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Abstract 

PCOS is a widespread disease that primarily caused in-pregnancy in pregnant-age women. Normoandrogen (NA) 
and Hyperandrogen (HA) PCOS are distinct subtypes of PCOS, while bio-markers and expression patterns for NA 
PCOS and HA PCOS have not been disclosed. We performed microarray analysis on granusola cells from NA PCOS, HA 
PCOS and normal tissue from 12 individuals. Afterwards, microarray data were processed and specific genes for NA 
PCOS and HA PCOS were identified. Further functional analysis selected IL6R and CD274 as new NA PCOS functional 
markers, and meanwhile selected CASR as new HA PCOS functional marker. IL6R, CD274 and CASR were afterwards 
experimentally validated on mRNA and protein level. Subsequent causal relationship analysis based on Apriori Rules 
Algorithm and co-occurrence methods identified classification markers for NA PCOS and HA PCOS. According to clas-
sification markers, downloaded transcriptome datasets were merged with our microarray data. Based on merged 
data, causal knowledge graph was constructed for NA PCOS or HA PCOS and female infertility on NA PCOS and HA 
PCOS. Gene-drug interaction analysis was then performed and drugs for HA PCOS and NA PCOS were predicted. 
Our work was among the first to indicate the NA PCOS and HA PCOS functional and classification markers and using 
markers to construct knowledge graphs and afterwards predict drugs for NA PCOS and HA PCOS based on transcrip-
tome data. Thus, our study possessed biological and clinical value on further understanding the inner mechanism 
on the difference between NA PCOS and HA PCOS.
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Introduction
Polycystic ovary syndrome (PCOS) is a widespread het-
erogeneous endocrine and metabolic disease affecting 
7%-12% reproductive-age women globally affected by 
the applied criteria [1, 2]. As defined by the well accepted 
diagnostic criteria Rotterdam Standard, patients with two 
of the three syndrome including hyperandrogenism, ovu-
latory dysfunction, and polycystic ovarian morphologic 
features on ultrasound were considered as PCOS [3]. 
However, it was also proposed that on the condition with 
the presence of both oligo- or anovulation and hyperan-
drogenism, ultrasound is not necessity for diagnosis. For 
adolescents, both oligo-anovulation and hyperandro-
genism are required, while ultrasound was not recom-
mended for diagnosis [4]. PCOS patients were normally 
suffered from cases such as obesity, dyslipidemia, insulin 
resistance, metabolic disorders, high risk of female infer-
tility, hirsutism, cardiovascular disease and endometrial 
cancer [5]. However, since these traits were dramati-
cally distinct and involved in several differentiated clini-
cal phenotype, the research on etiology of PCOS is still 
insufficient.

Hyperandrogenemia is the core symptom of PCOS [6] 
and abundant evidences prove that excessive androgen 
may be the critical factor in the pathogenesis of PCOS. 
The animal model of PCOS also confirmed that high 
androgen level caused polycystic ovarian morphologic 
features [7, 8]. However, 18% to 25% PCOS patients were 
not caused by hyperandrogenemia but with other pathol-
ogy including physiological and biochemical manifestion 
[9, 10], meaning still another subtype of patients existed 
with normal androgen levels. The PCOS subtype for 
these patients was as normoandrogen PCOS (NA PCOS), 
and relatively the PCOS subtype for the patients was 
hyperandrogen PCOS (HA PCOS). NA PCOS patients 
express syndrome of ovulatory dysfunction accompanied 
with polycystic ovarian morphologic features and mean-
while HA PCOS patients express syndrome of hyperan-
drogenism, ovulatory dysfunction and polycystic ovarian 
morphologic features [3]. The significance for dividing 
PCOS into HA PCOS and NA PCOS was to separate two 
groups of distinctive patients with different pathology, 
syndromes and adverse metabolic profile through life 
[11]. As syndromes of two subtypes of PCOS were greatly 
differentiated, it has been proposed the two subtypes 
might actually be different types of diseases [3, 9]. How-
ever, the research on the mechanism on the difference of 
HA PCOS and NA PCOS was rare and unreliable.

In order to distinguish the difference between NA and 
HA PCOS, it was necessary to ensure the most essential 
cell subtype for ovary. Ovary is composed of four major 
cell subtypes: theca cells, granulosa cells, cumulus cells 
and stromal cells. Androgen acts via androgen receptor 

(AR) in ovary to promote follicle growth and steroi-
dogenesis. AR is expressed in oocytes, granulosa cells, 
and theca cells. AR is temporally regulated during fol-
licular development. In former studies, AR was specifi-
cally knocked out in all four major ovarian cell subtypes, 
and the results disclosed that androgen played distinct 
roles in each cell subtype. Mouse knockout studies also 
showed that AR was expressed most critically in granu-
losa cells within the four cell subtypes for normal folli-
cular development and subsequent ovulation [12–14] 
and thus might be significantly correlated to PCOS. Thus 
study on transcriptome of granulosa cells might be essen-
tial to discover the traits on NA PCOS and HA PCOS 
and further understand the pathogenesis of the two sub-
types of PCOS.

Omics and multi-omics studies have been performed 
on PCOS transcriptome data to investigate the patho-
genesis for PCOS and search PCOS biomarkers [15–17]. 
While however, the microarray or RNA-seq analysis 
on NA PCOS and HA PCOS were rare in NCBI Gene 
Expression Omnibus (GEO) datasets or published 
papers, and comparative transcriptome study on NA 
PCOS and HA PCOS was not yet published. To fill-in 
this vacancy, we performed microarray analysis on gran-
ulosa cells from NA and HA PCOS patients and normal 
individuals (4 female subjects for each group) to further 
identify potential marker genes for NA PCOS and HA 
PCOS subtypes. Sample numbers were comparably lim-
ited due to the relative difficulty on acquiring PCOS sam-
ples. The microarray data were afterwards processed to 
identify differentiated and afterwards specific genes for 
NA PCOS and HA PCOS. Further functional analysis fil-
tered the specific genes into list of potential marker genes 
for NA PCOS and HA PCOS. Deeper analysis finally 
identified NA PCOS marker IL6R and CD274, and mean-
while HA PCOS marker CASR. Subsequent RT-qPCR 
and Western blotting experiments validated differential 
expression of these markers on NA PCOS and HA PCOS. 
Afterwards, we applied combined methods of Apriori 
Rules Algorithm [18, 19] and co-occurrence analysis on 
downloaded PubMed PCOS abstracts and drug-gene 
interaction analysis to construct causal knowledge graph 
for NA PCOS and HA PCOS markers and female infertil-
ity. For our last step, drug-gene interaction analysis was 
performed to predict drugs for HA PCOS and NA PCOS.

