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Abstract

Background: Epithelial ovarian cancer (EOC) is the leading cause of gynecologic cancer death in the USA.
Recurrence rates are high after front-line therapy and most patients eventually die from platinum (Pt) - resistant
disease. Cisplatin resistance is associated with increased nucleotide excision repair (NER), decreased mismatch repair
(MMR) and decreased platinum uptake. The objective of this study is to investigate how a novel combination of
sodium arsenite (NaAsO,) and hyperthermia (43°C) affect mechanisms of cisplatin resistance in ovarian cancer.

Methods: We established a murine model of metastatic EOC by intraperitoneal injection of A2780/CP70 human
ovarian cancer cells into nude mice. We developed a murine hyperthermic intraperitoneal chemotherapy model to
treat the mice. Mice with peritoneal metastasis were perfused for 1 h with 3 mg/kg cisplatin + 26 mg/kg NaAsO,
at 37 or 43°C. Tumors and tissues were collected at 0 and 24 h after treatment.

Results: Western blot analysis of p53 and key NER proteins (ERCC1, XPC and XPA) and MMR protein (MSH2)
suggested that cisplatin induced p53, XPC and XPA and suppressed MSH2 consistent with resistant phenotype.
Hyperthermia suppressed cisplatin-induced XPC and prevented the induction of XPA by cisplatin, but it had no
effect on Pt uptake or retention in tumors. NaAsO, prevented XPC induction by cisplatin; it maintained higher
levels of MSH2 in tumors and enhanced initial accumulation of Pt in tumors. Combined NaAsO, and hyperthermia
decreased cisplatin-induced XPC 24 h after perfusion, maintained higher levels of MSH2 in tumors and significantly
increased initial accumulation of Pt in tumors. ERCC1 levels were generally low except for NaAsO, co-treatment
with cisplatin. Systemic Pt and arsenic accumulation for all treatment conditions were in the order: kidney > liver =
spleen > heart > brain and liver > kidney = spleen > heart > brain respectively. Metal levels generally decreased in
systemic tissues within 24 h after treatment.

Conclusion: NaAsO, and/or hyperthermia have the potential to sensitize tumors to cisplatin by inhibiting NER,
maintaining functional MMR and enhancing tumor platinum uptake.
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Background

Epithelial ovarian cancer (EOC) is the leading cause of
gynecological cancer death in the U.S. Approximately
22,000 women are diagnosed annually and 15,000 die
from the disease [1]. Most women are diagnosed only
after peritoneal dissemination has occurred. The stan-
dard treatment for patients with EOC is cytoreductive
surgery (CRS) followed by intravenous Pt-taxane che-
motherapy [2]. Even though initially effective, relapse
from residual disease and/or drug resistant cancer
reduces the 5-year survival rate to about 20% [3]. Despite
research efforts to improve on Pt-based chemotherapy,
or to develop new drugs against EOC, most patients still
die from metastatic disease. Since metastatic EOC is
usually confined in the peritoneal cavity, it makes theore-
tical sense to deliver chemotherapy intraperitoneally
rather than intravenously since higher levels of drug can
be delivered to the disease site by that route [4,5]. In
response to three large randomized clinical trials showing
benefit to incorporating intraperitoneal (IP) delivery in
EOC, the National Cancer Institute issued a clinical
announcement recommending that patients with small
volume disease at the end of frontline surgery be offered
the chance of receiving IP chemotherapy [6]. Adding
hyperthermia to chemotherapy agents delivered intraper-
itoneally (HIPEC) theoretically could improve outcome
[7-9].

Cisplatin is a DNA damaging chemotherapeutic used
to treat solid tumors including EOC. However, resistance
to cisplatin limits clinical success. Mechanisms of cispla-
tin resistance are multi-factorial and include reduced cel-
lular drug accumulation, enhanced drug metabolism by
glutathionylation and export by multidrug resistance pro-
teins, enhanced DNA damage tolerance and DNA repair
[10]. Since Pt-containing chemotherapy drugs remain the
major weapon against EOC, improving their efficacy
could have a great impact on mortality. The combination
of hyperthermia with cisplatin has been reported for the
treatment of EOC [11]. Hyperthermia is tumoricidal
alone [12] and has been shown to enhance cisplatin inhi-
bition of peritoneal tumor growth by increasing tumor Pt
accumulation [13]. Arsenic trioxide (As,O3), an FDA
approved drug for the treatment of all-trans-retinoic
acid-resistant acute promyelocytic leukemia [14] has the
potential to sensitize tumors to cisplatin [15,16]. Combi-
nation chemotherapy studies demonstrate that arsenic
sensitizes cancer cells to hyperthermia, radiation, cispla-
tin, adriamycin, doxorubicin, and etoposide [16-19].
In vitro studies demonstrate that trivalent arsenic (As>*
administered as arsenic trioxide [As,Os, Trisenox®] or
sodium arsenite [NaAsO,]) induces apoptosis in multiple
types of cancer cells including cervical, melanoma, gas-
tric, colon, pancreatic, lung, prostate and ovarian cancer
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cell lines [20-23]. In vivo studies also show that arsenic
inhibits the growth of orthotopic metastatic prostate
cancer and peritoneal metastatic ovarian cancer [24,25].
The mechanism of arsenic-induced cell death in vitro is
suggested to include formation of oxidative DNA damage
[26], activation of the Fas pathway [27], inhibition of
DNA repair [28,29], and causation of mitotic arrest and
induction of apoptosis in the mitotic cells [20,21].

