, beta 1; PTX3: pentraxin-related gene,
bitor H3; SLC39A8: solute carrier family 39 (zinc transporter), member 8;
; SGMS2: sphingomyelin synthase 2; AGPAT9: 1-acylglycerol-3-phosphate
g protein 1.
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expressed in CCs, and associated with oocyte final mat-
uration is provided (Table 1). Among the 133 significant
candidates induced by FSH in vitro, 22 genes were also
induced by LH in vivo. This means that in vivo, LH is
able to induce the transcription of around 16.5% (22/
133) of all the genes overexpressed by FSH in vitro.
Strikingly, these common candidates correspond to
almost 32% (22/69) of the genes overexpressed via LH
in vivo (Figure 2).
These findings mean that about one third of the genes

induced by LH in vivo could be induced by FSH in vitro.
FSH action in vitro therefore seems to act for both its
own and LH’s in vivo functions [16]. Using its common
downstream pathways of gene expression with LH, FSH
in vitro appears to reproduce its in vivo function and
substitute at least partially for the in vivo activity of LH
(Figure 1B).
Analysis of the gene networks of the 22 common genes,

using the gene Ingenuity Pathway Analysis (IPA) software
(Ingenuity Systems, http://www.ingenuity.com/products/
ipa; [175], confirms the high overlap between FSH and LH
at the transcriptional level. Figure 3 illustrates the gene
network with highest score following the IPA analysis.
In this network, several key gene pathways involved in
oocyte competence, steroidogenesis, CC differentiation
and mucification, ovulation and luteinization were activated
by both FSH and LH. Surprisingly, most of these common
target genes (and therefore their functions) are influenced
by the TGFbeta factors (Figure 3). These growth factors
in the follicular context may correspond to the oocyte-
secreted factors (mainly GDF9 and BMP15) reported as
crucial factors in the oocyte-follicular cells dialog [176-178].
The progesterone receptor (PGR) is another interest-

ing candidate commonly expressed in response to FSH
and LH (Table 1). These findings are in line with recent
reports in bovine cumulus in vitro confirming gonado-
tropin induction of PGR expression [23,151,179]. This
receptor is also essential in reproduction and particularly
in the ovulatory process through stimulation of the
expression of enzymes crucial to ovulation such as
ADAMTS1 and CTSL (cathepsin L), and the inhibition
of follicular cell apoptosis [179,180]. Moreover, PGR is
involved in intracellular signaling and kinase activities
required for oocyte maturation and subsequent ovula-
tion [87,121,181]. This nuclear receptor has a transcrip-
tional role in mediating gonadotropin stimulation by
downstream expression of several key genes. These
observations were confirmed by important alterations
of CC gene expression patterns and crucial signaling
pathways in PGR null mice [89,153,158,182].
To our knowledge, this is the first time that the mim-

icking of LH action in vivo by FSH in vitro is highlighted
at the transcriptomic level. It is important to note that
this analysis was made using a custom-made microarray
[23]. It is expected that the number of common candi-
dates between the two gonadotropins may increase if
commercial whole genome microarrays were used.

Concluding remarks
These similarities between FSH effect in vitro and LH
in vivo, although still preliminary, support our hypothesis
of potential functional substitution between FSH and LH.
They are also consistent with previous results where the
addition of LH to FSH-based IVM media did not result in
any additive effect either in cumulus expansion or in oo-
cyte competence as measured by the blastocyst yield.
Moreover, this probable functional mimetic action of LH
function by FSH in vitro, should help in improving in
vitro culture systems and ovulation induction programs
through a better understanding of the FSH/LH synergy
in vivo. Furthermore, these common candidates will serve
as a precious preliminary tool to monitor such mimetic
action and should advance our understanding of the
molecular pathways that lead to successful oocyte matur-
ation, cumulus cells differentiation, ovulation and subse-
quent fertilization.
However, additional studies are required to confirm

our results including the overexpressed and underex-
pressed genes, and to investigate the FSH/LH synergy.
Studying the gene expression patterns induced by FSH,
LH and (FSH + LH) in sequential culture system could
be an interesting way to validate these findings.
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