Material and method
Patient selection and ethical statement
All study participants were women at the Center of 
Reproductive Medicine, Shengjing Hospital of China 
Medical University (Shenyang, China). A diagnosis of 
PCOS was based on the Rotterdam criteria, which was 
that patients with two of the three syndrome including 
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hyperandrogenism, ovulatory dysfunction, and polycystic 
ovarian morphologic features on ultrasound were con-
sidered as PCOS. We enrolled 12  women in this study 
(Fig. 1e), 8 women with PCOS (PCOS group) and 4 body 
mass index- and age-matched healthy women (control 
group). The subjects’ characteristics are provided in Table 
S1. This is a prospective study. A total of 20 samples were 
screened during the two-month period and the exclu-
sion criteria were as follows: (1) diagnosed with other 
endocrine system diseases, such as diabetes. (2) compli-
cated with Severe primary diseases associated with car-
diovascular system, liver and kidney, tumor, infection and 
other autoimmune diseases. (3) lack of medical history 
information and imperfect laboratory indexes. Among 
the 8 women with PCOS, we separated the patients into 
HA PCOS group and NA PCOS group according to the 
following citeria: (1) Clinical and/or biochemical signs 
of hyperandrogenism; (2) Oligo- and/or anovulation; 
(3) Polycystic ovaries. In accordance with two or more 
of the above three items, polycystic ovary syndrome 
can be diagnosed after excluding other etiologies (con-
genital adrenal hyperplasia,androgen-secreting tumors, 
Cushing’s syndrome). Clinical manifestations and/or 
diagnostic criteria of hyperandrogenemia: multiple acne 
in forehead, cheek, nose and mandible for more than 
3 months, Ferryman-Gallwey score ≥ 7, pseudo-acantho-
sis nigricans, moderate to severe seborrheic dermatitis, 
androgen alopecia (sparse hair from top to anterior hair-
line) and/or testosterone higher than 0.55 ng/ml (labora-
tory standard of Shengjing Hospital). All patients were 
with age between 22–35 years since birth. The study pro-
tocol was approved by the Research Ethics Committee 
of China Medical University. All participants provided 
signed informed consent.

Ovarian stimulation, granulosa cell collection and RNA 
extraction
On the second day of the menstrual cycle, the number 
of follicles in bilateral ovarian sinuses and the condition 
of endometrium were monitored by transvaginal ultra-
sound, combined with serum hormone levels (FSH, LH, 
estradiol, progesterone, testosterone, prolactin). To pro-
mote follicular growth, control and PCOS patient ovaries 

were stimulated with recombinant follicle-stimulating 
hormone (FSH) (Merck-Serono, Switzerland) after pre-
treatment with gonadotropin-releasing hormone agonist 
(Diphereline, Ipsen Pharma Biotech, France). FSH stimu-
lation was started when down-regulation was confirmed 
by vaginal ultrasonography and by measurements of 
serum estradiol and luteinizing hormone. Ultrasonog-
raphy was used to evaluate follicular development from 
day 5 of stimulation until the day of follicular matura-
tion. When at least 1 follicle grew to 18 mm in diameter, 
250  μg of recombinant hCG (Ovidrel, Merck-Serono, 
Switzerland) was administered, and oocyte retrieval was 
performed 34–36  h later. Follicle size was determined 
based upon the average follicular diameter, and follicu-
lar fluid samples from mature follicles (17–22  mm) and 
matched-immature follicles (8–13 mm) were stored sepa-
rately. The granulosa cell samples were centrifuged at 
12,000 g for 10 min. The precipitate is a mixture of GCs, 
red blood cells and white blood cells. The red blood cell 
lysate of 3 times volume was added to the precipitate and 
centrifuged 5  min at 37 ℃ for 5  min at 1500  rpm. The 
supernatant was discarded and washed twice with PBS 
to Collect granulosa cells. Then RNA was extracted from 
granulosa cells. The quality and integrity of RNA samples 
were analyzed using the Agilent 2100 Bioanalyzer (Agi-
lent Technologies, Inc., Palo Alto, CA, USA) [20].

Microarray data analysis
Each RNA sample was generated by Agilent SurePrint G3 
Human GE 8 × 60 K Microarray kit (Agilent Technologies 
Canada Inc., Mississauga, ON) with standardized proto-
col as described [21]. Microarray data were applied with 
background adjustment and processed applying Feature 
Extraction software (version 10.7.1.1) and analyzed using 
Genespring software (version 13.1) in matching reference 
genome Hg19 and tpm calculation. Genes with mean 
tpm < 0.1 were removed. Normalization, RMA summari-
zation and Student’s t test were performed using R limma 
package (version 3.34.9). Student’s t test was calculated 
based on the expression value of the HA PCOS group, 
NA PCOS group and normal tissue sample group and 
then applied to identify HA PCOS and NA PCOS differ-
entiated genes. Genes with Students’ test p value < 0.05 

(See figure on next page.)
Fig. 1 PCOS Data Acquisition and Identifying potential markers for HA PCOS specific genes. A Flowchart of the process of data procession progress, 
experimental design and analysis procedure for the microarray data. B Heatmap illustrating the 615 HA PCOS, NA PCOS and NM differentiated 
genes in GEO datasets and the microarray dataset with PCOS and some known PCOS and ovarian or breast tumor markers labeled on the right 
side. C The mRNA level measured by quantitative real-time PCR on the top 14 expressed genes on NA PCOS, HA PCOS and Normal (NM) groups 
for our microarray data. Data are expressed as means ± SEM. *p ≤ 0.05, Student t test. D Barplot showing the DAVID biological process analysis terms 
within the HA PCOS specific genes. Glucose metabolism terms and other terms were labeled red, and other terms were labeled as blue. E Barplot 
illustrating the HA PCOS specific genes on glucose metabolism terms(x-axis) and the corresponding number of glucose metabolism terms which 
each gene belonged (y-axis). F Co-occurrence results for CASR with PCOS, NA PCOS, HA PCOS and androgen receptor respectfully
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and fold change > 2 or < 0.5 for either 2 groups were 
regarded as differentiated genes. Genes both differenti-
ated for NA PCOS vs normal tissue and NA PCOS vs HA 

PCOS were regarded as NA specific genes. Genes both 
differentiated for HA PCOS vs normal tissue and HA 
PCOS vs NA PCOS were regarded as HA specific genes.