As®* has biological effects similar to those of both cispla-
tin and hyperthermia. Like cisplatin it is detoxified by glu-
tathionylation and exported by multidrug resistant family
transport pumps [30,31], suggesting a potential for compe-
tition for the detoxification pathway if arsenic and cisplatin
are used in combination. This competition might enhance
cisplatin accumulation in cells. Like hyperthermia, As**
induces stress response proteins and causes mitotic cata-
strophe [21]. These actions make arsenic a potentially
effective agent to augment hyperthermia enhancement of
cisplatin-induced cell death.

The goal of this study is to determine how sodium
arsenite and hyperthermia modulate mechanisms of cis-
platin resistance in vivo. We developed murine models
of HIPEC treatment and metastatic human EOC to
investigate if NaAsO, and hyperthermia alter the
expression of DNA repair proteins and tumor platinum
levels. We show that NaAsO, and hyperthermia either
as single agents or in combination reverse key DNA
repair protein responses to cisplatin responsible for cis-
platin resistance and also enhanced tumor Pt uptake
suggesting decreased Pt detoxification.

Methods

Chemicals

Cisplatin and sodium arsenite were purchased from
Sigma-Aldrich (St. Louis, MO). Stock solutions (cisplatin
1 mg/mL in 1X PBS and NaAsO, 13 mg/mL in water)
were prepared freshly on the day of treatment and filter
sterilized (0.22 um) prior to use.

Cells and cell culture

Cisplatin-resistant (A2780/CP70) human ovarian cancer
cells were the kind gift of Dr. Eddie Reed. Cells were
maintained in RPMI 1640 medium containing 10% fetal
bovine serum, 100 pug/mL penicillin/streptomycin,
2 mM L-glutamine and 0.2 units/mL insulin. Cells were
cultured in an atmosphere of 95% humidity and 5% CO,
at 37°C. Cells were passaged twice weekly and replated
at a density of 1 x 10° cells/150 mm dish.

Animals

Female NCr athymic nude mice (7 - 9 weeks old), were
purchased from Taconic (Cambridge City, IN). Animals
were kept in a temperature-controlled room on a 12 h
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light-dark schedule. The animals were maintained in
cages with paper filter covers under controlled atmo-
spheric conditions. Cages, covers, bedding, food, and
water were changed and sterilized weekly. Animals were
fed autoclaved animal chow diet and water. All proce-
dures were performed under sterile conditions. This
experiment was approved by the Institutional Animal
Care and Use Committee of the University of Louisville
in an AALAC approved facility in accordance with all
regulatory guidelines.

Establishment of intraperitoneal metastatic ovarian
tumors in mice

A2780/CP70 cell suspension (1 x 10° cells in 500 uL of
serum-free RPMI 1640 media) was injected into the peri-
toneum of anesthetized mice using an 18-gauge needle.
The needle was flushed with 500 pL physiological saline.
The abdomen of injected animals was massaged to
ensure even distribution of cells. By 3 - 4 weeks after
injection, the mice had developed multiple small dissemi-
nated IP tumors (1 - 7 mm) (Figure 1). Tumors were
monitored by microCT scanning in the Brown Cancer
Center Small Animal Imaging Facility.

Intraperitoneal chemotherapy

Tumor-bearing mice were anesthetized with 3% isoflurane
in an inhalation chamber and maintained on 1% isoflurane
during surgery. Incisions (~0.5 cm) were made on both
sides of the lower abdominal wall allowing entry into the
peritoneal cavity (Figure 2). Inflow and outflow tubes were
inserted into the peritoneal cavity and secured with skin
sutures. The tubes were connected to a bag containing
100 mL normal saline with added cisplatin (3 mg/kg body
weight (BW)) + sodium arsenite (26 mg/kg BW) and cefa-
zolin (0.01 mg/mL). (The dose of cisplatin used for this
study was determined from human dose of cisplatin
(100 mg/m?) administered intravenously to a 70 kg (body
surface area = 1.87 m?) [32] cancer patient and sodium

