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Abstract
Background Despite advances in medical imaging technology, the accurate preoperative prediction of lymph node 
status remains challenging in ovarian cancer. This retrospective study aimed to investigate the feasibility of using 
ultrasound-based radiomics combined with preoperative clinical characteristics to predict lymph node metastasis 
(LNM) in patients with high-grade serous ovarian cancer (HGSOC).

Results Patients with 401 HGSOC lesions from two institutions were enrolled: institution 1 for the training cohort 
(n = 322) and institution 2 for the external test cohort (n = 79). Radiomics features were extracted from the three 
preoperative ultrasound images of each lesion. During feature selection, primary screening was first performed 
using the sample variance F-value, followed by recursive feature elimination (RFE) to filter out the 12 most significant 
features for predicting LNM. The radscore derived from these 12 radiomic features and three clinical characteristics 
were used to construct a combined model and nomogram to predict LNM, and subsequent 10-fold cross-validation 
was performed. In the test phase, the three models were tested with external test cohort. The radiomics model had 
an area under the curve (AUC) of 0.899 (95% confidence interval [CI]: 0.864–0.933) in the training cohort and 0.855 
(95%CI: 0.774–0.935) in the test cohort. The combined model showed good calibration and discrimination in the 
training cohort (AUC = 0.930) and test cohort (AUC = 0.881), which were superior to those of the radiomic and clinical 
models alone.

Conclusions The nomogram consisting of the radscore and preoperative clinical characteristics showed good 
diagnostic performance in predicting LNM in patients with HGSOC. It may be used as a noninvasive method for 
assessing the lymph node status in these patients.
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Background
Ovarian cancer (OC) has the highest mortality rate 
among all gynecological malignancies [1]. Epithelial 
ovarian cancer (EOC) accounts for more than 95% of all 
OC cases [2]. Although considerable progress has been 
made in the diagnosis and treatment of EOC, its progno-
sis remains poor [3]. High-grade serous ovarian cancer 
(HGSOC) accounts for approximately 60% of EOC cases 
[4]. Most patients with HGSOC have advanced disease at 
the time of diagnosis, and their long-term survival rates 
are low [5, 6]. The International Federation of Gynecol-
ogy and Obstetrics (FIGO) ovarian cancer staging system 
[7] does not include substaging of lymph nodes, except 
as a distant disease manifestation. However, it has been 
shown that lymph node metastasis (LNM) represents 
tumor infiltration and spread, the incidence of LNM is 
lower in early- than in late-stage disease. Lymph node 
status significantly affects the survival of patients with 
OC. Patients with LNM are usually classified as stage III 
or IV and have a poorer prognosis [8, 9].

Currently, surgical and histopathological diagnosis is 
the gold standard for staging of EOC. According to the 
National Comprehensive Cancer Network guidelines 
[10], the resection of enlarged or suspicious lymph nodes 
on preoperative imaging or intraoperative exploration is 
recommended. However, there is significant controversy 
regarding the use of lymph node dissection for stag-
ing OC. Several studies [9, 11] have demonstrated that 
systematic lymph node dissection does not provide any 
benefit, with no difference in progression-free survival or 
overall survival, and is associated with a higher incidence 
of complications.

Despite advances in medical imaging technology, the 
accurate preoperative prediction of lymph node sta-
tus remains difficult. Computed Tomography (CT) with 
intravenous contrast is the first-line imaging method for 
staging and follow-up of OC according to the American 
College of Radiology guidelines [12]. However, accord-
ing to a meta-analysis, the sensitivity of CT for predict-
ing LNM is not ideal, only 0.47 [13, 14]. The diagnostic 
efficacy of magnetic resonance imaging (MRI) [15] and 
positron emission tomography/computed tomography 
(PET/CT) [16] is also not high. The overlap between 
reactive hyperplastic and metastatic lymph nodes is the 
most common reason for false positives and false nega-
tives [17]. Therefore, it is necessary to explore methods 
for the preoperative prediction of LNM.