Fig. 1 (See legend on previous page.)
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Further analysis for microarray data
Pie plot was generated using R package plotrix [22] (ver-
sion 3.7.4). Barplots were plotted by R ggplot2 package 
[23] (version 3.1.0). Venn analysis was visualized by R 
package VennDiagram [24] (version 1.6.20). Heatmaps 
were generated using R gplots package [25] (version 
3.0.1.1). Gene ontology (GO) analysis was performed 
according to DAVID database and GO figure was gener-
ated using R package ggplot2 (version 3.1.0). Colors for 
all figures were generated by R RColorBrewer package 
[26] (version 1.1.2).

Co‑occurrence analysis using PubMed
Co-occurrence counts were calculated by R RISmed 
package [27] (version 2.1.7) and self-written R code. The 
principle was inputting the searching word in the format 
“Term A and Term B” into PubMed and the co-occur-
rence count was the number of articles displayed by Pub-
Med. Co-occurrence count was reflecting the strength 
of relationship between term A and term B [28]. Term A 
and Term B might be genes or diseases or Medical Sub-
ject Headings (MeSH) terms.

Protein–protein interaction network analysis
Protein–protein interaction network was calculated by 
STRING online database using human version of 9606.
protein.links.v11.0 and the “Multi-protein” function [29, 
30]. “ + ” button  was pressed once on the situation on 
which the inputted proteins were not linked. “Experi-
ment” and “Databases” filtering was used on the situation 
on which the links between inputted proteins were sub-
stantially high.

Deeper gene search based on NA PCOS gene ontology 
analysis
For the analyis in this part, the BP and KEGG terms with 
p value < 0.05 were removed and arranged in ascend-
ing order on p value. BP or KEGG all terms meant all 
terms with p value < 0.05 and meanwhile the top 20 terms 
meant the 20 BP or KEGG terms with least p value. The 
Biological Process gene oncology  analysis from DAVID 
on NA PCOS specific genes was firstly applied [31]. The 
immunity terms and the terms correlated with immu-
nity were manually picked and the genes on these terms 
with appearing frequency > 5 were regarded as potential 
marker genes since number of terms was high. This pro-
cess was afterwards repeated on the top 20 GO terms, 
all KEGG pathway terms and top 20 KEGG pathway 
terms. The genes satisfying the four conditions were 
regarded as potential marker genes. STRING ppi analy-
sis (using Experimental and Database filtering) was 
applied on these potential marker genes to remove genes 
with no connection with other genes. Further filtering 

was applied by co-occurrence analysis with the input-
ting format “potential marker gene name and PCOS” 
and the marker gene with co-occurrence number > 0 was 
reserved. Finally, the selected GO terms were applied 
with co-occurrence analysis using the inputting term 
“GO term and PCOS”. The GO term with the most co-
occurrence number was reserved. The genes on this GO 
term were regarded as NA PCOS functional marker.

Deeper gene search based on HA PCOS gene ontology 
analysis
The Gene Ontology Biological Process analysis from 
DAVID on HA PCOS specific genes was firstly applied. 
The BPs with p value < 0.05 were removed. The terms 
highly correlated with glucose were manually picked and 
the genes on these terms with appearing frequency > 1 
were regarded as potential marker genes. Further filtering 
was applied by co-occurrence analysis using the input-
ting format “potential marker gene name and PCOS”. The 
gene with co-occurrence number > 0 was reserved as HA 
PCOS functional marker.

Classification markers identification and data integration
Each gene was classified into HA PCOS, NA PCOS or 
normal (NM) group based on the group with the high-
est expression for the gene. 10–50 genes were randomly 
selected for each group. And afterwards for each sam-
ple, all genes were arranged from highest to lowest and 
the ranking for each gene was recorded. The predicted 
category of sample was decided by the category with 
the highest mean ranking of group of genes. This pro-
cess was repeated for 50 million times. The predicted 
category of the samples should be the same with the 
actual category of the samples. We completed the cal-
culation and reserved all set of genes that satisfied this 
criteria. Then our microarray data was merged with 
downloaded gene omnibus (GEO) transciptome data-
sets on PCOS and then normalized, and used each set 
of genes to classify the samples by the category with the 
highest mean ranking of group of genes. The match-
ing rate was calculated using the following equation: 
matching rate = number of samples with accurate pre-
dicted categories/all number of samples. The group-
ings with the highest matching ratio for downloaded 
datasets (the sample predicted in HA PCOS and NA 
PCOS category comparing the actual PCOS category, 
and the sample predicted in NM category comparing 
the actual NM category) were reserved. The HA PCOS, 
NA PCOS and NM genes on the best reserved group-
ing were regarded as classification markers. Finally, 
the selected set of genes were regarded as classifica-
tion markers and used to classify the downloaded data-
sets into HA PCOS, NA PCOS and NM groups. The 
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predicted category of sample on the downloaded GEO 
datasets was decided by the category with the highest 
mean ranking of group of classification markers. And 
thus the downloaded datasets were capable of merging 
with our microarray data on integrating samples by the 
same genes.

Apriori rule analysis on merged transcriptome data
The merged transcriptome expression tables were inde-
pendently discretized based on the expression level 
ranking for each gene on different samples. The samples 
possessing less than two genes with expression > 0 were 
removed. On total, the discretization was performed for 
a 4-element quantile discretization (separated by 75%, 
50% and 25% rank) and a 2-element quantile discretiza-
tion (separated by 50% rank). Minimum discretization 
value was defined as the value less than 25% rank for 
4-element discretization and 50% rank for 2-element dis-
cretization. Association rules calculation was performed 
independently for each discretization method. Each gene 
pair (gene A and gene B) from the gene co-expression 
filtering results was nominated as a rule and afterwards 
the confidence and support for each rule were calculated 
using the following equations:

n() means the number of the subject, for instance, 
n(A > min(A)) means number of A whose value is above 
minimum value of A, and also n(A = B) means number of 
paired A and B which satisfies A value equaling B value. ∩ 
stands for intersection for the left object and the right 
object.