Figure 1 Mouse with multiple small intraperitoneal tumors. A.
MicroCT scan of tumors in live mouse. B. Direct visualization of
tumors at necropsy of mouse. Three tumors are denoted by arrow
in panels A and B.
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Figure 2 Murine hyperthermic intraperitoneal chemotherapy
model. A. Drawing of tumor bearing mouse undergoing HIPEC.
Depicted are inlet (a) and outlet (b) ports and anal temperature
probe (c) to monitor internal temperature of mouse during
perfusion. B. Photograph showing perfusion pump (a), temperature
monitor (b), flow tubes (c) and heating bath (d). Mice were perfused

for 1 h at the rate of 3 mL/min with cisplatin (3 mg/kg) + NaAsO,
(26 mg/kg) at 37 or 43°C.

arsenite dose was calculated from a single daily dose of
Trisenox (0.15 mg/kg/day) administered intravenously to a
70 kg acute promyelocytic leukemia patient. The underly-
ing assumption in the calculations is that the drugs are
mixed in 2 L saline solution for HIPEC therapy). The sal-
ine bag was submerged in a water bath to maintain the
perfusate temperature at either 37 or 43°C. Perfusion was
performed at a rate of 3 mL/min for 60 min using a Mas-
terflex pump (Cole-Palmer Instrument Co, Cat # 07524-
50). The inflow and outflow temperatures were monitored
by thermocouple probes with temperature maintained
within 1°C. The core temperature of the animals was mon-
itored using an anal temperature probe and maintained
using a heating pad and heat lamp. After 60 min perfusion,
most of the perfusate in the peritoneum was sucked out
using sterile cotton balls with a light abdominal massage.
Wounds were sutured closed and animals were injected
intraperitoneally with 1 mL physiological saline containing
0.01 mg ketoprofen for pain. Mice were kept in warm
cages (single mouse/cage) and monitored for recovery and
discomfort. Immediately (0 h) and 24 h after perfusion,
mice were euthanized and tumors, kidneys, liver, spleen,
heart and brain were dissected and snap frozen in liquid
nitrogen and stored at -80°C until use.

Western blot analysis

Tumors of ~ 3-5 mm in diameter were homogenized in
protein lysis solution (1 M Tris-HCI pH 7.4, 0.5 M
EDTA, 10% sodium dodecyl sulfate, 180 pug/mL phenyl-
methylsulphonylfluoride) using a tissue grinder. After
removal of debris by centrifugation (45 min, 14,000 x g),
total protein concentration in supernatant was deter-
mined by bicinchoninic acid (BCA) method according
to manufacturer’s instructions (Pierce, Rockford, IL,
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micro-well plate protocol) [33]. Fifteen pg protein sam-
ples were resolved by SDS-polyacrylamide gel electro-
phoresis and electro-transferred to nitrocellulose
membranes. Membranes were probed with antibodies to
XPA (Neomarkers, MS-650-P1, dilution 1:1000), XPC
(Novus, # ab6264, dilution 1:10,000), GAPDH (Sigma, #
A 5441, dilution 1:10,000), p53 (DO-1, Cell Signaling
Technology, # 9284, dilution 1:1000), MSH2 (Santa
Cruz, # SC-494, dilution 1:1000), and ERCC1 (Santa
Cruz, # SC-10785, dilution 1:1000). Secondary antibo-
dies (rabbit anti-mouse IgG, # 81-6120 or goat anti-rab-
bit, # 81-6120, dilutions 1:2500) conjugated to
horseradish peroxidase (Zymed Laboratories, Inc. South
San Francisco, CA) were bound to primary antibodies
and protein bands detected using enhanced chemilumi-
nescence (ECL) substrate (Pierce, Rockford, IL).
GAPDH was used as the loading control. Films were
scanned with a Molecular Dynamics Personal Densit-
ometer SI (Molecular Dynamics, Sunnyvale, CA) and
analyzed with ImageQuaNT software (Molecular
Dynamics) to determine band density.

ICP-MS analysis

Samples of tumor homogenates were lyphophilized using
Heto vacuum centrifuge (ATR, Laurel, MD) and 350 pL
concentrated nitric acid was added to each sample. Wet
weight of brain, heart, spleen, liver and kidney was
recorded and concentrated nitric acid (350 - 500 pL) was
added to samples. Samples were predigested overnight,
and then 100 pL of each dissolved sample was transferred
into 10 mL acid washed microwavable digestion tubes
(triplicate for each sample). The samples were micro-
wave-digested at 150°C for 10 min using an automated
focused beam microwave digestion system (Explorer™,
CEM, Matthews, NC, USA). After digestion, 1.9 mL of 18
Mohm H,O containing 10 ppb internal standard (SPEX
CertiPrep, Metuchen, NJ) was added into every sample to
give final 5% nitric acid and ICP-MS analyses was per-
formed using Thermo X Series II ICP-MS (Thermo
Fisher Scientific, Waltham, MA) at the University of
Louisville Center for Regulatory and Environmental Ana-
lytical Metabolomics facility. Concentrated nitric acid
was processed similarly as blank. Platinum standard
(SPEX CertiPrep, Metuchen, NJ) was used to generate a
standard curve. Platinum and arsenic levels in tumors
and tissues were expressed as ng metal/mg protein and
ng metal/mg wet weight respectively. Results are pre-
sented as the means of three ICP-MS determinations for
each data point + SD from 3 individual mice.