The essence of radiomics is to extract unrecognizable 
features from medical images and establish a relationship 
between these high-throughput features and a low-noise 
state [18, 19]. Currently, CT- and MRI-based radiomics 
have been applied for the individualized treatment of 
HGSOC [6, 20–22]. Researchers are attempting to estab-
lish radiomic models based on ultrasonography [23]. 

To the best of our knowledge, no previous studies have 
explored ultrasound-based radiomics to predict LNM 
in patients with HGSOC to date. Therefore, the aim of 
this study was to explore the feasibility of predicting the 
lymph node status using preoperative ultrasound imag-
ing-based radiomics in patients with HGSOC as well as 
to investigate whether preoperative clinical parameters 
can assist in predicting LNM.

Methods
Patients
We retrospectively reviewed 920 consecutive patients 
with HGSOC in two institutions (Institution 1: Shengjing 
Hospital of China Medical University; Institution 2: 
Huaxiang Hospital of Shengjing Hospital of China Medi-
cal University) from January 2017 to December 2021. All 
patients underwent comprehensive staging surgery with 
pelvic and para-aortic lymph node dissection. The inclu-
sion criteria were as follows: (1) HGSOC diagnosed by 
postoperative pathology, (2) primary ovarian cancer, (3) 
ultrasound examination performed in our hospital within 
3 weeks before surgery, (4) initial surgery, and (5) clear 
postoperative lymph node metastasis status. The exclu-
sion criteria were as follows: (1) combination of other 
gynecological malignancies, (2) metastatic ovarian can-
cer, (3) preoperative adjuvant chemotherapy or radio-
therapy, (4) unsatisfactory ultrasound images, and (5) 
incomplete clinical data. The endpoint event in this study 
was lymph node status determined by histopathologic 
findings after comprehensive staging surgery. Finally, our 
study included 401 eligible patients, with patients from 
institution 1 included in the training cohort (n = 322) and 
patients from institution 2 included in the test cohort 
(n = 79). A flowchart of the study is shown in Fig. 1.

Tumor segmentation and feature extraction
Preoperative ultrasound images of all patients with 
HGSOC were retrieved using an picture archiving and 
communication system (PACS). Images from the final 
preoperative ultrasound examination were selected. For 
HGSOC with bilateral progression, larger and more com-
plex solid lesions were selected for analysis. Three stan-
dard images were selected for each lesion: the largest 
section, including the most complex lesion component; 
the section orthogonal to the largest section; and the 
color Doppler imaging section of the solid component 
of the lesion. All lesions were manually delineated by a 
radiologist with three years of experience in gynecologic 
imaging using the Darwin research platform (https://
arxiv.org/abs/2009.00908). All segments were confirmed 
by a senior radiologist with over 25 years of gynecologi-
cal imaging experience, who was blinded to the patho-
logical results corresponding to the images. If there was 
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a difference between the two radiologists, the final region 
of interest (ROI) was confirmed through a discussion.

Radiomic feature extraction and preprocessing
After determining the ROI, feature extraction was per-
formed using the PyRadiomics package [24] built into 
the platform. A single ultrasound image provided 1125 
features, and 3375 features were extracted from the three 
ultrasound images of each lesion. Seven categories were 
included: (1) shape2D statistics; (2) first-order statistics; 
(3) gray-level co-occurrence matrix (GLCM); (4) gray-
level dependence matrix (GLDM); (5) gray-level run-
length matrix (GLRLM); (6) gray-level size zone matrix 
(GLSZM); and (7) neighboring gray-tone difference 
matrix (NGTDM). A detailed description of these fea-
tures is available at https://pyradiomics.readthedocs.io/
en/latest/features.htm.

