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Abstract 

Objective Tumors are highly heterogeneous, and within their parenchyma, a small population of tumor-stem cells 
possessing differentiation potential, high oncogenicity, and self-renewal capabilities exists. These cells are pivotal 
in mediating tumor development, chemotherapy resistance, and recurrence. Ovarian cancer shares characteristics 
with tumor stem cells, making it imperative to investigate molecular markers associated with these cells.

Methods Stem cell-related genes were collected, and molecular subtypes were established based on gene expres-
sion profiles from The Cancer Genome Atlas using the R package tool “ConsensusClusterPlus.” Multi-gene prognostic 
markers were identified using LASSO regression analysis. Gene set enrichment analysis was employed to gain insights 
into the potential molecular mechanisms of these identified markers. The robustness of these prognostic markers 
was analyzed across different cohorts, and their clinical independence was determined through multivariate Cox 
analysis. A nomogram was constructed to assess the model’s clinical applicability. Immunohistochemistry was per-
formed to validate the expression of hub genes.

Results Utilizing 49 tumor stem cell-related genes associated with prognosis, 362 ovarian cancer samples were 
divided into two distinct clusters, revealing significant prognostic disparities. A seven-gene signature (GALP, CACNA1C, 
COL16A1, PENK, C4BPA, PSMA2, and CXCL9), identified through LASSO regression, exhibited stability and robustness 
across various platforms. Multivariate Cox regression analysis confirmed the signature’s independence in predicting 
survival in patients with ovarian cancer. Furthermore, a nomogram combining the gene signature demonstrated 
strong predictive abilities. Immunohistochemistry results indicated significantly elevated GALP, CACNA1C, COL16A1, 
PENK, C4BPA, PSMA2, and CXCL9 expression in cancer tissues.

Conclusion The seven-gene signature holds promise as a valuable tool for decision-making and prognosis predic-
tion in patients with ovarian cancer.
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Introduction
Ovarian cancer is one of the most prevalent malignan-
cies affecting the female reproductive system. In 2020, 
the United States anticipated 21,750 new cases of ovar-
ian cancer and 13,940 ovarian cancer-related deaths [1]. 
Approximately 70% of patients with ovarian cancer are 
diagnosed at an advanced stage, primarily attributed to 
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the asymptomatic nature of early-stage ovarian cancer 
and the absence of specific diagnostic methods [2]. The 
5-year survival rates for stage III and stage IV ovarian 
cancer are < 40% and < 20% [3], respectively.

Tumor stem cells are subpopulations capable of self-
renewal and differentiation into different tumor cell sub-
types. They substantially influence tumor proliferation, 
metastasis, recurrence, and chemotherapy resistance 
[4–7]. In 2005, Bapat primarily identified a tumor-caus-
ing clone in malignant ascites from a patient with ovar-
ian cancer using a multilayer sphere culture, offering 
evidential support for the existence of ovarian tumor 
stem cells [8]. Tumor stem cell-related genes exhibit sig-
nificant expression within both ovarian surface epithe-
lium and fallopian tube epithelium, potentially serving 
as the root cause of ovarian carcinogenesis [9]. Moreo-
ver, specific markers on the surface of ovarian cancer 
stem cells are closely linked to unlimited proliferation, 
infiltration, metastasis, drug resistance, and tumor recur-
rence [10, 11]. For instance, CD133 + ovarian cancer cells 
demonstrate heightened clonogenic and proliferative 
potential than CD133- cells, while elevated CD44 expres-
sion closely correlates with a poor prognosis of plasma 
ovarian cancer [12]. Therefore, exploring tumor stem 
cell-related genes is paramount to early diagnosis and 
targeted therapies for ovarian cancer.

More studies have emerged in recent years that inte-
grate genomic data with bioinformatics analysis to 
prognosticate gynecologic malignancies [13]. Yang et al. 
constructed an 18 long-coding RNA (lncRNA) prognos-
tic model for ovarian cancer based on ferroptosis-related 
lncRNAs [14]. Hu et al. established a five-gene signature 
from the RGS gene family to predict the ovarian cancer 
prognosis [15]. However, a critical research gap remains, 
as no studies have ventured into the classification of ovar-
ian cancer or the prediction of ovarian cancer prognosis 
through the utilization of tumor stem-cell-related genes.

