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Abstract

Background: Ovarian tissue cryopreservation is a technique for fertility preservation addressed to prepubertal girls
or to patients for whom no ovarian stimulation is possible before initiation of gonadotoxic treatments. Autotransplantation
of frozen-thawed ovarian tissue is the only available option for reuse but presents some limitations: ischemic
tissue damages post-transplant and reintroduction of malignant cells in cases of cancer. It is therefore essential
to qualify ovarian tissue before autograft on a functional and oncological point of view. Here, we aimed to isolate viable
cells from human ovarian cortex in order to obtain an ovarian cell suspension analyzable by multicolor flow cytometry.

Methods: Ovarian tissue (fresh or frozen-thawed), from patients with polycystic ovarian syndrome (reference tissue) and
from patients who underwent ovarian tissue cryopreservation, was used for dissociation with an automated device.
Ovarian tissue-dissociated cells were analyzed by multicolor flow cytometry; the cell dissociation yield and viability
were assessed. Two automated dissociation protocols (named laboratory and commercial protocols) were compared.

Results: The effectiveness of the dissociation was not significantly different between reference ovarian tissue (1.
58 x 10° + 0.94 x 10° viable ovarian cells per 100 mg of ovarian cortex, n = 60) and tissue from ovarian tissue
cryopreservation (1.70 x 10° + 1.35 x 10° viable ovarian cells, n = 18). However, the viability was slightly different for
fresh ovarian cortex compared to frozen-thawed ovarian cortex whether we used reference tissue (p = 0.022) or tissue
from ovarian cryopreservation (p = 0.018). Comparing laboratory and commercial protocols, it appeared that cell yield
was similar but cell viability was significantly improved when using the commercial protocol (81.3% + 12.3% vs 23.

9% + 12.5%).

Conclusion: Both dissociation protocols allow us to isolate more than one million viable cells per 100 mg of ovarian
cortex, but the viability is higher when using the commercial dissociation kit. Ovarian cortex dissociation is a promising
tool for human ovarian cell qualification and for ovarian residual disease detection by multicolor flow cytometry.
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Background

Although cancer remains one of the most important
causes of mortality, therapeutic advances have allowed a
huge increase of the survival during these last years. In
Europe, overall survival at 5 years reaches 78.3% and
71.9% for girls (0-15) and women (15-44) diagnosed
between 2000 and 2007 respectively [1, 2]. Unfortunately,
some chemotherapy and/or radiotherapy regimens are
highly gonadotoxic and could induce premature ovarian
failure.

Women with cancer have several options to preserve
their fertility: ovarian transposition (only in cases of
pelvic irradiation), embryo or oocyte cryopreservation
and ovarian tissue cryopreservation (OTC) [3, 4] (which
can be combined with immature oocytes collection [5, 6]).
Currently, embryo and oocyte cryopreservation are the only
established methods endorsed by the American Society of
Reproductive Medicine (ASRM) [7], the American Society
of Clinical Oncology (ASCO) [8] and the European Society
for Medical Oncology (ESMO) [9]. Ovarian cortex cryo-
preservation is recognized in France as one fertility preser-
vation option (law of Bioethics n°2004—800) and has several
advantages as no ovarian stimulation is required and it can
be proposed to prepubertal girls or patients in whom gona-
dotoxic treatment cannot be postponed [10].

Ovarian tissue reuse is still considered experimental,
while some authors suggest that autotransplantation of
frozen-thawed ovarian tissue should now be considered
as established procedure for female fertility preservation
[11-13]. Indeed, transplantation of frozen-thawed ovarian
tissue has already resulted in 86 reported live births world-
wide [14, 15] and, in a recent study including 111 women,
the proportion of women who conceived after autograft of
cryopreserved ovarian tissue was 29% [11]. Nevertheless, this
technique presents some limitations: especially ischemic tis-
sue damages after ovarian tissue transplantation, which lead
to follicular loss [16—19]; and the risk of reintroducing ma-
lignant cells in cases of malignancies that may metastasize
to the ovary.