Data preprocessing is an important step in machine 
learning that can make the algorithm converge faster to 
obtain a more reasonable model. We used different ultra-
sound diagnostic instruments such as LOGIQ E9 (GE 
Co., NY, USA) and Mylab Class C (Esaote Co., Genoa, 
Italy) for ultrasound image acquisition. Therefore, before 
performing feature extraction, we normalized the origi-
nal feature vector by subtracting the mean value from the 
extracted feature data and dividing it by the variance to 
minimize the differences caused by the different ultra-
sound instruments.

Feature selection and radiomic model development
First, we used the optimal feature filter (i.e., sample vari-
ance F-value) to evaluate the linear correlation between 
each feature and the category label, and filtered the top 
10% of the most relevant features with the largest F-value 

from the 3375 features. Subsequently, because some 
machine learning models can evaluate the importance 
of features, the classifier is trained iteratively until the 
classification performance is optimal by removing the 
features with the lowest importance at the end of each 
training session. We used a recursive feature elimination 
(RFE) method based on logistic regression (LR) to train 
the model iteratively with STEP set to 1. The features 
with the lowest weights were removed each time, and 
the top 12 features were selected. Models consisting of 
fewer than 12 features did not improve the classification 
performance.

After the optimal subset of features was derived from 
the above two feature selection steps, we used five super-
vised machine learning methods to build the classifier 
in the training cohort: support vector machine (SVM), 
K-nearest neighbor (KNN), random forest (RF), decision 
tree (DT), and LR. For SVM, the radial basis function 
(RBF) was chosen as the kernel function to fit the data. 
For RF and DT, overfitting was prevented by limiting the 
minimum sample size of the leaf nodes and the maxi-
mum tree depth. For LR, L1 regularization was used as a 
penalty. 10-fold cross-validation was performed for each 
classifier. The average area under the receiver operating 
characteristic (ROC) curve (AUC) and average sensitivity, 
specificity, and accuracy were provided as performance 
metrics for the cross-validation cohort. The classifier 
with the highest mean AUC was selected. Finally, the rad-
score for each patient was calculated according to a linear 
model based on LR and the radiomics model was con-
structed based on radscore.

Fig. 1 Flowchart of the inclusion and exclusion criteria for patients
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Establishment of the clinical and combined models
Radiomics can be used to extract high-dimensional fea-
tures from images. However, owing to the heterogene-
ity of ultrasound images, some features closely related 
to the disease are equally relevant for predicting LNM, 
such as the lesion size, unilateral or bilateral involvement, 
presence of ultrasonography (US)-reported pelvic fluid, 
presence of US-reported peritoneal thickening, and pres-
ence of US-reported pelvic wall nodules. We recorded 
the above information from the US report and collected 
clinical data from the Hospital Information System (HIS), 
including age, menopausal status, and preoperative sero-
logical indicators (cancer antigen 125 (CA125) levels, 
human epididymal protein 4 (HE4) levels, carcinoem-
bryonic antigen (CEA) levels, and cancer antigen 724 
(CA724) levels). Lesion size, US-reported pelvic fluid, 
age, CA125, HE4, CEA, and CA724 were set as continu-
ous variables. The other features were set as categorical 
variables.

We used the R language ‘mlr3’ package to construct a 
LR-based machine learning feature screener for clinical 
characteristics. A 10-fold cross-validation with 20 itera-
tions was used to select the characteristics included in 
clinical model with the best AUC performance. A clinical 
model was developed using these clinical characteristics. 
To explore whether combining the radscore with the rel-
evant clinical characteristics could further improve the 
predictive performance of the model, we combined the 
radscore and relevant clinical characteristics to build a 
multivariate logistic regression model and constructed a 
nomogram.

External test and evaluation of the models
Three models were applied to the external test cohorts. 
Decision curve analysis (DCA) was performed to illus-
trate the net clinical benefits derived from the three mod-
els. Calibration curves were used to assess the nomogram 
performance. The overall workflow of the radiomics 
model development and validation is displayed in Fig. 2.