Methods and materials
Data sources and downloads
Gene expression profiling and clinical follow-up data 
were derived from The Cancer Genome Atlas (TCGA) 
database, utilizing RNA sequencing (RNA-Seq) data. 
The TCGA Genomic Data Commons application pro-
gramming interface was employed to retrieve the latest 
clinical follow-up information, comprising 362 RNA-Seq 
data samples. The GSE32062 and GSE26193 datasets 
were acquired from the National Center for Biotechnol-
ogy Information as validation cohorts. The GSE32062 
and GSE26193 datasets featured 260 and 107 samples 
with clinical characteristics, respectively. The Molecu-
lar Signature Database V7.0 and Gene Ontology (GO) 
knowledgebase were used to identify human tumor 

stem-cell-related genes. A total of 456 genes associated 
with 30 tumor stem cell-related pathways were identified 
(Table 1).

Data preprocessing
The TCGA RNA-Seq data were preprocessed as follows: 
1) the samples lacking clinical data or exhibiting over-
all survival (OS) < 30  days were excluded; 2) the normal 
tissue sample data were removed; 3) the gene expres-
sion profiles relevant to stem cells were retained. The 
GSE32062 and GSE26193 datasets were preprocessed 
as follows: 1) the normal tissue sample data were elimi-
nated; 2) the samples lacking clinical data or OS < 30 days 
were removed; 3) microarray probes were mapped to the 
human gene “SYMBOL” using the "Bioconductor pack-
age.” Detailed statistics of the preprocessed datasets are 
presented in Table 2.

Consistency clustering
The expression matrix of stem cell-related genes was 
extracted from TCGA data. The optimal number of clus-
ters was determined based on the cumulative distribu-
tion function (CDF). Principal component analysis was 
applied to elucidate cluster differences and construct 
scatter plots.

KEGG and GO enrichment analyses
Differentially expressed genes (DEGs) between Clusters 1 
and 2 were calculated using Differential expression analy-
sis of RNA-Seq data using the negative binomial distribu-
tion, version 2 (DESeq2). The DEGs were identified based 
on a false discovery rate (FDR) of < 0.05 and |log2FC|> 2 
filtration criteria; volcano plots and heatmaps were gen-
erated to visualize these findings. The DEGs were subse-
quently enriched with the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and GO functions using the “clus-
terProfiler” R package.

Protein interaction network and topological properties
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (https:// string- db. org/) [16] 
provides a comprehensive protein interaction network. 
Stem-cell-related genes were matched to the STRING 
database to elucidate the relationships between these 
DEGs, and interactions with scores > 0.7 were visualized 
using Cytoscape. Hub nodes were identified through 
Cytoscape’s “cytoHubba” module, and network topology 
was explored.

https://string-db.org/
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Table 1 Pathways related to cancer stem cells in Reactome and GO databases

Stem cell function related pathways PathwayID Gene Count

GO:Somatic Stem Cell Population Maintenance GO:0035019 72

GO:Negative Regulation Of Stem Cell Differentiation GO:2,000,737 20

GO:Stem Cell Proliferation GO:0072089 118

GO:Hematopoietic Stem Cell Differentiation GO:0060218 79

GO:Negative Regulation Of Stem Cell Proliferation GO:2,000,647 16

GO:Stem Cell Division GO:0017145 41

GO:Hematopoietic Stem Cell Proliferation GO:0071425 23

GO:Positive Regulation Of Stem Cell Differentiation GO:2,000,738 20

GO:Regulation Of Stem Cell Population Maintenance GO:2,000,036 28

GO:Neuronal Stem Cell Population Maintenance GO:0097150 22

GO:Regulation Of Stem Cell Proliferation GO:0072091 67

GO:Somatic Stem Cell Division GO:0048103 24

GO:Stem Cell Differentiation GO:0048863 248

GO:Positive Regulation Of Stem Cell Proliferation GO:2,000,648 40

GO:Regulation Of Stem Cell Differentiation GO:2,000,736 112

GO:Hematopoietic Stem Cell Migration GO:0035701 6

GO:Stem Cell Fate Commitment GO:0048865 9

GO:Mesenchymal Stem Cell Maintenance Involved In Nephron Morphogenesis GO:0072038 6

GO:Mesenchymal Stem Cell Differentiation GO:0072497 8

GO:Mesenchymal Stem Cell Proliferation GO:0097168 5

GO:Asymmetric Stem Cell Division GO:0098722 10

GO:egulation Of Hematopoietic Stem Cell Proliferation GO:1,902,033 9

GO:ositive Regulation Of Hematopoietic Stem Cell Proliferation GO:1,902,035 5

GO:egative Regulation Of Stem Cell Population Maintenance GO:1,902,455 8

GO:ositive Regulation Of Stem Cell Population Maintenance GO:1,902,459 8

GO:egulation Of Somatic Stem Cell Population Maintenance GO:1,904,672 7

GO:Negative Regulation Of Somatic Stem Cell Population Maintenance GO:1,904,673 5