Afterwards, confidence and support for the two dif-
ferent discretization methods were summed. Rules with 
summed confidence > 0.6 and summed support > 30 
were reserved. The direction (arrow) showed potential 
causal relationship pointing from the potential driver 
gene (upstream, or cause) to the potential driven gene 
(downstream, or result). The method has been uploaded 
to GitHub as WLAR method (https:// github. com/ dawnp 
lague/ WLAR. git).

PubMed abstracts download and preprocessing
All available PubMed abstracts from 2010.8.1–2022.8.1 
were downloaded and processed by R pubMR package 
[32] (version 0.0.0.2). The abstracts containing HA PCOS 
markers and HA PCOS differentiated genes were deemed 
as HA PCOS abstracts. The abstracts containing NA 
PCOS markers and NA PCOS differentiated genes were 

confidence A → B =
n(A = B ∩ A > min(A) ∩ B > min(B))

n(A > min(A))

support A → B = n(A > min(A))+ n(B > min(B))

deemed as NA PCOS abstracts. The MeSH words with 
the sub major words containing “metabolism”, “chemical”, 
“genetics” etc. were extracted for each abstract. All possi-
ble combination of paired PubMed ID (PMID) and MeSH 
term/marker genes were recorded for the next step.

Apriori rules algorithm analysis and knowledge graph 
construction
The association rules were calculated on the paired PMID 
and MeSH term/marker gene table from the previous 
step. This step was respectively performed on NA PCOS 
and HA PCOS. Each two MeSH term/marker gene (A 
and B) were forming a pair and the confidence of the rule 
was calculated as the division of number of intersecting 
PMIDs for A and B by number of the PMIDs of the A. 
The support of the rule was calculated by adding num-
ber of PMIDs of A and B.The result showed the causal 
relationship pointing from A to B. This part was using 
the same equations as the previous described association 
rules equations for transcriptome data. The causal rela-
tionship for B pointing to A was also calculated. The rules 
with confidence > 0.1 and support > 0.001 were reserved. 
Afterwards, the Apriori Rules Method was applied on the 
calculated rules to form rules with 3 elements. The confi-
dence of rules with more elements were selected by mul-
tiplying all confidences of the corresponding 2-element 
rules and then the 3-element rules with confidence < 0.1 
were removed. The rules with the  3rd element as “female 
infertility” were reserved. The reserved 3 rules were split-
ted into 2-element rules, and then combined with the 
association rules results for the existing genes. The causal 
knowledge graph was respectively built for NA PCOS 
rules and HA PCOS rules. The causal network visualiza-
tion was realized by Cytoscape [33] (Version 3.9.1).

Kaplan–Meier’s survival analysis
Kaplan–Meier’s Survival analysis was performed 
by GEPIA 2021 [34, 35]. The survival p-value for 
GENE + between GENE- for each tumor was extracted. 
Hazard ratio value for each gene on each tumor was 
extracted.

Drug‑gene interaction analysis
Drug-Gene interaction data were downloaded from Gene 
Regulatory Network database (GRNdb) [36]. Drugs inter-
acted with HA PCOS functional/classifcation markers 
were regarded as drugs for HA PCOS. Drugs interacted 
with NA PCOS functional/classifcation markers were 
regarded as drugs for NA PCOS. Drugs both regarded as 
HA PCOS and NA PCOS drugs were removed from the 
2 groups. The reserved drug-gene interaction was then 
visualized by Cytoscape (version 3.9.1).

https://github.com/dawnplague/WLAR.git
https://github.com/dawnplague/WLAR.git
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Quantitative real‑time PCR
Total RNAs were isolated from cells using the TRIzol 
reagent(TAKARA). RNAs were reversely transcribed 
into cDNA with PrimeScript RT-qPCR kit (TAKARA) 
in a 20  ml reaction. qPCR assays were performed with 
SYBR premerase Taq kit (TAKARA) on LightCycler96 
(Roche) and the sequences of primer pairs used in the 
present study are shown in Table S2.

Western blotting and antibodies
For potential gene (IL6R and CD274), total protein was 
extracted from an additional three non-PCOS granulosa 
cells and three PCOS granulosa cells, and 20 μg of pro-
tein per lane was loaded and separated by sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis. Proteins 
were then transferred to polyvinylidene fluoride (PVDF) 
membranes and blocked with 5% nonfat milk in Tris-
buffered saline with Tween-20 (TAKARA) for 1  h. The 
membranes were incubated overnight at 4 °C with one of 
the following primary antibodies: IL6R (p-ERK; diluted 
1:500), CD274 (diluted 1:1000), and glyceraldehyde 
3-phosphate dehydrogenase (GAPDH; diluted 1:5000) 
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). 
Next, PVDF membranes were incubated for 60  min at 
room temperature with secondary antibodies (Santa 
Cruz Biotechnology, Inc.), and immune complexes were 
detected by chem-iluminescence using a Western blot-
ting analysis system (TAKARA). Relative protein levels 
per sample were then normalized to GAPDH signals.

Statistical analysis
Clinical features of interest were selected as dependent 
variables. The Mann–Whitney U test, Student’s t-test and 
paired t-test of variance were used where appropriate for 
statistical analyses. Data from at least three independ-
ent measurements were presented as means ± standard 
deviation of the mean (SEM). The SYSTAT statistical 
graphics software package (SYSTAT Software, Inc., San 
Jose, CA, USA) was used for analysis, and a probability 
(P) value of < 0.05 was considered statistically significant. 
*p < 0.05, **p < 0.01, ***p < 0.001.

Results
Differential analysis on the granulosa cells microarray data 
in identifying HA and NA PCOS specific genes
The combined flowchart for first part of our study was 
illustrated (Fig. 1a), and the main intention was to iden-
tify functional and classification markers for HA and NA 
PCOS and then construct knowledge graph. Since the 
studies on PCOS were insufficient, we used the concept of 
co-occurrence from philology to evaluate the relationship 

