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Abstract

For many years, ovarian biology has been based on the dogma that oocytes reserve in female mammals included a
finite number, established before or at birth and it is determined by the number and quality of primordial follicles
developed during the neonatal period. The restricted supply of oocytes in adult female mammals has been
disputed in recent years by supporters of postnatal neo-oogenesis. Recent experimental data showed that ovarian
surface epithelium and cortical tissue from both mouse and human were proved to contain very low proportion of
cells able to propagate themselves, but also to generate immature oocytes in vitro or in vivo, when transplanted
into immunodeficient mice ovaries. By mentioning several landmarks of ovarian stem cell reserve and addressing
the exciting perspective of translation into clinical practice as treatment for infertility pathologies, the purpose of
this article is to review the knowledge about adult mammalian ovarian stem cells, a topic that, since the first
approach quickly attracted the attention of both the scientific media and patients.
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Introduction

The human ovary is responsible for providing mature
and competent oocytes for reproduction. In addition, it
is responsible for the secretion of various hormones and
growth factors and cytokines that are involved in signal-
ing pathways of folliculogenesis and oogenesis.

Many years, ovarian biology has been based on the prin-
ciple (dogma) that oocytes reserve in female mammals in-
cluded a finite number established before or at birth and it
is determined by the number and quality of primordial fol-
licles developed during the neonatal period. The restricted
supply of oocytes in adult female mammals has been dis-
puted in recent years by supporters of neo-oogenesis. This
new threatening-dogma perspective states that renewable
germline stem cells (GSCs) are present in the postnatal
mammalian ovary.

The supporters of neo-oogenesis claim the existence of
GSCs in the ovarian surface epithelium (OSE) or the bone
marrow (BM) and peripheral blood, which can differentiate
in the ovary into oocyte, granulosa phenotype, fibroblast-
like cells and in vitro, under appropriate stimulation, in
neural and on mesenchymal type cells. Endpoints ranging
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from oocyte counts to genetic lineage tracing and trans-
plantation experiments support a paradigm shift in
reproductive biology involving active renewal of oocyte-
containing follicles during postnatal life [1]. Although
such ovarian GSCs are well characterized in non-
mammalian model organisms, the findings that support
the existence of adult ovarian GSCs in mammals have
been met with considerable evidence that disputes their
existence [2]. Adult ovary contains cellular subpopula-
tions displaying stem cell markers such as c-kit [3] or
Oct4 [4]. The best characterized stem cell population
and stem cell niche is the germline stem cell in the
Drosophila ovary (reviewed in [5]), but recently other
types of stem cells have been described in the adult
ovary, such as very small embryonic-like stem cells [6]
or a subpopulation of granulosa cells [7].

The reports about existence and potency of adult
mammalian ovarian stem cells yielded controversies in
the scientific media, like most new and groundbreaking
reports. The purpose of this article is to review the
knowledge about adult mammalian ovarian stem cells,
both pro and con opinions on a topic that, since the first
approach, quickly attracted the attention of both the
media and patients.
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Review

1. Mammalian ovarian germline stem cells

1.1. Histological structure of the ovary

When assessing a cell population, one should first refer
to the histological organization of the studied structure,
in an attempt to identify the different pools of putative
stem cells.

The female gonad is organized as a parenchymatous
organ, with an outer, cortical region and an inner medullar
one (Figure 1). It is covered by a simple epithelium, classic-
ally named germinative epithelium, which, occasionally,
may invaginate into the ovarian cortex, forming epithelial
cords, or if the link with the surface is severed, cysts. Inter-
estingly, the ovarian surface epithelium (OSE) cells were
proven to undergo an epithelial-mesenchymal transition
in vitro, that can be reversed under proper stimuli [8].
Under OSE is albuginea, a connective tissue rich in colla-
gen and reticular fibers, along with fibroblasts and fibro-
cytes. Underneath lies the cortical zone, a dense connective
tissue stroma that harbors ovarian follicles in various stages
of development, each containing an oocyte. Ovarian tissue
is rich in primordial follicles, which make up the majority
of the total follicular population in the human ovary. Be-
sides oocytes, at least another two types of cells are present
in the cortical zone: i) epithelial cells of granular layer
of ovarian follicles and of endothelium of blood vessels;
ii) fixed or migrated connective tissue cells (e.g. fibroblasts,
fibrocytes, inner and outer theca cells, and macrophages,
respectively [9]. The origin of these types of cells resides in
correspondent precursor cells, which, interestingly, are dif-
ferent for ovarian follicular cells, otherwise functionally
interdependent: granulosa cells and theca cells. While the
latter are recruited and further differentiated from the ovar-
ian stroma under granulosa-c-kit ligand signaling [10], for
granulosa cells there are evidence suggesting common