GO:Regulation Of Stem Cell Division GO:2,000,035 10

GO:Regulation Of Mesenchymal Stem Cell Differentiation GO:2,000,739 6

Reactome Transcriptional Regulation Of Pluripotent Stem Cells R-HSA-452723 31

Table 2 Clinical information of different cohorts

Characteristic Training Set 
(n = 272)

Validation Set 
(n = 90)

p value GSE32062 (n = 260) GSE26193 
(n = 107)

Age(years)  < 60 136 54 0.127 - -

 ≥ 60 136 36 - -

Survival Status Living 96 45 0.018 139 31

Dead 176 45 121 76

Grade G 1 1 0 0.426 0 7

G 2 29 13 131 33

G 3 235 74 129 67

G 4 1 0 0 0

Tumor Stage Stage I 1 0 0.383 0 21

Stage II 15 5 0 10

Stage III 218 64 204 59

Stage IV 37 17 56 17
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Construction and evaluation of the predictive model 
for tumor stem cell‑related genes
The 362 TCGA samples were randomly divided into 
groups (with a training cohort: validation cohort ratio 
of 3:1) to develop a gene signature for prognosis predic-
tion. Only patients with an OS > 1 month were included 
in the survival analysis. To mitigate potential bias 
from a random distribution, 100 repeated samplings 
with replacement were performed across all samples 
in advance. The training and validation cohort sam-
ples were distributed based on age, stage, and grade. In 
the training cohort, univariate Cox regression analysis 
was performed using the “survfit coxph” function, with 
log-rank p < 0.05 as the threshold for identifying DEGs 
related to prognosis. We employed LASSO regression 
analysis to select tumor stem cell DEGs significantly 
associated with ovarian cancer prognosis, utilizing ten-
fold cross-validation and multivariate Cox regression 
analysis to determine the optimal genetic composition 
in the training cohort. The best lambda parameter and 
corresponding coefficient were chosen in the regression 
analysis using the “glmnet” R package. A seven-gene sig-
nature was constructed using the TCGA training set for 
prognosis prediction.

Nomogram construction and evaluation
Univariate and multivariate Cox regression analyses 
assessed whether the seven-gene prognostic model 
remained independent of traditional clinical features. The 
coefficients obtained from the multivariate Cox regres-
sion model were utilized, and the “rms” R package was 
used to construct a nomogram. Furthermore, the “rmda” 
R package was used to generate a decline curve analysis 
(DCA) curve, while the “timeROC” R package was used 
to validate the superiority of the nomogram.

Immunohistochemical staining evaluation
Tissue microarrays (HOvaC070PT01) comprising 65 
ovarian cancer and five healthy ovarian tissue samples 
were purchased from Shanghai Outdo Biotech Co., Ltd. 
(Shanghai, China) to validate the expression of the seven 
genes in the signature. The studies adhered to the Inter-
national Ethical Guidelines for Biomedical Research 
Involving Human Subjects (CIOMS), and the research 
protocols were approved by the Clinical Research Ethics 
Committee of Shengjing Hospital of China Medical Uni-
versity. The tissue microarray (TMA) slides were dried 
overnight at 37  °C, dewaxed in xylene, and rehydrated 
using graded ethanol. Subsequently, the tissue sections 
underwent microwave-based antigen retrieval in Ethyl-
enediaminetetraacetic acid (EDTA) antigen repair buffer 
(pH 9.0). They were then treated with 3% hydrogen per-
oxide for 25 min to block endogenous peroxidase activity. 