between 2 concepts. Co-occurrence analysis was using 
the number of papers which simultaneously included the 
2 concepts to reflect the relationship between the 2 con-
cepts. Higher number of co-occurrence meant stronger 
relationship. The relationship disclosed by co-occurrence 
analysis was a reflection of predicted relationship based 
on current and published studies. Co-occurrence analysis 
based on the abstract of PubMed published papers was 
performed to stat the correlation between PCOS and 
four subtypes of ovarian cells including granulosa cells, 
cumulus cells, theca cells and stromal cells. Granulosa 
cells were with the highest co-occurrence counts within 
the four cell subtypes with PCOS (Fig. S2a). Microarray 
analysis was then performed on granulosa cells from 12 
individuals. Clinic information illustrated these indi-
viduals were within three groups: normal individuals, 
HA PCOS individuals and NA PCOS individuals (Table 
S1). Groups were separated based on clinical symptoms 
and testosterone level, and afterwards granulosa cells in 
all groups were collected and assayed. Pearson’s correla-
tion analysis for all genes based on the expression value 
of the 12 samples showed high quality for our microarray 
data (Fig. S2b). We further validated the precision of the 
microarray result through checking if the expression pat-
tern of the 14 PCOS top-expressive genes in microarray 
data was concordant with RT-qPCR results on the same 
14 genes and the results of RT-qPCR showed similar pat-
tern (Fig.  1c). Box Whisker plot, matrix plot, principal 
component analysis (PCA) and sample clustering analysis 
further confirmed the quality of our microarray data (Fig. 
S1a-d).

The microarray data was then preprocessed and nor-
malized. Differential analysis was afterwards performed 
and showed 615 HA PCOS, NA PCOS or NM differ-
entiated genes including a series of known PCOS and 
feminine tumor markers (Fig. 1b). The existence of these 
markers in differentiated genes confirmed the clinical 
research value for our microarray data. We further fil-
tered the genes expressed highest in HA PCOS or NA 
PCOS, and with statistical difference with the other 2 
groups, and these genes were named HA or NA PCOS 
specific genes. On this filtering, 130 NA PCOS specific 
genes and 43 HA PCOS specific genes were identified. 
Functional analysis was afterwards further applied on the 
selected specific genes to deeper filter NA PCOS and HA 
PCOS potential marker genes.

Functional analysis on HA PCOS specific genes
Functional marker genes were markers genes with bio-
logical functions and thus were important in understand-
ing the inner mechanism of PCOS. The main idea for 
identifying functional markers was to find the best genes 
for further analysis and experimental validation from 
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large number of candidate genes. DAVID Gene Ontology 
(GO) analysis was performed on the 43 HA PCOS spe-
cific genes (Fig. 1d) [31]. From the GO results, we noticed 
high percentage of the terms were the terms associated 
with glucose metabolism, and this fact was explained by 
the close interaction between PCOS and insulin. The glu-
cose metabolism terms possessed approximately 25% of 
all terms (Fig. S2c). The DAVID KEGG Pathway (KEGG) 
results for HA PCOS were not showing patterns for our 
interest. For this reason, HA PCOS functional markers 
should also be the genes on terms associated with glu-
cose metabolism. Thus for the next step, genes on these 
glucose metabolism biological process (BP) terms were 
extracted, and the number of terms containing these 
genes were counted (Fig. 1e). CASR and SOX4 were the 
only genes appearing on more than 1 glucose metabo-
lism term and then selected. STRING ppi analysis were 
afterwards performed on CASR and SOX4 using multi-
protein function and pressing “ + ” once to display the 
inter-proteins between CASR and SOX4 (Fig. S2d). CASR 
possessed more ppi interactions than SOX4, imply-
ing CASR was more engaged in biological processes. 
Meanwhile, co-occurrence analysis showed that CASR 
was co-occurred with PCOS, HA PCOS, NA PCOS and 
androgen receptor, while SOX4 was merely co-occurred 
with androgen receptor (Fig.  1f, Fig. S2e). According to 
these results, SOX4 was consequentially removed, and 
CASR was selected as new HA PCOS functional marker.

Functional analysis on NA PCOS specific genes
DAVID GO analysis was performed on the 130 NA 
PCOS specific genes [31]. BP analysis results showed the 
majority terms within the top 20 terms were immunity 
terms or immunity related terms (Fig. 2a,b). Meanwhile, 
the majority terms within all BP terms were immunity or 
immunity related terms (Fig. S3a,b). The KEGG pathway 
analysis results showed the majority pathways within the 
top 20 pathways were immunity pathways or immunity 
related pathways (Fig. S3c,d). Meanwhile, the major-
ity pathways within all KEGG pathways were immunity 
pathways or immunity related pathways (Fig. S3e,f ). 
These results indicated the close relationship between 
NA PCOS and immunity. For this reason, NA PCOS 
functional markers should also be immunity or immu-
nity related genes. We extracted the 100 genes which 
appeared on immunity or immunity related BP terms 
or pathways on all the following conditions: BP top 20 
terms, BP all terms, KEGG top 20 terms and KEGG all 
terms.

For further filtering, appearance frequency of the 
potential marker genes on all immunity or immunity-
related BP terms were counted (Fig. S4a). The 100 genes 
with more than 5 frequency were reserved. Subsequent 

STRING protein–protein interaction (ppi) analysis on 
the 100 genes using experimental and database links 
found 80 of the 100 genes were connected together (Fig. 
S4b). The same procedure was also performed on top 
20 immunity or immunity-related BP terms, and the 86 
genes out of 100 genes were with frequency > 2 and con-
nected together (Fig. S4c,d). 55 intersected genes were 
within the 80 genes from all BP results and the 86 genes 
from top 20 BP results (Fig.  2c). And thus the 55 genes 
were regarded as potential marker genes. Further co-
occurrence analysis with the word “PCOS” reserved 26 
genes out of the 55 genes with co-occurrence number > 0 
(Fig.  2d). Afterwards, we calculated the frequency of 
immunity or immunity-related GO BP terms for the 26 
genes and selected the terms with at least 2 times and 
then performed co-occurrence analysis with the word 
“PCOS” on these terms. The term “cytokine” was mostly 
co-occurred (Fig. 2e). The 7 genes on the term “cytokine” 
out of the 26 genes were selected (Fig.  2f ). Within all 
“cytokine” terms, the “response to cytokine” term was 
more related to immunity than the other terms. For this 
reason, the genes on this term, IL6R and CD274, were 
selected as new NA PCOS functional markers.