Statistical analysis
All statistical analyses were performed using the R ver-
sion 4.1.3 (R Foundation for Statistical Computing, 
Vienna, Austria. URL https://www.R-project.org/.). 
The statistical significance level was set at 0.05. The chi-
square test was used to compare categorical variables, 
and the Mann-Whitney U test was used to compare con-
tinuous variables. The diagnostic efficiency of the models 
was evaluated using ROC curves and quantified using the 
AUC. The sensitivity, specificity, and accuracy were cal-
culated to quantify various aspects of the models’ diag-
nostic ability.

Results
Patient characteristics
Among the 401 patients included in this study, the mean 
age was 54.6 ± 8.71 years, 173 (43.1%) had postoperative 
pathologically confirmed LNM, and 228 (56.9%) had 
postoperative pathologically confirmed no-LNM; 65.6% 
of the patients were in the postmenopausal state. The 
mean maximum diameter of the lesion was 9.46  cm. 
Suspicious peritoneal thickening and pelvic wall nod-
ules were detected on US in 25.9% and 20.7% of patients, 
respectively. There were no statistical differences in the 
clinical characteristics of the patients between the train-
ing and test cohorts (p > 0.01). The clinical characteristics 
of patients in the training and test cohorts are presented 
in Table  1. In the training cohort, we found significant 
differences (p < 0.05) between the LNM-negative and 
LNM-positive groups with regard to US-reported pel-
vic fluid, laterality, US-reported peritoneal thickening, 
US-reported pelvic wall nodules, CA125, HE4, CEA, 
and CA724 levels, with the LNM-positive group hav-
ing a deeper pelvic fluid depth, greater odds of perito-
neal thickening and pelvic wall nodules, and significantly 
higher serological indicators than the LNM-negative 
group. In contrast, only CA125, HE4 levels and US-
reported peritoneal thickening were significantly differ-
ent between the two groups in the test cohort.

Feature selection and construction of the radiomic model
A total of 3375 features were extracted from 401 lesions, 
and 12 features that were highly correlated with LNM 
were selected using 2-step feature selection. To derive 
the optimal prediction model, we selected five machine 
learning algorithms for classifier construction in the 
training cohort and compared the performances of sev-
eral classifiers using 10-fold cross-validation. The perfor-
mance of the five classifiers is shown in Table 2. The LR 
model achieved better classification performance with a 
mean AUC, sensitivity, specificity, and accuracy of 0.876, 
0.688, 0.860 and 0.789, respectively.

We derived the radscore for each patient from these 
12 features using a linear model based on LR and then 
applied the radscores to build a radiomic model. The 
scoring formula and the radscores for each patient are 
presented in Table S1. There was a significant difference 
in the radscore between patients with and without LNM 
in the training cohort (0.69 ± 0.27 vs. 0.23 ± 0.21; p<0.05) 
and test cohort (0.74 ± 0.23 vs. 0.34 ± 0.29; p<0.05). The 
AUC value of the radiomic model based on the radscore 
was 0.930 (95% CI: 0.902–0.958) in the training cohort 
and 0.881 (95% CI: 0.801–0.954) in the test cohort.

Clinical model construction and evaluation
We filtered clinical characteristics using a LR-based 
machine learning feature filter. After 20 iterations of 

https://www.R-project.org/
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10-fold cross-validation, CA125 and US-reported perito-
neal thickening were identified as the variables for clinical 
model which AUC was 0.762. The AUC of clinical model 
for predicting LMN was 0.770 (95% CI: 0.719–0.822) in 
the training cohort and 0.735 (95% CI: 0.622–0.848) in 
the test cohort.

Combined model construction and evaluation
We performed LR using the independent clinical predic-
tors and radscore and constructed a combined model. We 
compared the diagnostic performance of the radiomic, 
clinical, and combined models. Table  3; Fig.  3a, b show 
the sensitivity, specificity, accuracy, and AUC of the three 
models in the training and test cohorts. We observed that 
the AUC of the combined model improved from 0.899 
(95%CI: 0.864–0.933) to 0.930 (95% CI: 0.902–0.958) in 
the training cohort and from 0.855 (95% CI: 0.774–0.935) 
to 0.881 (95% CI: 0.801–0.954) in the test cohort. DCA 

showed that the combined model had a higher overall net 
benefit at the threshold probability (Fig. 3c, d).