The tissue was coated with 3% bovine serum albumin 
(BSA) and incubated at room temperature for 30  min 
to minimize non-specific reactions. Subsequently, the 
TMA slides were incubated with anti-C4BPA antibody 
(1:50 dilution; LifeSpan Biosciences, LS-C253165), GALP 
antibody (1:30 dilution; Sigma, HPA053938), CACNA1C 
antibody (1:200 dilution; Proteintech, 21,774–1-AP), 
PENK antibody (1:50 dilution; Sigma, HPA013138), 
PSMA2 antibody (1:100 dilution; Proteintech,14,377–
1-AP), CXCL9 antibody (1:50 dilution; Proteintech, 
22,355–1-AP), COL16A1 antibody (1: 50 dilution; LifeS-
pan Biosciences, LS-C198822), and left overnight at 4 °C. 
The tissues were then rinsed with 0.01 mol/L phosphate 
buffer saline (PBS) for 5 min each time. The tissues were 
incubated at room temperature for 50 min with the sec-
ondary anti-horseradish peroxidase (HRP) (labeled goat 
anti-rabbit, 1:200 dilution, Servicebio, GB23303). The 
sections were stained with 3,3-diaminobenzidine (DAB) 
after a PBS wash. Finally, the sections were counter-
stained with Mayer’s hematoxylin, dehydrated, and fixed. 
To assess IHC staining, a semi-quantitative scoring crite-
rion was applied [17]. The stained sections were scored 
by three pathologists blinded to the patients’ clinical 
characteristics. The scoring system is based on the pro-
portion of positive cells in all tissue cells and the staining 
intensity of positive cells. Staining intensity is classified as 
follows: 0 (negative), 1 (weak), 2 (moderate), or 3 (strong). 
The staining ratio of positive cells is classified as: 0 (0 to 
5%), 1 (6% to 25%), 2 (26% to 50%), 3 (51% to 75%), or 
4 (> 75%). Based on staining intensity and the proportion 
of positive cells, the immunohistochemical results were 
categorized as follows: 0–1, negative (-); > 1–4, weakly 
positive ( +); > 4–8, moderately positive (+ +), and > 8–12, 
strongly positive (+ +  + +).

Results
Genotyping of ovarian cancer based on tumor stem cell 
genes
A study flowchart for this article is shown in Fig. 1. The 
gene expression matrix of 428 tumor stem-cell genes 
was extracted from TCGA data, and 49 genes related 
to ovarian cancer prognosis (p < 0.05) were identified 
through univariate Cox analysis using the “coxph” func-
tion in R. The optimal cluster number was determined 
using CDF, and the CDF delta-area curve indicated 
that the two clusters produced the most stable results 
(Fig. 2A, B). Consequently, K = 2 was chosen, resulting 
in two molecular sets. The clustering results are shown 
in Fig. 2C. A total of 362 samples were assigned to these 
two clusters. Principal component analysis was per-
formed on 428 stem cell gene sets, yielding the first two 
primary components and a corresponding scatter plot 
(Fig.  2D). Furthermore, a heatmap of these genes was 
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generated (Fig.  2E), revealing distinct boundaries and 
prominent expression patterns for these genes within 
the two clusters. Kaplan–Meier analysis was employed 
to analyze prognosis differences (Fig.  2F), indicating 
that Cluster 2 had the worst prognosis.

Comparison of clinical and immunological characteristics 
of molecular clusters
We further explored the relationship between ovarian 
cancer molecular clusters and clinical features based 
on tumor-associated stem cells. We compared the 

Fig. 1 Flowchart
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differences in clinical characteristics (including patient 
age, disease stage, and grade) between the two clusters. 
The results indicated differences between the clusters 
concerning Stage I and Grade I. However, the sample 
sizes for these two groups were small, as illustrated in 
Fig.  3. Furthermore, the immune characteristics of the 
molecular clusters were compared with those of existing 
subtypes. Each sample’s StromalScore, EstimateScore, 
and ImmuneScore were calculated using the “estimate” 
R package. The StromalScore of the Cluster 1 subtype 
was significantly lower than that of the Cluster 2 subtype 
(Fig.  4A-C). Among the 33 tumor types in TCGA, six 
immune subtypes were identified, including C1 (wound 

healing), C2 (INF-r dominance), C3 (inflammation), C4 
(lymphocyte depletion), C5 (immunologically silenced), 
and C6 (TGF-β predominance) [18]. Cluster 1 contained 
significantly more C2 (INF-r dominance) than Cluster 2, 
whereas Cluster 2 contained significantly more C4 (lym-
phocyte depletion) and C1 (wound healing) than Cluster 
1 (Fig. 4D).

Identification and functional analysis of DEGs 
between clusters
The DEGs between the Cluster 1 and Cluster 2 were 
identified using DESeq2. A total of 413 genes were 
obtained by filtering with FDR < 0.05 and |log2FC|> 2. Of 

Fig. 2 A Cumulative Distribution Function (CDF); B Delta Area Curve of consensus clustering, illustrating the relative change in the area 
under the CDF curve for each category number K compared with K-1; C Consensus K = 2; D Scatter plot of gene expression profiles in stem cells 
using principal component analysis (PCA); E Heatmap depicting stem cell gene expression; F Kaplan–Meier curve illustrating the prognosis of two 
clusters
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these, 207 were upregulated, and 206 were downregu-
lated. Volcano plots and heatmap representations of the 
DEGs in the two clusters are presented in Fig. 5A and B, 
respectively. The DEGs were further enriched in KEGG 
and GO pathways using “clusterProfiler,” with FDR < 0.05 
as the threshold. The results revealed that the DEGs were 
enriched in 14 KEGG pathways (Fig.  6A), primarily the 
PI3K-Akt signaling and ECM-receptor interaction path-
way. A total of 65 GO biological processes were enriched, 
including cell–cell adhesion via membrane adhesion 
molecules and adverse regulatory activity of hydrolases 
(Fig.  6B). Moreover, 20 GO cellular components were 
enriched, mainly the collagen-containing extracellu-
lar matrix, collagen trimer, and related cellular compo-
nents (Fig. 6C). Finally, 39 GO molecular functions were 
enriched, primarily related to receptor-ligand activity and 
chemokine-receptor binding (Fig. 6D).