Further validation for new NA PCOS and HA PCOS markers
Within new NA PCOS markers, IL6R (interleukin 6 
receptor) belongs to a subunit of the interleukin 6 (IL6) 
receptor complex. As an IL6R ligand, IL6 is a potent 
pleiotropic cytokine that regulates cell growth and differ-
entiation and plays important role in immune response.
IL6R has been studied to be correlated with PCOS. The 
research found between PCOS patients and normal 
individuals, the most observed inflammation status of 
IL6R has been resulted from relative obesity or insulin 
resistance, and meanwhile not independent character of 
PCOS [37, 38]. The IL6R difference in NA and HA PCOS 
has not been reported. CD274 (CD274 molecule), also 
named PDL1, encodes an immune inhibitory receptor 
ligand  which was involved in the immune escape pro-
cess  for tumor. The expression of CD274 in tumor cells 
is regarded as prognostic in many types of human malig-
nancies such as colon cancer and ovarian cancer [39–41]. 
However, relationship of CD274 with PCOS has not yet 
been reported. Meanwhile, for new HA PCOS markers, 
CASR (calcium sensing receptor) is a plasma membrane 
G protein-coupled receptor that senses small changes in 
circulating calcium concentration. Previous studies have 
suggested that the pathological mechanism of insulin 
resistance in PCOS is related to calcium homeostasis, 
and CASR as an important calcium regulator may play 
an important role in PCOS pathogenesis [42–44]. Con-
clusively, these studies indicated that IL6R, CD274 and 
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Fig. 2 Applying Gene Ontology on specific genes to identify potential markers for NA PCOS. A Barplot showing the top 20 DAVID biological 
process analysis terms within the NA PCOS specific genes. Immunity terms and immunity related terms were labeled red and green, and other 
terms were labeled as blue. B Pie plot illustrating the percentage of immunity terms, immunity-related terms and other terms within the top 
20 DAVID biological process analysis terms. C Venn plot showing number of NA PCOS specific genes on all immunity terms (> 5 frequency 
and with STRING connection) and top 20 immunity terms (> 2 frequency and with STRING connection). D Barplot illustrating the text co-occurrence 
number with PCOS for each candidate gene. E The GO terms with at least two candidate genes were listed (y-axis) and used to calculate text 
co-occurrence number with PCOS (x-axis). The most co-occurred term was labeled red. F The candidate genes within cytokine term were collected 
and performed with protein–protein interaction analysis by STRING analysis
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CASR might engage in important biological processes in 
NA PCOS or HA PCOS.

RT-qPCR was then applied to further confirm the 
expression of IL6R, CD274 and CASR in human granu-
losa cells. Groups were set as HA PCOS group and NA 
PCOS group. Notably, RT-qPCR showed that the expres-
sion level of IL6R and CD274 were significantly higher in 
NA PCOS than HA PCOS (Fig.  3a), and the result was 
in accordance with our former analysis that IL6R and 
CD274 were new NA PCOS markers. Meanwhile, RT-
qPCR also illustrated that the expression level of CASR 
was higher in HA PCOS than NA PCOS (Fig. 3a), and it 
is also consistent with the result that CASR was new HA 
PCOS markers.

The protein level of NA PCOS specific genes IL6R 
and CD274 was further measured by Western blotting. 
Groups were set as HA PCOS group and NA PCOS 
group. Western blotting results further showed IL6R and 
CD274 were expressed on significantly higher protein 
level in NA PCOS than HA PCOS (Fig. 3b) and the simi-
lar results were also illustrated in level of band intensity 
(Fig. 3c). Combined with the experimental result of RT-
qPCR and Western blotting, IL6R and CD274 were vali-
dated to be NA PCOS specific genes and new markers, 
and meanwhile CASR was validated to be HA PCOS spe-
cific genes and new marker.

Identifying classification markers for HA PCOS and NA 
PCOS
Which markers were capable of classifying unassorted 
PCOS samples into HA and NA PCOS samples was of 
high clinical importance. We applied a random method 
on classification markers identification (refer to Methods, 
9th section, Fig. 4a). Firstly, each gene was classified into 
HA PCOS, NA PCOS or normal (NM) group based on 
the group with the highest expression for the gene. Sec-
ondly, 50 million cycles of calculations were performed 
on the random set of 10–50 genes within each group. The 
predicted category of sample was decided by the category 
with the highest mean ranking of group of genes. The 
predicted category of the samples should be the same 
with the actual category of the samples. We completed 
the calculation and reserved all set of genes that satis-
fied this criteria. For instance, 30 NA PCOS genes were 
randomly picked, and the mean ranking of the 30 genes 
on one sample was 17,000 of the 20,000 genes, and was 
higher than HA PCOS (11,000) and NM (9,000) and thus 
this sample was classified as NA PCOS. If this sample 
was also NA PCOS from clinical information, and if the 
same was true for all samples, this random set of genes 
might be classification markers.

Five hundred seventy-eight sets of genes were capable 
of classifying the sample of our microarray data. If the 

classification markers were reasonable, these markers 
should also be applied for classifying PCOS sequencing 
data for published work of the other researchers. Sub-
sequently, the 578 reserved sets of genes were further 
filtered using most highly confident downloaded tran-
sciptome data from GEO datasets GSE34526, GSE102293 
and GSE98595. Though the 3 datasets were unclassified, 
we could still apply the known PCOS and NM groups 
for these datasets, with NA PCOS or HA PCOS com-
paring PCOS, and NM comparing NM. The set of genes 
with highest matching rate were selected and regarded 
as classification markers (Fig. 4b). The matching rate for 
the classification markers on our microarray data and 
downloaded datasets was also illustrated (Fig. 4c). After-
wards, the classification markers were applied on the 
downloaded datasets and classified the PCOS samples 
from downloaded GEO datasets into HA and NA PCOS 
samples. These HA and NA PCOS samples were merged 
into our microarray data and the heatmap of combined 
datasets were visualized (Fig. S5a). HA or NA PCOS 
functional and classification markers were merged and 
regarded as HA PCOS or NA PCOS markers.

Discovering the characteristic difference between HA 
and NA PCOS
Co-occurrence analysis was applied on HA PCOS and 
NA PCOS up-regulated with common metabolism 
terms appeared on PCOS patients (Fig.  4d). HA PCOS 
was more correlated with obesity, vitamin D deficiency, 
hyperandrogenism, hirsutism, depression, insomnia and 
cardiac diseases. However, NA PCOS was more corre-
lated with inflammation, immunity and insulin resist-
ance. Meanwhile, we were interested on the relationship 
with feminine cancer for HA and NA PCOS. Survival p 
value (Fig. 4e) and hazard ratio (Fig. 4f ) were calculated 
for HA and NA PCOS on 4 types of feminine cancers 
using GEPIA database [35]. No substantial difference was 
found on HA and NA PCOS on feminine cancer risks.