The combined model was then used to construct a 
nomogram (Fig.  4a). Calibration curves of the com-
bined model are shown in Fig.  4b, c. The alignment of 
the dashed and solid lines indicates a good agreement 
between the predicted results of LMN and the true state 
in the training and test cohorts.

Discussion
In our study, we constructed a prediction model to pre-
dict LNM in HGSOC. We used three preoperative ultra-
sound images of patients with OC to identify radiomic 
features and calculate radscore. A nomogram was cre-
ated using radscore, serologic CA125 levels, and US 
reported peritoneal thickening. This nomogram can 
predict the probability of LNM in patients with ovarian 

Fig. 2 Workflow of this study
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cancer preoperatively. The model exhibited good perfor-
mance and can help in making individualized preopera-
tive decisions.

Since the development of radiomics, the relationship 
between the high-throughput information embedded 
in the images and the biological behavior of the disease 
has been the focus of research. We believe that the highly 
aggressive and metastatic tendencies during tumor devel-
opment cause changes in the imaging presentation that 

are difficult to observe with the naked eye during the 
early stages. In previous studies, researchers tended to 
look for direct imaging signs of metastatic lymph nodes, 
such as an oval shape and disappearance of lymphatic 
portals, while ignoring the features of the tumor itself 
[13]. Many histological micrometastases may not be 
morphologically altered, whereas reactive hyperplastic 
lymph nodes may exhibit changes in size and morphol-
ogy. Studies have shown that radiomics based on primary 

Table 1 Clinical characteristics of the patients in the training and test cohorts
Characteristics Training Cohort (n = 322) Test Cohort (n = 79)

LNM negative LNM positive p value LNM negative LNM positive p value
n = 184 n = 138 n = 44 n = 35

RadsScore, mean (SD) 0.23 (0.21) 0.69 (0.27) <0.05 0.34 (0.29) 0.74 (0.23) <0.05
Age, mean (SD) 54.7 (8.40) 53.3 (9.09) 0.163 56.8 (7.93) 55.6 (9.34) 0.556
Menopausal status, n (%) 0.391 1
 No 61 (33.2%) 53 (38.4%) 13 (29.5%) 11 (31.4%)
 Yes 123 (66.8%) 85 (61.6%) 31 (70.5%) 24 (68.6%)
US-reported pelvic fluid, n (%) 2.16 (2.41) 3.91 (3.23) <0.05 2.01 (1.92) 2.84 (2.87) 0.147
Lateral <0.05 0.116
 Unilateral 112 (60.9%) 63 (45.7%) 29 (65.9%) 16 (45.7%)
 Bilateral 72 (39.1%) 75 (54.3%) 15 (34.1%) 19 (54.3%)
US-reported peritoneal thickening, n (%) <0.05 <0.05
 No 163 (88.6%) 78 (56.5%) 38 (86.4%) 18 (51.4%)
 Yes 21 (11.4%) 60 (43.5%) 6 (13.6%) 17 (48.6%)
US-reported pelvic wall nodules, n (%) <0.05 0.102
 No 163 (88.6%) 95 (68.8%) 37 (84.1%) 23 (65.7%)
 Yes 21 (11.4%) 43 (31.2%) 7 (15.9%) 12 (34.3%)
Maximum diameter, mean (SD) 9.50 (4.18) 9.55 (4.03) 0.912 9.15 (3.36) 9.24 (3.73) 0.91
CA125, median (IQR) 254 [77.9;564] 840 [398;1709] <0.05 302 [74.6;613] 530 [139;1097] <0.05
HE4, median (IQR) 191 [105;363] 448 [243;710] <0.05 152 [102;229] 251 [152;518] <0.05
CEA, median (IQR) 1.52 [0.94;2.08] 1.17 [0.78;1.98] <0.05 1.39 [0.88;2.13] 1.52 [0.96;2.14] 0.487
CA724, median (IQR) 6.91 [2.83;20.8] 19.6 [7.15;64.2] <0.05 7.95 [4.26;13.7] 10.7 [6.28;21.5] 0.186
Abbreviations LNM, lymph node metastasis; SD, standard deviation; IQR, interquartile range; CA125, cancer antigen 125; HE4, human epididymal protein 4; CEA, 
carcinoembryonic antigen; CA724, cancer antigen 724

