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Abstract

of the signs of aging is progressive gonadal dysfunction.

normal.

littermates.

Insulin-like growth factor-1, Aging

Background: [t is well known that somatotrophic/insulin signaling affects lifespan in experimental animals, and one

Methods: To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on ovaries, we analyzed ovaries
isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice, with low circulating
plasma levels of IGF-1, and 6-month-old bovine growth hormone transgenic (bGHTg) mice, with high circulating
plasma levels of IGF-1. The ages of the Laron dwarf mutants employed in our studies were selected based on their
overall survival (up to . 4 years for Laron dwarf mice and . 1 year for bGHTg mice).

Results: Morphological analysis of the ovaries of mice that reached .50% of their maximal life span revealed a
lower biological age for the ovaries isolated from 2-year-old Laron dwarf mice than their normal-lifespan wild type
littermates. By contrast, the ovarian morphology of increased in size 6 month old bGHTg mice was generally

Conclusion: Ovaries isolated from 2-year-old Laron dwarf mice exhibit a lower biological age compared with
ovaries from normal WT littermates at the same age. At the same time, no morphological features of accelerated
aging were found in 0.5-year-old bGHTg mice compared with ovaries from normal the same age-matched WT
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Introduction

Senescence is a physiological process related to changes
in many tissues and organs, including dysfunction of the
endocrine system, and among the first changes observed
are a decrease in growth hormone (GH) and sex
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hormone levels in plasma. It is well documented that
serum levels of GH decline with age in both mouse and
human, and several murine models have been identified
as potential models for the role of GH in aging [1-3].
GH circulating in plasma stimulates liver secretion of
somatomedin-C, also known as insulin-like growth fac-
tor -1 (IGF-1), which affects the function of several or-
gans, including the gonads. Studies in mice deficient in
GH, its receptor GHR, IGF-I, or IGF-I receptor (IGF-1R)
revealed that GH/IGF-I signaling is required for the
normal rate of sexual development and maturation [4-7].
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GH and IGF-I act on all levels of the hypothalamic—
pituitary—gonadal axis (HPG) and regulate the function
of the reproductive system and mammary glands.
Specifically, GH/IGF-I signaling affects (i) release of
gonadotropin-releasing hormone (GnRH) and gonado-
tropins, (ii) expression of receptors for gonadotropins
in ovarian granulosa cells and in Leydig cells in testes,
and (iii) development of mammary glands. GH can also
temporarily mimic the function of gonadotropins, as pre-
viously reported [4,8,9].

The GH/IGF-I axis is crucial for development and
maturation of ovarian follicles. GH also controls early
phases of follicle development and stimulates formation
of secondary follicles and the development of granulosa
and theca cells. GH initiates the growth of primordial
follicles and supports the development of primary and
secondary follicles. Silva et al. [9] suggest that GH is the
survival factor for primary follicles and regulates differ-
entiation of granulosa cells. GH also augments IGF-1 se-
cretion by granulosa and theca cells, steroidogenesis in
granulosa cells, and development and maturation of
oocytes [9]. It has also been shown that GH is respon-
sible for maintaining the sensitivity of granulosa cells to
gonadotropins. On the other hand, gonad-derived sex
steroids enhance the release of GH, and synergy between
sex steroids and GH promotes development and matur-
ation of the follicles [4,6,9-11].

It is well known that IGF-I is crucial for fertility and
IGF-I knockout mice have been reported to be sterile [12].
There are two sources of IGF-I that affect the function of
ovaries i) IGF-1 released from liver into the circulating
blood plasma in response to stimulation by GH and ii)
IGF-1 locally produced in tissues, including the gonads.
The IGF-I receptor (IGF-IR) has been reported to be
present on granulosa cells in most mammals and is also
expressed on rat oocytes [13]. In ovaries, the IGF-I/IGF-1R
axis i) activates development of preantral follicles, ii)
maintains the larger pool of small antral follicles, iii) sti-
mulates the development of follicles, iv) selects dominant
follicles, and v) stimulates steroidogenesis in theca cells
and secretion of progesterone by large antral follicles
[9,14]. Danilovich et al. [15] demonstrated that bovine
growth hormone (bGH)-expressing transgenic mice dis-
play a decrease in athreticpreantral follicles, which suggests
that GH or IGF-I prevents apoptosis of granulosa cells.

The bioavailability of IGFs is regulated by a family of
intrafollicular-expressed IGF binding proteins (IGFBPs)
[13,14,16]. Wandji et al. [16] analyzed the expression of
IGEBPs in different stages of development and atresia of
ovarian follicles. The high levels of these proteins has
been observed during early development of follicles, and
the decrease in IGFBP level leads to an increase in IGF-
1 bioavailability, which stimulates proliferation of granu-
losa cells and steroidogenesis [13,14].
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The importance of GH/IGF-I signaling in reproduc-
tion has been investigated in different experimental ani-
mals. As mentioned above, while IGF-I knockout (IGF-
1-KO) mice are sterile, GH receptor-knockout (GHR-
KO) Laron dwarf mice are fertile [4,5,12]. Laron syn-
drome is an inherited, recessive disorder related to GH
resistance and is characterized by high plasma GH levels
and severely reduced levels of plasma-circulating IGE-L
An animal model of human Laron syndrome [5] has
been created by targeted disruption of the growth hor-
mone receptor binding protein (GHR/BP) gene, which
significantly impairs GH-mediated release of IGF-I from
liver. Female Laron dwarf mice were reported to have
delayed sexual maturation, which is evident by the
advanced maternal age at first conception. While the
luteinizing hormone (LH) response to stimulation by
gonadotropin-releasing hormone (GnRH) and secretion
of follicle stimulating hormone (FSH) secretion are re-
duced in these mice, the prolactin (PRL) level is in-
creased. At the morphological level, a reduction in the
numbers of preovulatory follicles and corpora lutea has
been found [5,10].