Immunocytochemistry

Cells (1 x 10° ) were plated on poly-D-lysine coated
coverslips (BD Biosciences) in a 24-well plate and
allowed to acclimate for 24 h. Cells were then treated
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with 40 uM cisplatin for 1 h. After treatment, cells were
washed twice with PBS and incubated in drug-free
media for 24 h. Cells were fixed in ice-cold acetone for
10 min at room temperature and washed twice with ice
cold PBS and samples incubated for 10 min with PBS
containing 0.25% Triton X-100 (PBST). Cells were then
washed with PBS three times for 5 min and incubated
in 3% hydrogen peroxide for 30 min to quench endo-
genous peroxidase. Cells were washed three times with
PBS and incubated in 1% BSA in PBST for 30 min to
block unspecific binding of the antibodies. Cells were
incubated overnight at 4°C in primary antibodies (1:200
dilution in PBST containing 1% BSA). The primary anti-
bodies used were XPA (Neomarkers, MS-650-P1), XPC
(H-300, SantaCruz Biotechnology, # sc-30156), p53
(DO-1, Cell Signaling Technology, # 9284), MSH2
(Santa Cruz, # SC-494) and ERCC1 (Santa Cruz, # SC-
10785). After incubation, the primary antibody solution
was decanted and cells were washed three times with
PBS for 5 min each wash. Cells were incubated with sec-
ondary antibodies (rabbit anti-mouse IgG, # 81-6120 or
goat anti-rabbit, # 81-6120, dilution 1:200 in PBST con-
taining 1% BSA) conjugated to horseradish peroxidase
(Zymed Laboratories, Inc. South San Francisco, CA) for
1 h at room temperature. Secondary antibody solution
was decanted and cells were washed three times with
PBS for 5 min. Cells were stained with 3,3’-diaminoben-
zidine (DAB) substrate solution by incubating cells in
200 pL premixed DAB solution (mix 30 pL (one drop)
of the DAB liquid chromogen solution to 2 mL of the
DAB liquid buffer solution (Sigma, # D 3939)) for 10
min. DAB solution was removed and cells rinsed briefly
with PBS. Cells were counterstained with 20% Wright
Giemsa solution for 1 min. Coverslips were mounted on
microscope slides using a drop of permount mounting
medium. Slides were viewed under a Nikon Eclipse
E600 Microscope (Fryer Company Inc, Scientific Instru-
ments, Cincinnati, OH 45240) and pictures taken using
MetaMorph software (Universal Imaging Corporation).
DAB-positive cells were counted per 1000 cells using
MetaMorph software.

Statistical analysis
Statistical analyses were performed using wilcoxon rank
sum test with significance set as p < 0.05, n = 3.

Results

Murine intraperitoneal chemotherapy model

Multiple disseminated tumors were established in the peri-
toneal cavity of nude mice as described in Materials and
Methods. Mice were scanned using microCT scan to
determine the location and estimate the size of tumors
(Figure 1A). This was confirmed upon necropsy (Figure
1B). Tumor bearing mice were treated by peritoneal lavage
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for 1 h with cisplatin + sodium arsenite at 37°C (nor-
mothermia) or 43°C (hyperthermia) (Figures 2A and 2B)
as described in Materials and Methods. During treatment,
the required inflow temperature was reached within
2-5 min after the start of perfusion. Inflow, outflow and
rectal temperatures were recorded every 15 min and
remained stable within 1°C throughout the 60 min perfu-
sion (Table 1).

Platinum and arsenic accumulation and retention in
metastatic tumors

We determined Pt and arsenic accumulation in tumors
immediately (0 h) and 24 h after perfusion using ICP-MS.
Pt and arsenic accumulated in tumors during treatment
(0 h) and generally decreased after treatment (24 h), com-
pared with the untreated control (Figure 3). Co-treatment
with NaAsO, and cisplatin at 37°C (CPA/37) or 43°C
(CPA/43) caused significantly more Pt to accumulate in
tumors. By 24 h after perfusion, tumor Pt levels for CPA/
37 and CPA/43 treatment conditions decreased to levels
similar to CP/37. Hyperthermia did not increase tumor Pt
levels nor alter Pt retention in tumors 24 h after treatment.
More arsenic initially accumulated in tumors when co-
treated with cisplatin and NaAsO, at 37°C (CPA/37) than
with hyperthermia treatment (CPA/43). Arsenic decreased
to similar levels at 24 h.