Table 2 Diagnostic efficiency of different classifiers in the training and test cohorts
Classifiers Training cohort 10 fold cross validation

AUC (95% CI) SEN SPE ACC Mean AUC Mean SEN Mean SPE Mean ACC
SVM 0.936 (0.906,0.967) 0.916 0.830 0.866 0.843 0.658 0.870 0.782
KNN 0.907 (0.878,0.937) 0.906 0.728 0.804 0.811 0.595 0.846 0.733
RF 0.988 (0.980,0.996) 0.978 0.951 0.963 0.823 0.627 0.871 0.767
DT 0.893 (0.858,0.928) 0.797 0.859 0.832 0.774 0.663 0.744 0.705
LR 0.899 (0.864,0.933) 0.877 0.804 0.835 0.876 0.688 0.860 0.789
Abbreviations SVM, support vector machine; KNN, K-nearest neighbor; RF, random forest; DT, decision tree; LR, logistic regression; AUC, area under the curve; CI, 
confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy

Table 3 Diagnostic efficiency of the clinical, radiomic, and combined models in the training and test cohorts
Training cohort Test cohort
AUC (95% CI) SEN SPE ACC AUC (95% CI) SEN SPE ACC

Clinical model 0.770 (0.719–0.822) 0.732 0.696 0.711 0.735 (0.622–0.848) 0.571 0.841 0.722
Radiomics model 0.899 (0.864–0.933) 0.877 0.804 0.835 0.855 (0.774–0.935) 0.943 0.636 0.772
Combined model 0.930 (0.902–0.958) 0.833 0.902 0.873 0.881 (0.801–0.954) 0.714 0.886 0.810
Abbreviations AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy
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lesions can identify LNM in cervical cancer [23]. The pre-
diction of LNM based on imaging features of the primary 
tumor is in an exploratory stage.

In this study, we extracted a large number of radiomic 
features from US images. During feature selection, pri-
mary screening was first performed using the sample 
variance F-value, followed by RFE to filter out the 12 
most important and stable features for predicting LNM. 

RFE has been increasingly adopted as a feature selec-
tion method to obtain key combinations of variables that 
maximize the model performance by adding or removing 
specific feature variables [25]. We used radiomic features 
to construct different machine learning classifiers. The 
AUCs of the five classifiers in the test cohort ranged from 
0.774 to 0.876. As a linear regression method, LR allows 
for the output of probabilities for binary classification 

Fig. 3 Predictive performance of the radiomic, clinical and combined models in the training and test cohorts. (a, b) show the ROC curves of the different 
models in the training and test cohorts. Decision curve analysis (c, d) illustrates the net clinical benefits of the prediction model. The y-axis represents the 
net benefit and x-axis represents the threshold probability. The blue line indicates “treat all” and the pink horizontal line denotes “treat none.” ROC, receiver 
operating characteristic curve
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problems. Therefore, we chose LR as the classifier to 
derive the radscore and proceeded to the next step of 
model construction.

Previously, radiomics based on CT and MRI have been 
used to predict metastasis in ovarian cancer [20, 21, 26]. 
Some researchers have used CT and PET to predict pel-
vic and/or para-aortic LNM in patients with advanced 
EOC, and the specificity of the obtained radiomic model 
for predicting high-risk lymph nodes was reportedly 
78.3% [27]. However, the sample size of this study was 
small and the credibility of the conclusions is speculative. 