Protein interaction network construction and analysis 
of topological properties
The DEGs were mapped to the STRING database. 
Their interactions were obtained with scores > 0.7. 
These interactions were visualized using Cytoscape, 
resulting in 968 interactions among 413 co-expressed 
genes (Fig. 7A). The top 10 nodes were identified using 
the “cytoHubba” module in Cytoscape and calculated 
based on degree, closeness, and betweenness central-
ity methods (Fig. 7B-D). The results indicated that the 
hub genes identified using these three methods were 
consistent. When examining the network’s topological 
properties, the degree distribution followed a power 
law distribution (Fig.  7E), with most genes having 
degrees < 5. Moreover, the network’s closeness cen-
trality analysis revealed that most nodes had relatively 
high closeness values, typically > 50 (Fig.  7F). The 
betweenness centrality analysis revealed values < 10 for 

Fig. 3 A Distribution of stage samples in two subgroups; B Distribution of grade samples in two subgroups; C Distribution of age samples in two 
subgroups, with the upper table showing the chi-square test results for clinical information between different clusters



Page 8 of 20Wang et al. Journal of Ovarian Research           (2024) 17:58 

most nodes (Fig. 7G). Nodes with high degrees, close-
ness, or betweenness were considered significant. We 
selected nodes with degrees, closeness, and between-
ness values exceeding their respective medians as hub 
genes within the network. We identified 99 closely 
related genes associated with ovarian cancer devel-
opment, which could serve as potential prognostic 
markers.

Construction of prognostic risk model based 
on co‑expressed genes
A univariate Cox proportional hazards regression 
model was applied to the initial pool of 99 candidate 
genes to build a prognostic risk model. This analysis 
identified 24 genes with significant prognostic differ-
ences. Subsequently, LASSO-Cox regression analysis 
was conducted using the “glmnet” package in R. The 

Fig. 4 A ImmuneScore panel among molecular subtypes; B StromalScore panel among molecular subtypes; C EstimateScore panel 
among molecular subtypes; D Comparison of molecular subtypes with other subtypes, where different colors represent previously published 
subtypes
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confidence interval under each lambda was analyzed 
(Fig.  8A); the model was optimal when lambda equaled 
0.0299, leading to the selection of 12 genes as the tar-
get genes. Further refinement resulted in retaining 
seven of these genes (Akaike Information Criterion 

[AIC] = 1593.0) for the final model. Details regarding 
these seven definitive mRNA markers are provided 
in Table  3. The risk score formula is as follows: 
RiskScore7 = -0.313*C4BPA + 0.227*GALP + 0.116*CAC-
NA1C + 0.212*COL16A1 + 0.184*PENK-0.412*CXCL9-

Fig. 5 Volcano plot displaying differentially expressed genes (DEGs) between clusters 1 and 2; B: Heatmap of upregulated genes between the two 
clusters

Fig. 6 A Circular KEGG pathway enrichment map of DEGs; B Circular map illustrating biological process enrichment of DEGs; C Circular 
representation of the cellular component enrichment for DEGs; D Circular map displaying molecular function enrichment of DEGs, with different 
colors representing different pathways and connections denoting gene-pathway relationships
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Fig. 7 Protein–Protein Interaction (PPI) Network Analysis. A Mapping of 413 genes onto the PPI network; B Identifying hub nodes using the “degree” 
method; C Identifying hub nodes in the network using the “closeness” algorithm; D Identifying hub nodes using the “betweenness” algorithm, 
where a redder color indicates a higher score; E Degree distribution of the network; F Closeness distribution of the network; G Betweenness 
distribution of the network
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Fig. 8 A Confidence intervals under each lambda; the trajectory of changes in each independent variable. The horizontal axis represents 
the natural logarithm (ln) value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable; 
B Kaplan–Meier (KM) survival curve for seven genes; C Distribution of expression levels of seven genes in the risk group; D Correlation heatmap 
of the seven-gene signature
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0.145*PSMA2. Subsequent analysis revealed that 
CXCL9, PSMA2, CACNA1C, and COL16A1 could 
stratify patients into two groups with significantly differ-
ent prognoses (p < 0.05) (Fig. 8B). There were significant 
differences in the expression levels of these seven genes 
between the high- and low-risk groups (Fig. 8C). Finally, 
a correlation analysis of these seven genes was conducted 
using the “corrplot” package in R (Fig.  8D). Calculating 
the risk score for each sample based on their gene expres-
sion levels, the distribution of risk scores among the sam-
ples was visualized (Fig.  9A). The results demonstrated 
that samples with high-risk scores exhibited significantly 