Causal network construction for HA/NA PCOS markers 
and female infertility
The subsequent question to be solved was how HA or 
NA PCOS markers resulted in female infertility. An 
effective tool to solve the problem was the Apriori Rules 
Algorithm [18, 19] which was specifically designed to 
calculate causal relationship between terms (refer to 
Methods). The causal relationship might be promoting 
or inhibiting relationship. The algorithm was applied on 
two different form of data: merged transcriptome data 
(Fig.  5a) and PubMed paper abstracts (Fig.  5b). Tran-
scriptome data were using the merged transcriptome 
data from the final step of classification markers identi-
fication, and the causal relationship between each pair of 
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genes were calculated. For abstract data, 9832 PubMed 
paper abstracts on PCOS from the last 12  years were 
downloaded. NA PCOS and HA PCOS up-regulated 
genes were used to classify the downloaded abstracts as 
NA PCOS papers and HA PCOS papers. NCBI MeSH 
words [45] with specific subheadings were applied as the 
measurement for the following Apriori Rules calculation. 

The number of MeSH terms co-occurred on the same 
abstract with each specific gene or MeSH term were 
recorded. Causal relationship was afterwards calculated 
based on the co-occurred number of MeSH terms. Apri-
ori Rules method was then applied on calculated causal 
relationship to construct higher order rules with 3 ele-
ments for NA PCOS and HA PCOS. The term “Female 

Fig. 3 Experimental Validation of HA and NA PCOS Potential Marker in mRNA and protein level. A The mRNA expression of IL6R, CD274 and CASR 
in human granulosa cells from patients with HA PCOS (n = 4) and NA PCOS (n = 4) measured using quantitative real-time PCR. Data are expressed 
as means ± SEM. *p ≤ 0.05, Student t test. B and C The expression of IL6R and CD274 in human granulosa cells from HA PCOS (n = 4) and NA 
PCOS (n = 4) patients were subjected to Western blot analysis and values were normalized to GAPDH expression. Data are expressed as average 
and standard error of the mean (SE). The statistical analysis was performed using Student’s t test; *p ≤ 0.05 is considered significant
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Fig. 4 Identifying HA PCOS and NA PCOS Classification Markers and Using Classification Markers to Integrate with downloaded PCOS transcriptome 
data. A Flowchart for the process of identifying HA PCOS and NA PCOS Classification Markers. B The selected classification markers for HA PCOS, 
NA PCOS and Normal (NM) groups. C The classification precision for downloaded datasets of GSE34526, GSE102293 and GSE98595 (blue) and our 
data GSE137684 (red). D The logarithm of mean co-occurrence counts of HA PCOS and NA PCOS up-regulated genes after merging with metabolic 
anomaly correlated with PCOS. E, F The average p value (E) and hazard ratio (F) for Kaplan–Meier Suivival Anaysis on the 4 female specific cancers 
(BRCA = breast cancer, OV = ovarian cancer, UCEC = endometrial cancer, UCS = uterine cancer) for HA PCOS and NA PCOS up-regulated genes
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infertility” was designed as the terminal for the causal 
cascade.

The 3 element rules ending as “Female infertility” were 
combined and merged with the rules from merged tran-
scriptome data. Genes or terms with less connections 
were removed, and afterwards the the causal knowledge 
graph for HA PCOS (Fig. 5c) or NA PCOS (Fig. 5d) with 
female infertility was constructed. Mutual terms of HA 
and NA PCOS were removed from the knowledge graph 
(Fig. S5b). From the knowledge graph, we were capable 
of deriving the causal route for HA or NA PCOS mark-
ers and important MeSH terms which finally resulted 
in female infertility. The arrows on the network pointed 
from the cause to the effect (promote or suppress), or the 
sub-term to the term. Most of the causal relationships 
on the network were accordant with public knowledge 
and published papers. Unreported causal relationship 
might be prediction of the hidden mechanism for HA 
and NA PCOS. From the knowledge graph, we noticed 
pathogenesis for HA and NA PCOS was basically con-
sistent including important process of ovulation, vitamin 
D, metabolic disorder and insulin resistance, etc., while 
however, pathogenesis of NA PCOS was more related 
to inflammation, and pathogenesis of HA PCOS was 
more related to androgen, hormone disorder and exces-
sive adipose. Also from the knowledge graph, we noticed 
the important role for our newly discovered HA and NA 
PCOS functional markers IL6R, CD274 and CASR on 
female infertility.

Drug interaction analysis predict specific drugs for HA 
and NA PCOS
The next clinical question to answer was the difference 
in drugs applied in HA and NA PCOS. We downloaded 
and applied the reported drug-gene interaction relation-
ship from GRNdb [36] database on identifying the drugs 
specifically interacted with HA markers and NA mark-
ers. The flowchart of the analysis was shown (Fig. 6a). 23 
HA PCOS specific drugs and 6 NA PCOS specific drugs 
were discovered (Fig.  6b). The co-occurrence counts 
with PCOS were illustrated (Fig. S5c,d). Further filtering 
removed drugs with less connections with marker genes. 
Then we constructed network based on the drug-gene 
interaction between selected drugs and HA/NA PCOS 

markers for HA and NA PCOS (Fig. 6c,d). The selected 
drugs were promoting or restraining the correspond-
ing interacted markers. From the interaction network, 
we noticed androgen composed in most part, which was 
consistent with HA PCOS characteristics and probably 
promoting HA PCOS, while we also discovered flutamide 
and tamoxifen as specific drugs promoting or inhibiting 
HA PCOS. Within these drugs, tamoxifen had the poten-
tial to inhibit HA PCOS and promote ovulation and preg-
nancy [46]. For NA PCOS, we found human albumin, 
herapin, insulin, adenosine, liothyronine sodium and 
antibiotic might promote or inhibit NA PCOS. Accord-
ing to reported drug function, liothyronine sodium might 
promote NA PCOS [45], while antibiotic might poten-
tially inhibit NA PCOS [47]. Human albumin might also 
inhibit NA PCOS by regulating immunity. Further drug 
experiments were required for detecting the potential 
drug targets suitable for HA or NA PCOS therapy.