Yao et al. [28] developed a model for predicting the 
lymph node status based on PET images of patients with 
ovarian cancer using residual neural networks and SVM 
for modeling. Their model had an AUC of 0.92 in the test 
cohort, but the model only included patients with early-
stage ovarian cancer. However, most patients are already 
in an advanced stage at diagnosis. The clinical stage of 
OC was not limited in our study, which may have greater 
clinical applicability.

In addition to preoperative imaging, serum tumor 
markers are measured in patients with suspected ovarian 

Fig. 4 (a) Nomogram for predicting lymph node metastasis of HGSOC based on radscore and clinical characteristics. In the nomogram, a vertical line was 
first made according to the Radscore to determine the corresponding value of points. Similarly, the CA125 and US-reported peritoneal thickening values 
were also determined. The total points were the sum of the three points above. Finally, a vertical line was made according to the value of the total points 
to determine the probability of LNM. (b, c) show the calibration curves of the nomogram developed in the training and test cohorts. HGSOC, high-grade 
serous ovarian cancer
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cancer. Serum CA-125 and HE4 levels are considered 
clinical predictors of survival and treatment response in 
patients with EOC, but there is no conclusive evidence 
on whether serum tumor markers are predictive of LNM, 
and they vary widely between different study popula-
tions [29, 30]. Zhou et al. [31] found that preoperative 
serum CA125 level > 740 U/mL was a risk factor for LNM 
in patients with EOC. It has also been suggested that 
CA125 levels are not associated with LNM in early OC 
[32]. Increased HE4 levels promote ovarian cancer cell 
invasion and metastasis through certain signaling path-
ways [33]. However, in our analysis, there may be a role 
for serum CA125 levels in predicting lymph node metas-
tasis in OC, which is consistent with some studies. While 
HE4, CA724 and CEA levels were excluded in our clini-
cal model. Previous studies have investigated the predic-
tors of LNM in OC and concluded that high-grade serous 
tumors, positive peritoneal cytology, advanced clinical 
stage, interval surgery, and bilateral adnexal involvement 
can predict LNM in patients with OC [34, 35]. This is 
consistent with our conclusion that peritoneal thickening 
on US images correlates with LNM.

However, our study has some limitations. First, our 
study included only patients with HGSOC and did not 
include other pathological subtypes, which limited the 
extrapolability of the model. For most patients with sus-
pected ovarian cancer, a puncture biopsy of the lesion is 
performed for better treatment planning; therefore, most 
physicians already know the pathological type before sur-
gery. However, we will continue training the model so 
that it can be applied to all pathological types of OC. Sec-
ond, since this was a single-center retrospective study, the 
sample size needs to be improved. Whether the model 
can be applied to other hospitals and physicians with 
different levels of seniority remains to be investigated. 
Third, unlike most CT- and MRI-based radiomic stud-
ies, not all US images were acquired using the same US 
instrument, and different instrument parameter settings 
may have led to feature heterogeneity. This is because 
the widespread prevalence of US makes it impossible to 
perform US examinations in all gynecological patients in 
large general hospitals using the same instrument model. 
In this regard, we normalized the US images to make the 
distribution of each dimension similar in order to speed 
up model convergence and improve the model accuracy.

Conclusions
In conclusion, we successfully developed a radiomic 
model based on preoperative US images and clinical 
characteristics and established a nomogram that can 
predict LNM more accurately in patients with HGSOC. 
Using this model, clinicians can decide whether to 
perform extensive lymph node dissection in patients 
with HGSOC, thereby avoiding the adverse effects of 

unnecessary lymph node dissection. In the future, we 
will incorporate more pathological types of ovarian can-
cer, increase the sample size, perform external validation 
across multiple hospitals, perform prospective validation 
to test the model, and develop US-based radiomics for 
patients with all stages of ovarian cancer to improve the 
diagnosis and prognosis.
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