Some studies have shown that malignant cells could
be identified in ovarian tissue by using real-time quantita-
tive polymerase chain reaction (RT-qPCR), human ovarian
tissue xenografts into immunodeficient mice [20-22] or
multicolor flow cytometry (MFC) as demonstrated previ-
ously by our team [23-25]. MFC allowed us to differentiate
and quantify viable leukemic cells among viable human
ovarian cells. It is therefore important to obtain an ovarian
cell suspension after ovarian tissue dissociation that can be
analyzed by MFC.

The aim of the current study is to validate an auto-
mated dissociation technique, combining mechanical
and enzymatic effects, in order to obtain ovarian cortex
tissue-dissociated cells, especially somatic cells such as
stromal extravascular cells and endothelial cells. We
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used two different sources of human ovarian tissue: ref-
erence tissue collected during ovarian drilling and tissue
from patients who underwent OTC. The ovarian suspen-
sion was analyzed by MFC to identify viable ovarian cells
and to determine the cell viability rate after ovarian tis-
sue dissociation. Finally, we compared our dissociation
method (named laboratory protocol) with a commercial
dissociation kit in order to try and improve ovarian tis-
sue dissociation.

Methods

Ovarian tissue samples

The experimental design of the study is shown in Fig. 1.
Reference ovarian tissue samples, commonly used in the
laboratory, from women undergoing laparoscopic drilling
for polycystic ovary syndrome (PCOS, 23-38 years of age,
n = 76) and ovarian cortical tissue from patients in whom
OTC was performed for different pathologies (6-33 years
of age, n = 18: acute leukemia #n = 13, Ewing’s sarcoma
n = 2, Hodgkin’s lymphoma #n = 2, and systemic lupus
erythematosus # = 1), were used to validate the ovarian
tissue dissociation method. All patients received chemo-
therapy before OTC.

Freezing-thawing and isolation procedure for ovarian
tissue

Cortical biopsies were used, either fresh (n = 25) or after
cryopreservation (n = 53), according to a protocol using
slow cooling with manual seeding [26]. After freezing,
the vials were stored in liquid nitrogen. Ovarian cortical
biopsies were thawed according to the technique previously
described [27].

Fragments used for this study were weighed (106.4 mg + 63.4
[range = 20.9-2764], n = 60 for reference ovarian tissue;
180.8 mg + 228.8 [range = 54.0-1070.0], n = 18 for ovarian
tissue from OTC) to determine the cell dissociation yield and
then compare cell yield between each ovarian tissue sample.
Pieces of ovarian cortex, either fresh or frozen-thawed,
underwent a mechanical and enzymatic dissociation
using an automated cell dissociator (gentleMACS™ Dis-
sociator, Miltenyi Biotec SAS, Paris, France) after being
sectioned into pieces of ~ 1-2 mm? [23]. The isolation
procedure for ovarian cells developed in our laboratory
is based on enzymatic dissociation by collagenase Ia
(100 mg/mL; Sigma; Saint-Quentin Fallavier, France)
and DNase I (0.1 mg/mL; Roche Diagnosis, Meylan,
France) in 5 mL of RPMI (PAA laboratories, Les Mur-
eaux, France) using C Tubes (Miltenyi Biotec SAS) for
40 min at 37 °C under gentle agitation. After ovarian
tissue dissociation, we performed filtration with a 70 um
cell strainer (Dutscher SAS, Brumath, France) to eliminate
the residual connective tissue fibres and washed with
5 mL of RPMIL The cell suspension was centrifuged at
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300 g for 7 min at 4 °C and the pellet was resuspended in
an appropriate volume of RPML

We also tested a commercial dissociation kit using the
same automated cell dissociator (Tumor Dissociation
Kit, human ref. 130-095-929, Miltenyi Biotec), but differing
from the laboratory protocol regarding the enzymes used (3
different enzymes called H, R and A) and the time of
incubation at 37 °C (one hour). We compared the qual-
ity of ovarian tissue dissociation between both isolation
procedures.