Discussion
Considering the vacancy on the studies on HA PCOS 
and NA PCOS, we applied microarray on granulosa cell 
samples for HA PCOS, NA PCOS and normal patients. 
Differential analysis identified specific genes for HA 
PCOS and NA PCOS. Further deeper functional analy-
sis selected IL6R and CD274 as new NA PCOS func-
tional markers, and meanwhile selected CASR as new 
HA PCOS functional marker. RT-qPCR and Western 
blotting validated that the expression pattern of IL6R, 
CD274 and CASR on mRNA and protein level were 
accordant with microarray data. Classification markers 
for HA PCOS, NA PCOS and normal groups were iden-
tified. Afterwards, combined methods of Apriori Rules 
and co-occurrence analysis were applied on downloaded 
PubMed PCOS abstracts. The causal network disclosed 
how HA PCOS or NA PCOS markers resulted in female 
infertility. Further drug-gene interaction analysis selected 
specific drugs promoting or inhibiting HA and NA 
PCOS. Our work was to our knowledge the first to apply 
microarray or sequencing technology on NA PCOS and 
HA PCOS mRNA samples, and among the first on apply-
ing transcriptome data on screening NA PCOS and HA 
PCOS markers and drugs, and thus our work was with 
considerable clinical significance. The methods applied in 

(See figure on next page.)
Fig. 5 Constructing Knowledge Graph Using Association Rules Methods on HA and NA PCOS for Female Infertility. A Flowchart on the analysis 
process applying association rules algorithm on merged data of our microarray and downloaded PCOS datasets on HA and NA PCOS. B Flowchart 
on the analysis process applying association rules algorithm on downloaded PubMed abstracts on HA and NA PCOS. C, D Knowledge graph 
plotted by Cytoscape using causal relationship predictions by Apriori Rules Algorithm for HA PCOS (C) and NA PCOS (D) differentiated terms. The 
arrow implied causal relationship pointing from the cause side (upstream side) to the result side (downstream side). The HA and NA PCOS potential 
marker was labeled green. Female Infertility was labeled red. Width of lines implied confidence of the causal relationship
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Fig. 5 (See legend on previous page.)
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our studies were original methods and capable of detect-
ing causal or interactive relationship between different 
types of datasets including transcriptome data, drug data 
and text mining data. The results also showed that CASR 
might play important role in HA PCOS progression, and 
IL6R and CD274 might dramatically engage in NA PCOS 
progression. Moreover, the results showed that diagnosis 
and treatment for HA PCOS and NA PCOS were differ-
ent. For diagnosis, inflammatory indicators were feasible 
in NA PCOS diagnosis, and meanwhile glucose metabo-
lism indicators or adipose indicators were feasible in HA 
PCOS diagnosis. For treatment,anti-inflammation drugs 
might be applied in NA PCOS treatment, and meanwhile 
anti-adipose or anti-androgen drugs might be applied in 
HA PCOS treatment.

Meanwhile, HA PCOS and NA PCOS markers have not 
been reported. Our work successfully identified NA PCOS 
markers IL6R and CD274, as well as HA PCOS mark-
ers CASR. Works from other researchers discussed the 
relationship of some of these markers including IL6R and 
CASR in PCOS [48, 49], but these work failed to describe 
the mechanism for the relation and also barely explain 
why they were expressed differently in NA and HA PCOS. 
Within these potential markers, CD274 (also named 
PDL1) is a special gene both identified by our method 
as NA PCOS specific gene and reported to be related to 
immunity and inflammation [39–41], and might indicate 
important implications between NA PCOS and tumor. 
Similarly, CASR was reported to be highly related to PCOS 
[42–44] and also correlated with adipose [50]. Our study 

Fig. 6 Applying Drug-Gene Interaction on Screening Interacted Drugs for HA and NA PCOS. A Flowchart on applying drug-gene interaction 
relationship on screening interacted drugs specifically for HA PCOS and NA PCOS. B Number of drugs for PCOS, drugs for HA PCOS and drugs for NA 
PCOS. C, D The network illustrating drug-gene interaction for interactive HA PCOS drugs vs HA PCOS markers (C) and for interactive NA PCOS drugs 
vs NA PCOS markers (D). HA/NA PCOS markers were labeled green, and drugs were labeled blue. Width of lines implied group interaction score 
between drug and interacting gene
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might further imply internal relationship among HA 
PCOS, adipose and insulin. Thus identifying and experi-
mentally validating potential markers for NA and HA 
PCOS might dramatically promote the understanding of 
PCOS and assist disclosing the mechanism that resulted in 
distinct syndrome of NA PCOS and HA PCOS.

Previous studies showed the similarity in syndrome for 
HA and NA PCOS patients including high levels of body 
mass index, insulin, total cholesterol and etc. [51]. Other 
works were concentrated on the difference for HA and 
NA PCOS and stated that HA PCOS patients possessed 
higher irisin level, adipocytokines  and maternal com-
plications [11, 52–54]. Increasing number of evidence 
showed the high correlation between PCOS and inflam-
mation [55–58], and also the correlation between PCOS 
and vitamin D has been reported [59, 60], while however 
these studies were not distinguishing PCOS between sub-
types of NA PCOS and HA PCOS. The main difference 
between NA PCOS and HA PCOS was still dilemma. Our 
causal knowledge graph showed that the causing patho-
genesis for female infertility for HA PCOS and NA PCOS 
was mostly similar. Insulin / insulin resistance, aromatase 
/ aromatase inhibitors, gonadotropin, inositol and even 
vitamin D were appearing on both HA PCOS and NA 
PCOS causes (Fig. 5c,d). This implied that the mechanism 
on how HA PCOS and NA PCOS caused female infertil-
ity might be similar. The specific cause for female infertility 
on HA PCOS included hyperandrogenism, cholesterol and 
adiponectin, while specific cause for NA PCOS included 
immunity terms and hyperinsulinism, indicating that HA 
PCOS was more correlated to metabolism disorders while 
however NA PCOS was more correlated to immunity 
disorders.

Our work is primarily based on bioinformatical and 
data mining technology, and thus our work is a predic-
tion of the pattern, potential markers and specific drugs 
for NA PCOS and HA PCOS. The reliability of our con-
clusion is based on the fact that high percentage of our 
prediction was accordant with public or reported knowl-
edge. It would be interesting for us to further illuminate 
the deeper mechanism underlying the function of IL6R, 
CD274 and CASR, and also HA/NA PCOS classification 
markers on the formation of PCOS and female infertility. 
Meanwhile, the specific HA and NA PCOS drugs on HA 
and NA PCOS were requiring further drug testing and 
might be of substantial clinical value.
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