Figure 1 Structure of the ovary. The cortical region is surrounded
by a simple epithelium classically named germinative epithelium
(GE). Underlying the ovarian surface epithelium is a connective
tissue layer, the tunica albuginea (TA). Groups of primordial follicles
(PF) are present in the ovarian stroma. Col HE stain x40.
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origin with surface epithelial cells, starting with commune
embryonic origin in coelomic epithelium [11]. Today, there
is a putative developmental relationship between them, as
discussed further. Over the lifespan of the organism, ovar-
ian aging occurs inevitably and it is characterized by both a
reduction in eggs quality and a drastic reduction in the
total number of ovarian follicles [12]. In mammals, primor-
dial follicles serve as the source of developing follicles and
oocytes during the entire reproductive life of the organism.
As a woman ages, her pool of primordial follicles gradually
shrinks and menopause occurs when the number of prim-
ordial follicles falls to below about 1000 [13]. The reduction
of oocyte quality with aging is believed to be mainly due to
an increase in meiotic nondisjunction that leads to an in-
creased rate of aneuploidy in the early embryos [14].

1.2. Origin of mammalian germline stem cells

Primordial germline stem cells (PGSs) are of extraovar-
ian origin, migrated in the ovaries during embryonic de-
velopment. In humans, PGSs originate in the posterior
epiblast cells, under the signaling influences of BMP-
family morphogens [15]. By weeks 4-5, PGSs are trace-
able in the extraembryonic mesoderm of the wall of the
yolk sac from where they will migrate and populate the
urogenital ridge and further differentiate into oogonia.
Through mitotic divisions, the number of oogonia in-
creases until the fiftth month of intrauterine life, when
the first meiotic division is triggered and the oogonia be-
come oocytes.

The differentiating potential of PGS in vitro is well char-
acterized so far and involves several directions: i) differen-
tiation in mature gametocytes; ii) undifferentiation into
embryonic stem cells [16]; iii) transdifferentiation into
hematopoietic progenitor cells [17].

In the last few years, some authors reported PGSs origin-
ating in the OSE of fetal gonads and give rise to secondary
germ cells and primitive granulosa cells [18]. The adult
ovary also apparently retains the ability to generate germ
cells from ovarian precursors. Putative germline stem cells
(GSC) should share several features with other adult stem
cells: i) stemness markers such as Oct4, Nanog, c-kit
ii) slow-dividing and hence, long-retaining synthetic nucle-
osides such as BrdU; iii) asymmetric division capacity and
renewal of its own pool; iv) multipotency and the capabil-
ity to form in vitro, or upon transplantation, all the related
cell populations. The results reported so far, used several
markers to identify ovarian germline stem cells, such as
pluripotency markers as Oct4, stage-specific embryonic
antigen-4 (SSEA-4) [6], telomerase activity and germline
markers, markers whose expression changes as differenti-
ate towards a mature phenotype. A hallmark of the germ-
line that has been overlooked so far is suppression of the
somatic program of gene expression and in seeking evi-
dence of imprinting status a larger number of genes should
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be examined to verify that epigenetic reprogramming has
been executed appropriately [19]. Some groups advanced
the idea of an extraovarian origin [20], which others en-
dorsed only under pathological circumstances [21]. Using
as a starting point the common origin for both GSC and
hematopoietic stem cells (HSC) — the proximal epiblast —
Johnson et al. searched for germline precursors in the bone
marrow, using as identification tag several germline mar-
kers such as Mvh, Dazl, Stella Fragilis or Nobox. Their se-
lection finally generated a bone marrow-derived GSC
phenotype containing both line-specific and stem-specific
markers: Mvh+/lin-/Sca 1-/c-kit + [20]. They further at-
tempt to restore follicular population of chemotherapy-
depleted ovaries by bone marrow transplant or peripheral
blood cell transplantation. However, if the presence of
Mvh in the bone marrow is a strong witness for their plea,
there are reports of transdifferentiated HSC, either from
bone marrow donors or own circulating HSC, into adult
stem cells of other injured organs (e.g. lung, [22] liver [23],
heart [24]). Without previous aggression (chemotherapy,
irradiation) however, BM transplant does not seems to
contribute to GSC ovarian pool [25].