Effect of cisplatin, arsenic and hyperthermia on DNA
repair protein expression

Cisplatin causes bulky DNA damage that is repaired
mostly by the nucleotide excision repair system (NER).
Cellular response to cisplatin-DNA damage involves the
induction of DNA repair proteins to initiate DNA repair
[10]. We determined if NaAsO, and hyperthermia modu-
lated the expression of XPC, a platinum-DNA damage
recognition protein in global genome repair (GGR) [34]
subpathway of NER, and of ERCC1 and XPA, down-
stream NER proteins that have been implicated in cispla-
tin resistance [35]. We also determined the expression of
p53, which is involved in the activation of the GGR path-
way by transcriptionally activating XPC [36]. In addition
to NER, decreased mismatch repair (MMR) has been
implicated in cisplatin resistance [37,38]. Thus, we also
investigated the expression of MSH2, an important

Table 1 Inflow, outflow and body temperatures of mouse
during intraperitoneal perfusion

Inflow Temperature
374 +1.1°C
43.0 £ 0.7°C

Outflow Temperature
364 + 0.8°C
397 £ 06°C

Body Temperature
355+ 1.0°C
363 + 2.1°C

Mice were perfused for 1 h with cisplatin (CP/37; CP/43) or cisplatin + NaAsO2
(CPA/37; CPA/43) at 37 or 43°C respectively. Inflow, outflow and body
temperatures were recorded every 15 min. Data are presented as means + SD
of readings taken from five mice.
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MMR DNA damage recognition protein. Western blot
analysis of p53, XPC, XPA, ERCC1 and MSH2 revealed
mouse-to-mouse and tumor-to-tumor variabilities
(Figure 4A). Some tumors failed to express the protein of
interest while others either expressed high, moderate or
very low levels of the proteins. We determined band
intensities for the expressed proteins by scanning the
films using a Molecular Dynamics Personal Densitometer
SI (Molecular Dynamics, Sunnyvale, CA) and analyzing
bands of interest using ImageQuaNT software (Molecu-
lar Dynamics). Each protein value was normalized to its
respective GAPDH (loading control) value. Data were
further normalized to untreated control (Figure 4B).
Tumors that failed to express the protein of interest were
not considered in the densitometry analyses. P53 (Figure
4B, panel a) and XPC (Figure 4B, panel b) were signifi-
cantly induced during treatment (0 h) by cisplatin at
37°C (CP/37) or 43°C (CP/43) and cisplatin plus arsenite
at 43°C (CPA/43). P53 significantly decreased at 24 h
after treatment with CPA/43 (Figure 4B, panel a). XPC
decreased at 24 h after perfusion with both CP/43 and
CPA/43 treatments (Figure 4B, panel b). P53 (Figure 4B,
panel a) and XPC (Figure 4B, panel b) did not signifi-
cantly increase during (0 h) and after (24 h) peritoneal
lavage with NaAsO, and cisplatin co-treatment at 37°C
(CPA/37). XPA (Figure 4B, panel c) was significantly
induced during (0 h) and 24 h after perfusion with CP/
37, CPA/37 and CPA/43 but not with CP/43. ERCC1
remained generally low for all treatment conditions
except with CPA/37 (Figure 4B, panel d). The suppres-
sion of MSH2 by CP/37 and CP/43 treatments was not
seen in tumors co-treated with arsenite (CPA/37,
CPA/43) (Figure 4B, panel e).

Expression of P53, XPA and MSH2 in ovarian cancer cells
Western blot determination of P53, XPC, XPA, ERCC1
and MSH2 in metastatic tumors revealed that some
tumors failed to express p53 (6%), XPC (3%), XPA (8%),
ERCC1 (40%) and MSH2 (9%). Failure to express these
proteins could be an inherent feature of the cells that were
used to establish the tumors or due to mutations and
alteration of genes during tumor development that could
result in lack of protein expression. We therefore per-
formed immunocytochemical studies using A2780/CP70
cells to determine expression of P53, XPA and MSH2 in
these cells (Figure 5A). Immunocytochemistry data
revealed that 25% of cells do not express p53 as evident by
lack of 3,3’-diaminobenzidine (DAB) brown staining and
~3% and 60% of cells did not stain positive for XPA and
MSH2 respectively (Figure 5B). Full-length western blots
for XPC and ERCC1 had several non-specific bands in
addition to the band of interest (data not shown) making
it impossible to perform immunocytochemistry with speci-
ficity for these proteins.
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Figure 3 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) determination of platinum and arsenic in tumors. Mice were perfused
for 1 h with cisplatin (CP/37; CP/43) or cisplatin + NaAsO, (CPA/37; CPA/43) at 37 or 43°C respectively. Tumors from untreated (UT) and treated
mice were harvested at 0 and 24 h after treatment. Tumors were homogenized and samples of the homogenate were analyzed for protein
concentration by BCA or digested in nitric acid for ICP-MS analysis for platinum and arsenic. Data are presented as means + SEM of >3 tumors
each from different mice. Statistical analysis was performed using wilcoxon rank sum test. P < 0.05, N > 3: # = lower than 0 h partner, ¥ =
higher than CP/37 at 0 h and CP/43 at 0 h, 9 = higher than CPA/43°C at O h.