In a previous article, we demonstrated that the freezing-
thawing process as well as the enzymatic procedure car-
ried out in our laboratory protocol had no effect on the
expression of cell surface markers used in this study [23].
The test performed by the manufacturer for the commer-
cial kit are in accordance with these findings.

Ovarian cell suspension analysis by multicolor flow cytometry
MEC was performed using a BD CANTO II flow cytometer
and FACSDiva software (BD Biosciences, Franklin Lakes,
NJ, USA). Instrument settings were in accordance with stan-
dardized Euroflow protocols [28]. The compensation matrix
was set up as previously described [23]. The antibody panel
included 7-Amino-Actinomycin D (7-AAD) (Beckman
Coulter, Fullerton, CA, USA), SYTO 13 (Invitrogen,
Carlsbad, CA, USA), CD45 coupled with Horizon V500
(V500) (HI30, BD Biosciences, Franklin Lakes, NJ, USA)
and CD3 coupled with Horizon V450 (V450) (UCHT]1,
BD Biosciences). At least 10,000 total events were ac-
quired for the analysis. Gating strategy (Fig. 2) was based
on the elimination of debris by an initial morphological
gate using forward (FSC) and side (SSC) light scatter

characteristics. Nucleated viable cells were then selected
by their SYTO 13"/7-AAD~ phenotype. Within these
cells, we identified CD45" and CD3" T lymphocytes. Cell
yield is given as the number of viable ovarian cells per
100 mg of dissociated tissue, Flowcount™ Fluorospheres
(Beckman Coulter, Fullerton, CA, USA) being used for ab-
solute count. Viability is equal to the ratio between the
number of viable nucleated events and the number of nu-
cleated events (Fig. 2).

Observation of ovarian cell suspension viability by
fluorescence microscopy

Cell viability was assessed by using Live/Dead assay kit as
described in the manufacturer’s protocol (LIVE/DEAD®
Viability/Cytotoxicity Kit for mammalian cells, Molecular
Probes™, Life Technologies SAS, Eugene, USA). Briefly,
ovarian cells were incubated in 10 mL PBS containing
4 mM Calcein AM and 2 mM Ethidium homodimer-1
(EthD-1) for 30 min at 25 °C in the dark. After exposure
to fluorescent dyes, ovarian cells were observed under an
inverted fluorescence microscope (CKX41, Olympus
France SA) equipped with a CCD Color Peltier Cooled
camera (Moticam Pro 282B, Motic, Hong Kong). Viable
isolated ovarian cells are stained with Calcein AM which
emits green fluorescence (517 nm) when excited by blue
light (494 nm); whereas dead cells are stained by EthD-1,
which emits red fluorescence (617 nm) when excited by
green light (528 nm).

Statistical analysis
Using the Mann-Whitney test, we compared cell yield
and viability from reference ovarian tissue and patient
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ovarian samples, both fresh and frozen-thawed. A
Wilcoxon match-pairs signed rank test was used to
compare cell yield and viability results between the two
different dissociation protocols. Results were plotted using
GraphPad software (GraphPad Software Inc., San Diego,
CA, USA). A p-value of less than 0.05 was considered
statistically significant for all tests.

Results
Assessment by multicolor flow cytometry of isolated
viable cells obtained from ovarian cortex
The ovarian cell suspension obtained after ovarian cortex
dissociation was analyzed by MFC to quantify viable nu-
cleated cells (SYTO 13%/7-AAD”) and to determine the
cell yield of the dissociation technique (results extrapo-
lated to 100 mg of ovarian tissue).

Table 1 shows the results of the cell yield and viability
obtained by MFC after dissociation of reference ovarian
tissue or tissue from OTC.