During the last few years, several groups reported the
presence of very small, embryonic like pluripotent stem
cells in various tissues [26,27], including adult ovary
[28-30]. Very small embryonic-like cells (VSELs) are
3.5 um in diameter, diploid cells that express markers of
pluripotency, such as Nanog, Klf-4, SSEA-4 [31]. VSELs
were isolated from ovarian surface epithelium and were
shown to expresse early embryonic developmental markers
such as stage-specific embryonic antigen-4 and Oct-4,
Nanog, Sox-2, and c-kit [32]. In vitro they formed all three
embryonic layers, but upon transplantation in immuno-
deficient mice, they failed to generate teratomas [29]. In
ovaries, they have been identified between the OSE cells
and similar to OGS, they seem able to generate in vitro
oocyte-like cells [30]. To better gain a comprehensible un-
derstanding on the origin of both VSELs and OGS and
possibly on the relationship between them, a gene expres-
sion profiling would provide more insight. However, since
both cell types have just been identified and described, sev-
eral profiling experiments use no precursor cells, but
oocyte-like derived cells, obtained from the putative pre-
cursors in cell culture [33].

1.3. Germline stem cell niche

Accepting the idea of an adult germline stem cell, one must
also try to define the stem cell niche, which, for other de-
fined adult stem cells comprises several compartments: i) a
slow-dividing adult stem cell population; ii) a rapid prolifer-
ating compartment of precursors cells — transit amplifying
cells (TA cells); iii) supportive cells, usually of mesenchimal
type. A part from the cellular partners, extracellular matrix
[34] and gradients of signaling pathway ligands [35] also
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play important roles in niche maintenance. The best de-
scribed ovarian niche is undoubtedly in Drosophila ovary,
where the presence of GSCs is well established [36].

There are several arguments that both fetal ovary and
postnatal ovary are functionally compartmentalized to
ensure proper oocyte development. The correct spatial
organization and proper neighboring relations between
ovarian fetal cells are required during in utero gonad de-
velopment to generate follicles, as proven by Nicholas et al.
In their experiment, they attempt to “reassemble” mouse
ovarian tissue from single cell suspensions, in order to fur-
ther obtain folliculogenesis upon transplantation into de-
pleted ovaries. Until mid-gestation (d13.5), their attempts
were unsuccessful. However, once a certain developmental
stage has been reached, isolation of cells and in vitro re-
arrangement was sufficient to further generate ovarian fol-
licles [37]. Bukovsky argues that embryonic ovarian surface
epithelium is established early during development and in-
volves vascular pericytes and immune cells [38].

Furthermore, the adult ovarian cortex provides the in-
hibitory stimuli needed to maintain the oocyte from
completing its cell cycle and there are several matur-
ation triggers known so far to induce the completion of
meiosis I: i) low cyclic adenosine monophosphate (cAMP);
ii) members of Epidermal Growth Factor (EGF) family,
such as amphiregulin and ephiregulin [39]; iii) possibly,
the follicular fluid-derived meiosis-activating sterol (FE-
MAS) - an intermediate along the biosynthetic pathway
from lanosterol to cholesterol; iv) steroids such as testos-
terone or estradiol [40].

There are reports, however, of in vitro derived GSC
from embryonic stem cells under appropriate stimuli by
enriched growth media and cultivation on fibroblast feeder
layer [41]. Such a manufactured growth environment is
surely not similar to an in vivo model of stem cell niche,
but it appears to provide all the necessary clues.

Taking into consideration the hypothesis of GCS being
harbored in the OSE, implicitly a niche must exist, but it
has not yet been described. Very recently, Flesken-Nikitin
et al. advanced the idea that hilum region of the mouse
ovary harbors a putative niche for the OSE [42].

Along with the postnatal oogenesis hypothesis, also arises
the idea that menopause may actually be the result of a
compromised somatic niche [43,44]. Experiments demon-
strating the presence of stem cells in peri-menopausal
ovary and their increase after FSH treatment suggests that
stem cells retain the ability to proliferate, but menopause
sets in due to a compromised microenvironment which
does not allow the stem cells to differentiate and assemble
into primordial follicles [45].