Platinum and arsenic biodistribution in somatic tissues
The clinical use of anticancer chemotherapeutic agents is
limited by adverse toxicities. For cisplatin, these include
toxicity to the kidney, peripheral nerves, liver, heart, bone
marrow and brain [39,40]. Clinical use of arsenic is
known to cause liver, kidney and neurological damage,
cardiovascular and gastro-intestinal toxicity, anemia and
leucopenia [41-43]. Therefore, we determined cisplatin
and arsenic accumulation in mouse tissues including kid-
ney, liver, heart, spleen and brain (Figure 6A and 6B).
Samples were prepared as described in Methods. During
perfusion, platinum accumulated in all tissues examined
regardless of the treatment condition, in the order: kid-
ney > liver = spleen > heart > brain. At 24 h after perfu-
sion, significant decrease of platinum was observed in the
kidney for all treatment conditions. The combination
treatment (CPA/43) favored the removal of platinum
from the liver, spleen and heart at 24 h after perfusion.
Arsenic also significantly accumulated in all the tissues
examined, in the order: liver > kidney = spleen > heart >
brain and it significantly decreased in all tissues by 24 h
after perfusion.

Discussion

Although the platinum analogues (cisplatin and carbopla-
tin) are at the forefront of combination treatment for
EOC, acquired or inherent resistance limits clinical suc-
cess. In the current study, we used metastatic EOC

xenograft in nude mice to investigate how NaAsO, and
hyperthermia modulate response to cisplatin in vivo. We
focused on three key mechanisms of cisplatin resistance:
enhanced NER, diminished MMR and decreased Pt accu-
mulation. Our data suggest that cisplatin induces resis-
tant phenotype in metastatic tumors by inducing XPC
and XPA and suppressing MSH2. Sodium arsenite alone
or combined with hyperthermia inhibits mechanisms of
cisplatin resistance by suppressing XPC induction, main-
taining higher levels of MSH2 and increasing tumor
uptake of cisplatin.

Decreased Pt accumulation is an important mechanism
of cisplatin resistance. Hyperthermia has been reported to
increase both cellular and DNA Pt levelsin vitro. However,
in vivo data remains controversial. Los et al used rats bear-
ing metastatic colon cancer to show that hyperthermia
suppressed tumor growth by increasing platinum accumu-
lation in tumors [13]. Zeamari et al used a similar colon
cancer xenograft model in rats and reported that
hyperthermia did not increase tumor Pt levels [44]. Similar
to Zeamari, we observed that hyperthermia does not
increase Pt accumulation in tumors. The observed discre-
pancies with Los et al could be due to differences in how
HIPEC was performed. Los et al injected hyperthermic cis-
platin intraperitoneally; whereas we and Zeamari et al per-
formed peritoneal lavage similar to what is done clinically.
Unlike hyperthermia, we observed that NaAsO, at 37 or
43°C increased initial tumor Pt levels. Since arsenic and



Muenyi et al. Journal of Ovarian Research 2011, 4:9
http://www.ovarianresearch.com/content/4/1/9

Page 7 of 11

Uirested i CP 37 CPA 37
nireated wumors
A 0h 24 h 0h 24h
Mouse# 1 2 3 4 5 6 Mouse# 7 8 91011 12 13 |1415 16 17 18 1920 Mouse # 212223242526272829]303132 33 3435
p53 pss i |- B P53 [ &
XPA “= & s o= XF'A“-‘- al= g XPA SSse «-«m|sssaald
GAPDH = = = « ==  GAPDH - - GAPDH Mol . saw »le o www"
XPC S XPC I ¥ _ - XPC = oy
GAPDH .. = =  GAPDH -—— - GAPDH R —
ERCC1 - -~ ERCC1 i - = ERCC1 -~ - - -a-@-
MsH? MSH2 e ——— MSHZ (=== =-—@]|==-—a=x
GAPDH EiEEm==s| cAPDH [EESsEsS|s—====T GAPDH = = =ewe| . oae
CP 43 CPA43
0h 24 h 0h 24 h
Mouse # 3637383940414243] 44 45 46 47 48 Mouse # 495051525354 5556 575859 60 | 6162 63646566
p53 e - . P53 - - - - il
XPA RSeS| e - Sas XPA mmSes . == SR, _ o
GAPDH ** « = - GAPDH [ =S e
XPC - - o = XPC "= - -8 == - -
GAPDH | S GAPDH RE—— ] [P——
ERCC1 - Takad ERCC1 F3 =5
MSHZ2 [S=- === - MSH2 B - ————
GAPDH [sesmm = sset | e GAPDH (4 o v wommmwee|accsaa
B ) a b c
12 12} 4
@ 9 . OoFr <3t
E D_ * ol D_ * i * %
6— ™ * g ><6 — * >< 2 -
#
3 ﬂ = 3 T # |« LB n
ol i ] i o Ul h i ﬁ i 0]
h:—024024024024 h:— 024024024024 h:— 024024024024
= Kk s o) Erx N~ 2 o
58 g g 9 °8 3 % ¥ ES 5 € 2
5% & & 5 & & & 5 2 5 g
®) 8] o 3) S E 9 5
2 . 2
-— 2 ) L.
Q T
O & 7)) &
CC * E
LL'1 = * & 1 Iz X * Xk
: L
h:— 024024024024 h:— 024024024024
E~ k ® o E N~ N~ ™ o
58 8 ¥ ¢ 588 = 4
o S o g o a .
g8 0 &) o & oo 0 o
O & & O