Cell yield and viability comparison between reference
ovarian tissue and patient samples from OTC by
multicolor flow cytometry

No statistically significant difference was observed for cell
yield between reference ovarian tissue (1.58 x 10° viable
cells per 100 mg of tissue + 1.22 x 10° # = 60) and tissue
from OTC (1.70 x 10° viable cells per 100 mg of tis-
sue + 1.65 x 10°% n = 18) (p = 0.781, Fig. 3a). Then
we analyzed results either with fresh or frozen-thawed
ovarian tissue. For both types of ovarian tissue, there is no
difference in cell yield depending on whether we used
fresh (p = 0.148) or frozen-thawed (p = 0.299) ovarian
tissue (Fig. 3a).

No significant difference was also observed for cell
viability between the two types of ovarian tissue after
dissociation: 31% for reference ovarian tissue (# = 60)
and 24% for OTC tissue (1 = 18) (p = 0.088) (Fig. 3a).
However, looking specifically at fresh and frozen-thawed
tissues, we saw no difference for fresh ovarian tissue
(p = 0.755) and a slight difference between frozen-thawed

Table 1 Cell yield and viability obtained by multicolor flow cytometry analysis after dissociation of reference ovarian tissue and

tissue for ovarian tissue cryopreservation

Parameters Yield (living ovarian cells/100 mg of tissue) Viability (percentage)

Tissue origin Reference ovarian tissue Tissue from OTC Reference ovarian tissue Tissue from OTC

Fresh or frozen-thawed ~ Fresh Frozen-thawed Fresh Frozen-thawed  Fresh Frozen-thawed Fresh  Frozen-thawed
n 20 40 5 13 20 40 5 13

Mean 156 x 10° 159 x 10° 331x10°  1.09x 10° 382 27.0 204 169

Standard deviation 094x10°  135x10° 241x10° 064 x 10° 182 154 214 143

Minimum 034x10° 020 10° 025x10° 081 x10° 90 20 17.0 10

Maximum 428x10° 685 x10° 622x10° 233 x10° 730 67.0 670 510
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reference ovarian tissue and frozen-thawed tissue from
OTC (p = 0.032) (Fig. 3a).

Cell yield and viability comparison between fresh and
frozen-thawed ovarian tissue by multicolor flow
cytometry

Cell yield and viability results were also analyzed regard-
ing the potential impact of cryopreservation on reference
ovarian tissue or tissue from OTC.

There was no significant difference in cell yield whether
the tissue was fresh or frozen-thawed (reference tissue:
p = 0.656; tissue for OTC: p = 0.072). However, there was a
significant difference in cell viability between fresh and
frozen-thawed tissue (reference tissue: p = 0.022; tissue for
OTC: p = 0.018). Indeed, ovarian cell viability is increased
when the tissue is fresh rather than frozen-thawed (Fig. 3b).

Comparison between laboratory and commercial
dissociation methods

Using MFEC analysis, we compared ovarian cell yield and
viability obtained after fresh or frozen-thawed reference
ovarian tissue dissociation (16 different samples) performed
with our laboratory protocol or with the commercial proto-
col (Fig. 4).

The cell yield was not significantly different between
the laboratory protocol (1.18 x 10° + 0.71 x 10° viable
nucleated cells per 100 mg of reference ovarian tissue
[range = 0.34 x 10°-2.59 x 10°], # = 16) and the commer-
cial protocol (1.29 x 10° + 1.31 x 10° [range = 0.28 x 10°-
5.76 x 10°], 1 = 16) (Fig. 4a). On the contrary, a significant
decrease in viability was observed (p < 0.0001) with the
laboratory protocol (23.9 + 12.5% [range = 4-51], n = 16)
in comparison to commercial protocol (81.3 + 12.3%
[range = 48-95], n = 16) (Fig. 4b).

Light microscope observation of ovarian cell suspen-
sions revealed less debris when using the commercial
protocol (Fig. 5a and b). Fluorescence microscopy showed
a higher number of dead cells (in red) when using the
laboratory dissociation protocol (Fig. 5¢ and d).