2. Ovarian germline stem cells (Ogs) experimental data
The multipotency of a stem cell may be demonstrated
through several types of experiments: i) specific surface
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receptors expression analysis that changes along differen-
tiation pathway; ii) generation of lineage-specific cells
in vitro; iii) repopulation of a depleted organ in vivo (e.g.
repopulation of bone marrow after prelethal irradiation).
Such experimental approaches were used for putative
adult ovarian germline stem cells, in order to prove their
presence and their regenerative abilities. To identify and
further characterize OGS, OSE or cortical tissue from
mouse and human were used as putative pools. Indeed,
both sources were proved to contain in very low propor-
tion cells able to propagate themselves but also to generate
immature oocytes in vitro or in vivo- when transplanted
into mouse ovaries [46].

Furthermore, recent data argued for their multipotency,
when putative ovarian stem cells were successfully differ-
entiated into cells of the three primary germ layers [47].

If the faith of these cells is, by now, proved and ac-
cepted to be towards differentiation downstream female
germline, their origin is still a controversy. Among the
first groups to promote postnatal folliculogenesis, Tilly’s
group also proposed at first a bone marrow origin for
the putative stem cells [20,21]. Bukovsky et. al endorsed
the idea of OSE harboring bipotent cells to give rise to
secondary germ stem cells and primitive granulosa cells
[48]. Recent data advanced the idea that OGS could be
very small embryonic-like stem cells - descendants of
epiblast stage pluripotent stem cells, deposited in various
body organs including the gonads in early stages of
development, as a quiescent stem cell population [29].
However, transplantation of cultivated OGS into immu-
nodefficient mice did not result in teratoma formation
(assay used to assess pluripotency for stem cells) [49],
nor did transplantation of putative human ovarian stem
cells, which are probably not of a germline origin [47].
On a contrary, Gong et al. reported that their ESC-like
cells isolated from mouse ovaries formed terotoma when
transplanted in to SCID mice [50].

The last four years were very fruitful in terms of estab-
lishing cell culturing conditions for germline precursor
cells. Several independent laboratories have reported suc-
cessful protocols of female germline stem cells culture ini-
tiation and subsequent yielding of immature oocytes [1],
as discussed in the following section.

2.1 Timeline of in vitro OGS experiments

2. 1.1. Laboratory animal models Maybe not first, but
perhaps most acknowledged landmark in OGS is 2004
Tilly’s research group report on postnatal follicular re-
newal in mouse ovary, from a population of BrdU/mouse
VASA homologue (MVH) positive cells, located in the
OSE [51]. They also demonstrated the existence of adult
folliculogenesis by implanting GFP-positive ovarian grafts
in wild type adult, fertile mouse ovaries. After 3-4 weeks,
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recipient ovaries exhibited new follicles, with GFP-positive
oocytes and wild-type granulosa cells.

In 2006, Kerr et al. demonstrated by unbiased stereolog-
ical methods quantifying both healthy and atretic follicles,
that mean primordial follicle numbers per ovary did not
decline significantly in postnatal mouse ovaries [52].

During the next few years, “ovarian stem cells” were
mostly in a gray zone, the literature providing mostly in-
teresting debates on their existence [53-55].

In 2009, Zou et al. isolated double positive BrdU/MVH
cells from the ovarian surface epithelium of new born and
adult mice that were further maintained in culture for six
months of more. The cells expressed a protein phenotype
of stemness (Oct 4, Nanog and high telomerase activity)
and no markers of meiotic activity or further differentiation
down germline lineage [56]. One year later, Pacchiarotti
et al. also reported maintenance in cell culture of ovarian
Oct4 + cells for more than a year and added to previous
knowledge, data about localization outside follicular envir-
onment, characterization and multipotency [49].

2.1.2 Human ovarian tissue In 2004 Bukovsky et al. pro-
posed that adult human ovaries contain germline putative
stem cells in the OSE and ovarian cortex, as proven by im-
agistic studies and immunohistochemistry for zona pellu-
cida proteins (ZPPs) such as PS1 [8]. Cytokeratins (CK)
expression was also used to differentiate between epithelial,
CK + cells (surface cuboidal cells, granulosa cells) and non-
epithelial, CK- cells (mesenchymal, oocytes) and to advance
the idea of bipotential stem cells that may generate primi-
tive granulosa cells and primitive germ cells. Bukovsky
et al. continued their line of investigation and reported
in vitro identification of granulosa cells and oocytes-like
cells in human OSE-derived cell cultures. Furhermore, it is
worth noting that they used different culturing conditions
for each of their experiments, hence the variety of reported
results [57]. Further inquiry of OSE through immunohisto-
chemistry of nuclear division (Ki - 67) or meiotic markers
by Liu et al. returned negative, as did the c-kit staining.
c-kit was, however, present in the granular cells of prim-
ordial and primary follicles, along with Oct4. The tran-
scription factor, known as a pluripotency marker, was
not present in surface epithelium or tunica albuginea
[58]. Virant Klun’s group continued Bukovsky line of in-
vestigation on postmenopausal women and an OSE cell
culture was successfully set-up in all cases. During the
first 3 weeks of culture, oocyte-like cells grew up to
95 um, expressing Oct-4A and Oct-4B, c-kit, VASA and
ZP2, but not SCP3 [32].