Table 3 Multivariate cox analysis of 7-mRNA signature

Symbol coef HR Low 95%CI High 95%CI P value

C4BPA -0.313 0.731 0.561 0.953 0.021

GALP 0.227 1.254 1.091 1.443 0.002

CACNA1C 0.116 1.124 0.991 1.274 0.070

COL16A1 0.212 1.236 1.043 1.466 0.015

PENK 0.184 1.202 1.009 1.432 0.039

CXCL9 -0.412 0.662 0.499 0.879 0.004

PSMA2 -0.145 0.865 0.725 1.032 0.108

Fig. 9 A Visualisation of risk scores, survival status, and expression levels of the seven genes in the training set; B Receiver Operating Characteristic 
(ROC) curve and area under the curve (AUC) for the classification based on the seven-gene signature; C KM survival curve distribution 
of the seven-gene signature in the training set
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worse OS compared to those with low-risk scores. High 
expression of GALP, CACNA1C, COL16A1, and PENK 
were identified as risk factors, while increased expres-
sion of C4BPA, PSMA2, and CXCL9 were recognized 
as protective factors. Furthermore, receiver operating 
characteristic (ROC) analysis was conducted to evalu-
ate the prognostic classification of risk scores using the 
“timeROC” package in R. We assessed the predictive 
efficiency for prognosis at 1, 2, 3, and 5 years. The areas 
under the curve (AUCs) for 1 and 2 years were 0.76 and 

0.73, respectively (Fig.  9B). Finally, we standardized the 
risk scores using z-score conversion and categorized sam-
ples with scores > 0 as the high-risk group and those with 
scores < 0 as the low-risk group. The Kaplan–Meier curve 
(Fig. 9C) displayed a significant difference between these 
groups (log-rank p < 0.0001, hazard ratio [HR] = 2.00).

Robustness verification
The same methodology was used to analyze an internal 
validation dataset from TCGA database. The AUCs for 

Fig. 10 A ROC curve and AUC for the classification based on the seven-gene signature in the internal dataset; B KM curve distribution 
of seven-gene signature in the internal dataset; C ROC curve and AUC for the classification based on the seven-gene signature in the entire The 
Cancer Genome Atlas (TCGA) dataset; D KM curve distribution of the seven-gene signature in the entire TCGA dataset
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predictive classification efficiency at 1 and 2  years were 
0.74 and 0.72, respectively. There was a significant differ-
ence in the survival curves between the high- and low-
risk groups (log-rank p = 0.0083, HR = 1.47) (Fig. 10A, B). 
Furthermore, all TCGA datasets were analyzed with the 
same model and coefficients, resulting in AUCs of 0.76 
and 0.73 at 1 and 2 years, respectively. Significant differ-
ences in survival curves were observed between the high- 
and low-risk groups (log-rank p < 0.0001, HR = 1.88). 
Among the samples, 206 were classified as high-risk 

and 156 as low-risk (Fig.  10C, D). The same model and 
coefficients were used for external validation datasets 
GSE32062 and GSE26193. The 5-year AUC for GSE32062 
was 0.71 (Fig.  11A), and the 1-year AUC for GSE26193 
was 0.89 (Fig.  11C). Significant differences in survival 
curves were observed in both cohorts (Fig. 11B, D).

Prognostic analysis and risk model evaluation
Subgroup survival analysis showed that the seven-gene 
risk score effectively stratified patients based on age, 

Fig. 11 A ROC curve and AUC for the classification based on the seven-gene signature in the GSE32062 data set; B KM curve distribution 
of the seven-gene signature in the GSE32062 data set; C ROC curve and AUC for the classification based on the seven-gene signature 
in the GSE26193 dataset; D KM survival curve distribution of the seven-gene signature in the GSE26193 data set
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stage (III + IV), and grade (G3 + G4) into high- and low-
risk groups (Fig. 12A–D, p < 0.05). This finding indicated 
the model’s predictive capability across various clinical 
features. Multivariate Cox regression analysis revealed 
that the risk score was an independent prognostic risk 
for patients with ovarian cancer (HR = 1.80, 95% confi-
dence interval [CI] = 1.51–2.14, p < 0.0001) (Fig.  12E–F), 
suggesting the seven-gene signature’s utility in clinical 
applications.