Discussion

In this study, an original technique to isolate viable cells
from human ovarian cortex was validated. Previous dis-
sociation methods have been described in the literature:
they’ve been used to isolate follicles from ovarian cortex
[29-32] or discarded medulla tissue from women under-
going fertility preservation [33, 34]. The current study
does not aspire to isolate ovarian follicles, but it aims to
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higher than one million per 100 mg of tissue with both pro-  and viability. The results obtained in this study have
tocols. It can also suggest that an amount of 100 mg of shown no difference in cell yield between fresh or frozen-
ovarian tissue is sufficient to detect ovarian residual disease =~ thawed ovarian tissue. On the other hand, freezing leads
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and dissociation. These results hold for reference ovarian
tissue and cortex from OTC. Previous reports have sug-
gested that slow freezing could have a negative impact on
ovarian cells [35, 36]. Similar results were observed in our
study, with decreased cell viability but no impact of slow
freezing on cell yield as seen in Soares et al. [36]. This
might be explained by the ovarian heterogeneity between
different biopsies and patient samples. However, these
findings are in agreement with the fact that the use of
fresh or frozen-thawed ovarian tissue from the same
patient should not change the results obtained after
dissociation, which is very useful as ovarian minimal re-
sidual disease detection is most often performed on
cryopreserved ovarian tissue.

All patients who underwent OTC had received chemo-
therapy before fertility preservation. Our results of ovarian
tissue dissociation showed no difference in cell yield and
viability between reference tissue and tissue for OTC.
Therefore, chemotherapy seems to have no impact or a
limited impact on the amount and viability of ovarian
tissue-dissociated cells. This result is particularly inter-
esting for ovarian residual disease detection as leukemia
patients could have received chemotherapy prior to
OTC: we won't need a large number of ovarian cortical
strips to obtain sufficient viable cells to perform ovarian
residual disease with a robust sensitivity of 10™* in
ovarian cell suspension [24] as in blood or bone mar-
row [37]. However, the application of this dissociation
technique to a larger number of ovarian tissues from
patients undergoing OTC should allow to corroborate
of this trend.

In the last part of this work, the laboratory protocol
and the commercial kit were compared. A higher cell
viability was observed using the commercial kit: this re-
sult is reflected by the reduction of cell debris observed
by MFC after ovarian tissue dissociation. The tissue dis-
sociation may be less traumatic for ovarian cells when
using the commercial protocol. This MFC result was
confirmed by assessing cell viability using fluorescent
microscopy: less debris was observed after dissociation.
And viable isolated ovarian follicles were identified after
dissociation. Both dissociation protocols can be poten-
tially used to isolate, in non-optimal conditions, primor-
dial/primary ovarian follicles instead of the technique
previously published for assessment of isolated follicle
viability by trypan blue [26].

As described by our team, MFC analysis of the ovarian
tissue-dissociated cells can identify malignant cells among
viable ovarian cells [23-25]. Ovarian tissue-dissociated
cells have the advantage of being analyzable by MFC and
RT-qPCR using the same original sample [23]. In the
frame of human ovarian tissue qualification, ovarian tissue
dissociation and MFC can also be used together to identify
ovarian cell subpopulations like CD34 or CD31-positive
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cells. These cells have been detected by immunohisto-
chemistry and seem to be good predictors for neovascu-
larization after ovarian tissue autotransplantation [38, 39].
Non-follicular ovarian cells might be assessed as a poten-
tial prognostic factor of ovarian function recovery in case
of cryopreserved ovarian cortex re-use.

Conclusions

The dissociation protocols proposed in this study are
essential to obtain an ovarian cell suspension before MFC
analysis. The commercial kit improves viability after dis-
sociation, is easy to use and facilitates MFC analysis of
ovarian cell suspensions. MFC appears to be a good mean
for minimal residual disease research and human ovarian
tissue qualification before autograft. From our point of
view, a controlled dissociation protocol associated to MFC
is a promising tool for ovarian tissue qualification and
minimal residual detection in human ovarian cortex.
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