The same group continued their work in 2009, isolated
putative stem cells from OSE scrapings in 21 postmeno-
pausal women with no naturally present follicles and
oocytes, that further maintained in cell culture. OSE cell
culture spontaneously developed oocyte-like cells [59].
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Virant-Klun et al. furhter isolated 2-4 pm cells from
OSE that expressed early embryonic developmental
markers and some developed into oocyte-like cells under
appropriate stimulation [59]. Molecular analysis of these
small cells revealed epigenetic characteristics similar to
epiblast/migrating PGC-like (epigenetic reprogramming
profiles of Oct4, Nanog and Stella loci and unique pat-
terns of genomic imprinting) [60]. Cell cultures of enzy-
matically digested human ovarian cortex also contain
small embryonic like cells, SSEA-4+/Oct4+, out of which
a small subpopulation was VASA + and based on micro-
array data on gene expression profiling, Virant-Klun
et al. proposed them as putative stem cells [30].

In 2012, based on accumulated knowledge, White et al.
optimized the protocol of OSE isolation from patients and
established a cell culture that spontaneously generated
oocytes. When injected in NOD-SCID mice ovaries, they
generated primordial and primary follicles [46].

At the same time, using a lineage-tracing experiment
based on DDX4 (DEAD box polypeptide 4), also known
as Ddx4 or Mvh (mouse VASA homolog) in mice, Zhang
et al. showed that the Ddx4-expressing cells from post-
natal mouse ovaries did not enter mitosis, nor did they
contribute to oocytes during de novo folliculogenesis
[61], arguing against experimental results proposed by
Zou [62] and White [46].

2.2 In vivo mammalian models

From the beginning it should be mentioned that, as
there is a lack of ovarian tissue available for research,
human reports are scarce.

In vivo results are intricately related to in vitro research,
especially when transplantation studies involve cell sus-
pensions. In order to correctly interpret the results, one
must properly isolate the cell population to be trans-
planted. More accurate, perhaps, are transplantation
models involving the entire postnatal ovary, that would
allow tracing of newly generated germ cells. Some experi-
mental models followed the lessons from hematopoietic
stem cells research, attempting repopulation of a depleted
organ by putative multipotent cells. For gonads, experi-
mental depletion was achieved chemically, through busul-
phan treatment. Such an approach was used by Johnson
et al., who reported postnatal folliculogenesis after elimin-
ation of primordial follicles with busulphan treatment.
They transplanted wild-type ovaries into transgenic mice
expressing green fluorescent protein and reported pre-
antral follicles with GFP negative granulosa cells and GFP
positive oocytes [51]. Also following busulphan treatment,
Zou et al. repopulated depleted mice ovaries with GFP
positive, cell culture-selected Oct4 positive cells. Beside
the repopulation of ovaries with follicles containing GFP-
positive oocytes, they also reported successful mating and
GEFP- bearing offsprings [56].
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Nicholas et al. transplanted mouse fetal ovarian tissue
(dissociated to single cell suspension and re-aggregated)
into ovarectomized, immunodeficient mice and reported
posttransplant folliculogenesis, but only with around and
after midgestation - prelevated tissue, with increased ef-
ficiency closer to term. Their experiment also included
postnatal gonads that were amongst the most efficient in
generating new follicles upon transplantation. Interest-
ingly, the failure of pre el2.5 tissue sample to generate
follicles was restricted to oocytes only, whereas granu-
losa cells exhibited reorganization [37].

Niikura et al. described STRAS positive cells in the sur-
face epithelium of ovaries of aged (20 mo old) mice, that
they labeled as “quiescent germ cells”. In order to see if
they are still functional, Niikura et al. transplanted senes-
cent ovaries into young hosts and obtained GFP + imma-
ture follicles, proving there is a “reserve” of GSC that can
be reactivated under appropriate circumstances. To fur-
ther prove that the senescent ovary cannot sustain the fol-
liculogenesis anymore, in spite of the existent stem cells
pool, they reversed the experiment, by grafting young
ovaries into senescent female mice and found a significant
loss of immature follicles by 50% in 3 weeks [62].