Figure 4 DNA repair protein expression in tumors. A. Western blot determination of p53, XPC, XPA, ERCCT and MSH?2 in tumors. GAPDH is
loading control. B. Densitometry analyses of (a) p53, (b) XPC, (c) XPA, (d) ERCCT and (e) MSH2 normalized to GAPDH loading control and
untreated tumors. Mice were perfused for 1 h with cisplatin (CP/37; CP/43) or cisplatin plus NaAsO, (CPA/37; CPA/43) at 37 or 43°C respectively.
Tumors from untreated (UT) mice and treated mice were harvested 0 and 24 h after treatment. Protein extracts were prepared from the tumors
and 20 ug loaded per lane for SDS-PAGE. Data are presented as means + SD of >5 tumors each from different mice. Statistical analysis was

performed using wilcoxon rank sum test. P < 0.05, N > 5. # = compared to 0 h partner, * = compared to UT.
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Figure 5 Immunocytochemical determination of p53, XPA and
MSH2 expression in ovarian cancer cells. A. A2780/CP70 cells
were treated for 1 h with 40 uM cisplatin. Cells were washed and
incubated in drug-free media for 24 h and immunohistochemistry
was performed. Representative pictures of cells at 20x magnification
for secondary antibody only control (a), p53 (b), XPA () and MSH2
(d). B. Plot of 3,3"-diaminobenzidine (DAB)-positive cells. Data are
single biological experiment performed in duplicate slides. Four
different fields were counted per coverslip.

cisplatin are detoxified by glutathionylation and export by
the multidrug resistant family proteins, potential competi-
tion for the detoxification/export pathways might have
resulted in more Pt accumulating in the tumors when cis-
platin is co-administered with sodium arsenite.

Cisplatin is a DNA damaging agent and p53 is impli-
cated in platinum-DNA damage response [36]. P53 is
frequently mutated in ovarian cancer [45]. The p53 phe-
notype of A2780/CP70 cells remains controversial.
Some studies have demonstrated that A2780/CP70 cells
have non-functional p53 [46,47], while other studies
have shown that these cells have wild type p53 [48,49].
Our data indicate that A2780/CP70 cell population is
heterogeneous: ~75% of cells express wild type p53 and
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~25% are p53 null (Figure 5). In addition, 6% of the
tumors derived from A2780/CP70 are p53 null (Figure
4A). Our in vitro data also demonstrate the induction of
p53 target genes p21CIP1/WAF1, XPC and DDB2 in
A2780/CP70 cells (data not shown), which strongly sug-
gests that a large fraction of these cells have wild type
p53. The observed heterogeneity might have resulted
from mutations and alterations that occur during serial
propagation of cells in culture leading to cell line drift
[50]. The observed heterogeneity may impact response
to chemotherapy and result in treatment failures
because p53 wild type and null cells will respond differ-
ently to chemotherapy especially DNA damaging agents
such as cisplatin. This heterogeneity explains why tar-
geting master regulators such as p53 or AKT in cancer
cells has not been successful [51,52]. Therefore, combi-
nation chemotherapy such as cisplatin, sodium arsenite
and hyperthermia with different mechanisms of action
might be more beneficial than using a single drug to tar-
get a single protein or pathway.