Nomogram construction and evaluation
A nomogram was constructed, incorporating age and the 
risk score. Each patient received a score for each prog-
nostic parameter, with higher total scores indicating a 
worse prognosis (Fig.  13A). Furthermore, a calibration 
chart demonstrated that the 1-, 3-, and 5-year nomo-
grams closely approximated the ideal model (Fig.  13B). 
The performance was assessed by comparing the AUCs 
of age, risk score, and nomogram using the “timeROC.” 
The nomogram exhibited a greater AUC than both the 
risk score and age (Fig. 13C). Finally, a DCA curve gen-
erated using the “rmda” package confirmed the superior 
predictive capabilities of our nomogram compared to the 
risk score and age (Fig. 13D).

Risk model comparison with other models
We compared our seven-gene model with two published 
prediction models: an 11-gene signature [19] and a three-
gene signature [20]. To facilitate comparison, we cal-
culated the risk score for each ovarian cancer sample in 
TCGA dataset using multivariate Cox analysis. We evalu-
ated the ROC curves for each model and categorized 

samples into high- and low-risk groups based on the 
median risk score. ROC and Kaplan–Meier curves for the 
prognosis of the two models are presented in Fig. 14A–
D. While the AUCs of the 11- and three-gene signatures 
were inferior to that of the seven-gene signature, signifi-
cant differences in prognoses between high- and low-risk 
groups were observed for both models. Furthermore, we 
compared the restricted mean survival curve, demon-
strating that our model exhibited the highest Concord-
ance index (C-index) among the three (Fig. 14E). Clinical 
applicability was further assessed using DCA curves, 
which indicated the superior performance of our model 
compared to the others (Fig. 14F).

Clinical validation of seven‑gene expression
To validate the expression of the seven hub genes, we 
analyzed 65 ovarian cancer samples and five healthy 
ovarian tissue samples. Immunohistochemistry results 
indicated significant upregulation of GALP, CACNA1C, 
COL16A1, PENK, C4BPA, PSMA2, and CXCL9 in cancer 
tissues (Fig. 15A–G). Gene expression was visualized in 
immunohistochemistry using the “ggplot2” R package 
(Fig. 15a-g).

Discussion
Ovarian cancer ranks as the seventh most prevalent 
malignancy in women and is the leading cause of death 
among gynecologic malignancies, contributing to 4% 
of cancer-related fatalities [21]. Recurrence and drug 
resistance are the principal factors underlying mortal-
ity in patients with advanced ovarian cancer, though 
the specific mechanisms remain elusive. The inherent 

Fig. 12 A–D Subgroup survival analysis based on Riskscore for different clinical cohorts, including younger, elder, Stage III + IV, and G3 + G4 patients. 
E Forest plot of univariate Cox analysis. F Forest plot of multivariate Cox analysis
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heterogeneity within ovarian cancer contributes to dis-
parate prognoses among patients with identical clinical 
stages, grades, and pathological types. Consequently, 
traditional prognostic methodologies frequently struggle 
to meet individualized needs, deliver accurate diagno-
ses, and identify optimal treatment options for ovarian 
cancer. Although numerous studies have employed gene 
expression profiles to stratify survival and prognosticate 
ovarian cancer across different cohorts, their clinical util-
ity has been hindered by limited sample sizes and chal-
lenges in generating prognostic scores based on specific 

genes, thereby precluding their integration into clinical 
practice guidelines [22, 23].

Somatic mutations predominantly constitute cancer 
mutations, with approximately 90% of oncogenes dis-
playing somatic mutations, 20% exhibiting germline 
mutations, and 10% manifesting common somatic and 
germline mutations [24]. Compared to germline muta-
tions, somatic cell aberrations show more diverse pat-
terns, including complex genome rearrangements. This 
divergence could be attributed to the relatively uncon-
strained evolutionary path of somatic cells, as mutations 