In spite of accumulating data in favor of OSG, the
controversy still exists — in 2012 Kerr et al. found no re-
plenish of primordial follicular reserve after chemical ab-
lation of follicles or sterilizing doses of y-irradiation [63]
and in 2013 Lei and Spradling [64] argued that folliculo-
genesis is sustained by very stable primordial follicles
and adult ovary lack germline stem cells.

3. Future trends

The abnormalities of ovarian function might lead to in-
fertility or manifestation of aggressive cancer [65]. Germ
cell degeneration is observed in women affected by pre-
mature ovarian failure (POF). In addition, chemo- and
radiotherapy given in cancer therapies can affect germ
cell survival and cause POF and infertility [66].

Furthermore, other disorders, such as autoimmune
diseases (diabetes mellitus, thyroid dysfunction, Addison
disease, myasthenia gravis, Crohn's disease, lupus, or
rheumatoid arthritis) and myelodysplastic syndromes,
require medical treatment that can also impair repro-
ductive cells and tissues.

Moreover, social and individual factors (lifestyle, profes-
sional career, absence of the partner, marriage in old age)
have imposed delaying childbearing in women of repro-
ductive age, affecting these women by age-related infertil-
ity. Even more so, the continuous delay of childbearing
observed in developed countries will result in an increased
proportion of women diagnosed with cancer before their
first pregnancy [67]. Maternal ageing has detrimental
effects on decidual and placental development, which
may be related to repeated exposure to sex steroids and
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underlie the association of ageing with adverse perinatal
outcomes [68].

Fertility preservation is an emerging field in medicine
that enables women to maintain reproductive health and
therefore, stem cells in adult human ovaries are of great
interest to reproductive medicine.

Thus, oocytes and their precursor cells might be al-
tered metabolically to sustain or increase ovarian func-
tion and fertility in women [69].

So far, orthotropic autotransplantation of cryopreserved
ovarian tissue has been reported as a successful method
to ensure post-chemotherapy fertility in women suffering
from different malignancies [70]. The ability to isolate and
promote the growth and development of such ovarian
germline stem cells would provide new means to treat
infertility in women. Previous studies suggest that the
oogonial stem cells (OSCs) transplanted in humans could
lead to functional oocytes, which would be applicable
in vitro fertilization, providing virtually unlimited number
of oocytes, unlike current techniques which give access to
only six to eight oocytes at a time. The aim is to create a
frozen source of potential oocytes for restoring fertility
[71]. However, it should be noted that ovarian germline
stem cells may provide oocytes in vitro, but can not
form follicles in POF or aging ovaries lacking uncommit-
ted granulosa cells [72]. Also, very recent data indicate
that follicular aspirates contain a subpopulation of cells
that express some stemness genes also expressed by bone-
marrow derived mesenchymal stem cells, indicating their
common mesodermal origin, but also have a distinct mark
from both MSCs and fibroblasts. Showing also common
features with granulosa cells, these cells could prove to
bring useful additions to our knowledge regarding the re-
storative potential of ovarian follicles [7].

Translation into clinical practice and use of newly iden-
tified ovarian stem cells in infertility pathologies is a desid-
erate that falls in trends with the regenerative medicine
concept. However, experience from other fields, such as
neurodegenerative diseases, teaches us tha t is not an eas-
ily attainable goal. Closer to home, studies on spermato-
gonial cell line demonstrated that in vitro generation and
isolation of spermatogonia is indeed possible [73-75], but
with faults in their meiotic program [73], so there must be
essential steps that still elude us. The oocyte-like cells ex-
press various markers consistent with oocytes such as Oct
4, Vasa, Bmp15, and Scp3. However, they remain unable
to undergo maturation or fertilization due to a failure to
complete meiosis [76]. To date, human OSCs have only
been grown to early follicle-like structures, unacceptable
for clinical use, but there are already reports of culture
systems designed for in vitro human follicle development
for in vitro maturation (IVM) [77]. Efforts were made to
generate OSE in vitro through other means, including use
of induced pluripotent cells [78], or human embryonic
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stem cells [79]. Same cell types were also used to generate
granulosa-like cells [80].

Conclusions

The trend of the last years seems to indicate that there
is oogenesis after birth; however, the origin of the new
oocytes is still unclear. Discovery of VSELs opens excit-
ing new perspectives on tissue regeneration and regen-
erative medicine, but the relationship between them and
new oocytes is still under debate.
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