Cisplatin predominantly forms intrastrand DNA cross-
links that are repaired by the nucleotide excision repair
(NER) system. There are two subpathways of NER; tran-
scription coupled repair (TCR) which removes damage
from actively transcribing DNA and global genome repair
(GGR) which removes lesions from the entire genome
[53]. These two pathways differ only in the proteins that
are involved in damage recognition. In TCR, CSA and
CSB along with RNA pol II recognize damage, whereas in
GGR, XPC and DDB2 are important for lesion recogni-
tion. XPC is actively involved in the recognition and initia-
tion of cisplatin-DNA damage repair in GGR [34,54].
Arsenic has been shown to inhibit NER by inhibiting XPC
expression [29]. In the current study, we observed that
P53 and XPC were induced by cisplatin. However,
NaAsO, alone or in combination with hyperthermia
prevented the induction of p53 and XPC by cisplatin
(Figure 4B, panels a and b). Since p53 is known to tran-
scriptionally induce XPC [36], our data suggest that
NaAsO, + hyperthermia might be inhibiting p53, which in
turn might be suppressing XPC induction. Suppression of
XPC will potentially sensitize tumors to cisplatin. Our in
vitro data suggest that inhibition of XPC using siRNA sen-
sitizes ovarian cancer cells to cisplatin (data not shown).
Therefore, the suppression of XPC could potentially sensi-
tize tumors to cisplatin in a similar fashion. Following
DNA damage recognition, downstream DNA repair pro-
teins (XPA, RPA, TFIIH complex, ERCC1/XPF and XPQG)
are recruited to the DNA damage recognition complexes
in both TCR and GGR to remove the damage in a com-
mon pathway. Over-expression of XPA and ERCC1
mRNA has been associated with cisplatin resistance in
ovarian cancer [35]. In the current study, cisplatin induced
XPA (Figure 4B, panel c) that was suppressed by
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Figure 6 Platinum and arsenic accumulation in somatic tissues. Mice were perfused for 1 h with cisplatin (CP/37; CP/43) or cisplatin +
NaAsO, (CPA/37; CPA/43) at 37 or 43°C respectively. Tissues from untreated (UT) and treated mice were harvested at 0 and 24 h after treatment.
Tissue samples were weighed and digested in nitric acid for ICP-MS analysis for platinum (A) and arsenic (B). Data are presented as means + SD
of triplicate samples each from different mice. Statistical analysis was performed using wilcoxon rank sum test. P < 0.05, N = 3. # = compared to

hyperthermia co-treatment (Figure 4 panel c). Suppression
of XPA might decrease repair of cisplatin-DNA damage.
ERCC1 was modestly induced (<1.5 fold) by NaAsO,
co-treatment with cisplatin at 37°C (CPA37) (Figure 4B,
panel d).

In addition to the NER pathway, the mismatch repair
(MMR) system has been implicated in cisplatin resis-
tance [37]. In an effort to repair Pt-DNA damage by the
MMR system, a futile MMR occurs leading to cell death
[53,55]. Ovarian cancer cells over-expressing MMR pro-
teins are sensitive to cisplatin [55-57]. We report for the
first time that tumors treated with cisplatin at 37°C
(CP37) significantly suppressed MSH2 consistent with
resistance. The observed suppression of MSH2 by cis-
platin was reversed in tumors co-treated with NaAsO,
at 37 or 43°C (CPA/37 and CPA/43 respectively) Thus,
NaAsO, at 37 or 43°C has the potential to sensitize
tumors to cisplatin by maintaining functional MMR.

Cisplatin causes serious and dose-limiting side effects
including kidney damage, peripheral sensory neuropathy,
cardiovascular toxicity, myelosuppression and anemia

which occur as a result of diffusion of chemotherapy
from the peritoneal to systemic compartment. In addi-
tion, arsenic also causes adverse side effects including
cardiovascular toxicity, kidney damage, myelosuppression
and anemia, liver damage and peripheral sensory neuro-
pathy. Understanding the biodistribution of these drugs
during peritoneal perfusion of chemotherapy is impor-
tant in order to predict the occurrence of these adverse
side effects and determine the risk:benefit balance in per-
forming intraperitoneal perfusion with cisplatin and
arsenic. For this reason, we determined platinum and
arsenic accumulation in the brain, heart, liver, kidney and
spleen during (0 h) and 24 h after perfusion. We
observed that platinum and arsenic accumulated to simi-
lar extent in these tissues regardless of the treatment
condition. The greatest accumulation of Pt was observed
in the kidney, the site of Pt elimination. Likewise, greatest
level of arsenic was observed in the liver, the organ for
arsenic metabolism and detoxification. Even though we
did not observe any toxicity with the short-term survival
study, accumulation of arsenic and Pt in assayed organs
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suggests that potential adverse side effects such as ence-
phalopathy, cardiotoxicity, liver damage, renal damage
and myelosuppression/anemia respectively may occur
during long-term survival studies.

Conclusions

NaAsO, alone or combined with hyperthermia is most
likely to enhance cisplatin efficacy because of its abilities
to impair NER by inhibiting induction of p53 and XPC
and to activate MMR by maintaining high levels of
MSH2 and enhancing platinum accumulation in tumors.
NaAsO, and hyperthermia might not produce added sys-
temic toxicity to cisplatin chemotherapy; on the contrary,
the combined treatment might help in the clearance of Pt
from tissues. Long-term survival studies are required to
determine the efficacy of this new combination che-
motherapy. The murine HIPEC model may serve as a
useful tool to study in vivo mechanisms of platinum
resistance and explore ways to sensitize tumors to plati-
num chemotherapy.
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