Fig. 13 A Nomogram illustrating clinical variables and RiskScore. The nomogram calculates the probability of 1-year, 3-year, and 5-year OS 
by summing the points for each variable on the scale. B Calibration curve for predicting 1-year, 3-year, and 5-year OS in patients with HNSCC; 
C Time-dependent ROC curve analysis assessing the accuracy of the nomograms; D Decision curve analysis (DCA) curves intuitively evaluate 
the clinical benefit of the nomograms and their potential scope of application in obtaining clinical benefits. The calculated net benefits (Y-axis) are 
plotted against the threshold probabilities of patients having 5-year survival on the X-axis
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Fig. 14 A–B AUC curve and prognostic KM curve for Zhou et al.’s model in TCGA dataset; C–D AUC curve and prognostic KM curve for Liu et al.’s 
model in TCGA data set; E Restricted mean survival (RMS) curves comparing the three models; F DCA curves for the three models
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arising within subpopulations of cells could adapt for sur-
vival. In contrast, germline mutations are universally pre-
sent in almost all cells throughout development. Cancer 
is frequently conceptualized as an evolutionary process 
characterized by genetic instability and natural selection, 
driven by the constant accumulation of somatic muta-
tions [25]. The persistent somatic evolution occurring 
during tumor progression contributes significantly to 
genetic heterogeneity. Somatic cells could be reconverted 
into stem cells [26]; this hypothesis underscores a possi-
ble association between somatic cell mutations and can-
cer stem cells.

Tumor stem cells are central to treatment failure, 
metastasis, and recurrence due to their enhanced tumo-
rigenicity and chemotherapy resistance. Tumor stem cells 
are essential in ovarian cancer’s recurrence, metastasis, 
and chemotherapy resistance [27, 28]. Targeting tumor 
stem cells emerges as an effective strategy to improve the 
prognosis of epithelial ovarian cancer [29]. In this study, 

we genotyped 362 ovarian cancer samples from TCGA 
database, focusing on 49 prognosis-associated tumor-
stem-cell genes. These samples were subsequently cate-
gorized into two clusters, revealing significant differences 
in prognosis. Subsequently, a seven-gene signature model 
(including GALP, CACNA1C, COL16A1, PENK, C4BPA, 
PSMA2, and CXCL9) was constructed based on hub 
genes identified in a protein-interaction network; four 
of these genes were identified as risk factors, while three 
acted as protective factors. Utilizing this seven-gene sig-
nature, we effectively classified patients based on age, dis-
ease stage (III + IV), and grade (G3 + G4) into high- and 
low-risk groups, with the latter exhibiting a more favora-
ble prognosis. Furthermore, the seven-gene signature 
demonstrated robust predictive abilities across various 
clinical features. When constructing predictive models, 
we compared the performance of age, risk score, and the 
seven-gene signature, with the combined approach yield-
ing superior results. Our seven-gene signature prediction 

Fig. 15 A–G Immunohistochemistry patterns depicting the expression of seven genes; a–g: Differential expression plots of the seven genes
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model exhibited enhanced performance compared to 
previous studies, likely attributable to our utilization of 
RNA-Seq data for model development and validation, in 
contrast to the data generated from different platforms 
in most prior research. Regarding the constituents of our 
7-gene signature, CACNA1C is overexpressed in high-
grade serous ovarian cancer and correlated with prog-
nosis [30], whereas COL16A1 expression is significantly 
correlated with progression-free survival in advanced 
serous ovarian cancer [31]. CADM1 overexpression 
potentially inhibits the migration and invasion of ovar-
ian cancer cells by regulating the upstream regulatory 
factor C4b-binding protein (C4BPA) and the PI3/Akt/
mTOR signaling pathway [32]. PSMA2 overexpression is 
observed in ovarian cancer [33], and chemokine ligand 9 
(CXCL9) is a vascular inhibitor that could inhibit ovarian 
cancer through lymphocyte invasion [34, 35].

This study possesses certain limitations. Firstly, this 
retrospective analysis, which relies on public datasets, 
should be complemented by a prospective study with a 
larger sample size for further validation. Secondly, the 
highly heterogeneous nature of ovarian cancer might 
challenge the validity of our seven-gene signature due to 
potential sampling bias.

Additionally, our study faced limitations at the immu-
nohistochemistry stage, as the absence of clinical prog-
nostic information for these samples prevented us from 
establishing a direct relationship between gene expres-
sion and prognosis. Future research should explore the 
relationship between gene expression, related protein 
levels, and patient prognosis with available clinical prog-
nostic data to enhance the accuracy of our model. Fur-
thermore, the limited depth of research on these genes 
in ovarian cancer necessitates further investigation into 
their biological roles and mechanisms within the context 
of this disease.

In conclusion, ovarian cancer was classified into two 
stemness-related clusters utilizing tumor stem cell-
related genes with distinct prognostic features and 
tumor microenvironment patterns. The seven-gene 
signature offers a promising tool for predicting the 
prognosis of patients with ovarian cancer and guiding 
clinical decision-making.
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