The influence of GH on the female reproductive system
has also been studied in transgenic mice that overexpress
bovine (b) bGH (bGHTg mice), which represent an oppos-
ite endocrine endocrine phenotype than the long-living
murine mutants with reduced activity of the GH/IGF-1
axis (e.g., Laron dwarf mice). Increases in GH/IGF-1 sig-
naling lead to increases in body mass, organomegaly, and
reduction in adipose tissue. The lifespan of bGH mice is
reduced[17-20], puberty accelerated, the ovulation rate
increased, and yet fertility is reduced proportional to the
increase in plasma GH levels [21,22].

Although, there are several reports about the physio-
logical effects of GH/IGE-1 signaling on the murine re-
productive system, including in Laron dwarf and bGHTg
mice, studies on ovarian morphology have not been per-
formed. Thus, the aim of this study was to compare
ovarian morphology between 2-year-old Laron dwarf
mice and 2-year-old WT littermates, as well as between
0.5-year-old bGHTg animals and similarly aged WT lit-
termates. The age of Laron dwarf and bGHTg animals
employed in this study corresponded to approximately
the midpoint of their life span.

Material and methods

Animals

Mice were bred at the animal facility at Southern Illinois
University Medical School and given free access to nutri-
tionally balanced diet and tap water. The experiments
were performed on female adult mice divided into four
groups. Accordingly, we compared 2 years old Laron
dwarf ( GHR™~) mice (n=11) to2 years old wild type (WT)
mice (n=11) and 6 month old bovine GH transgenic
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mice (bGHTg) (n-5) to wild type (WT) mice (n=5) at
the same age.

This study was performed in accordance with the
guidelines of the Animal Care and Use Committee of
the University of the Southern Illinois University Labora-
tory Animal Care Committee and University of Louisville
School of Medicine and with the Guide for the Care and
Use of Laboratory Animals (Department of Health and
Human Services, publication no. NIH 86-23).

Laron dwarf (GHR™") mice

Control and GHR™~ (also termed GHR-KO or Laron
dwarf) male mice used in this study, developed by cross-
ing 1290la/BALB/c GHR*'~ animals (generously provided
by Dr. J. J. Kopchick) with mice derived from crosses of
C57BL/6 ] and C3H/] strains, were produced in our
breeding colony and maintained as a closed colony with
inbreeding minimized by avoiding brother x sister mat-
ings. The animals were housed under temperature- and
light-controlled conditions (20-23 °C, 12-hr light/12-hr
dark cycle) until the age of 24 months, when the animals
were sacrificed and the ovaries collected. GHR™'~ males
were mated with heterozygous (GHR*'") females to pro-
duce GHR™™ mice [5].

Bovine GH transgenic (bGHTg) mice

Male phosphoenolpyruvate carboxykinase (PEPCK)-bGHTg
male mice and their normal male siblings were originally
produced by microinjecting the bGH structural gene
fused with the promoter of the rat PEPCK gene into the
pronuclei of fertilized mouse eggs [23]. The hemizygous
Tg mice used in this study were produced by mating
GH-Tg males with normal C57BL/6 x C3H F1 hybrid
females. The animals were housed in temperature- and
light-controlled conditions (20-23 °C, 12-hr light/12-hr
dark cycle) until the age of 6 months, when the animals
were sacrificed and the ovaries collected.

Morphological analysis of ovarian tissue

Ovarian tissues were fixed in 10% buffered formalin and
subsequently embedded in paraffin. The ovaries were
sectioned at a thickness of 3 um with a Microtome HM
325, and the sections were mounted on glass slides and
counterstained with periodic acid, Schiff’s reagent (PAS),
Mayer’s hematoxylin, and eosin. The slides were exam-
ined by light microscope (BX41 Olympus).

Periodic acid Schiff (PAS) staining

The sections were deparafinized and rehydrated. The
0.5% periodic acid solution was applied for 10 min
and after that the Schiff reagent for 15 min. Between
each step the sections were rinsed in tap water for
5 min. In the end the section were counterstained in
Mayer’s hematoxylin for 1 min, washed in tap water
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for 5 min, dehydrated and closed in mounting medium
with coverslip.

Hematoxylin and eosin (H&E) staining

For H&E staining the sections were deparaffinized and
rehydrated. The hematoxylin was applied for 3 min and
subsequently the sections were rinsed in tap water for
10 min. In the next step the eosin was applied for 30 sec.
Finally, slides were washed in distilled water, dehydrated
and closed in mounting medium with coverslip.

Results

Ovarian morphology in 2-year-old laron dwarf mice (with
low plasma IGF-1 levels) and normal age-matched WT
littermate controls

The morphological structure of ovaries from normal 2-
year-old WT mice exhibited a blurred border between
cortex and medulla. The surface of the ovaries was cov-
ered by a simple cuboidal epithelium, and the ovarian
cortex lacked the ovarian follicles observed in the ovaries
of younger mice at reproductive age. Specifically, there
were no visible primary, preantral, antral or Graffian fol-
licles. The amount of interstitial tissue was increased
compared with younger mice, and we observed inflamma-
tory cells, macrophages, and blood vessels. (Figure 1A,
C, and E). Furthermore, some ovarian sections from 2-
year-old normal WT mice were found to contain large
degenerative antral follicles that developed into cysts
and small degenerative follicles in interstitial tissue (not
shown). The cells in interstitial tissue were often sur-
rounded by empty spaces that were remnants of degen-
erated granulosa cells and oocytes. In some of the ovaries,
we observed numerous hypertrophied corpora lutea.

By contrast, the ovaries of 2-year-old Laron dwarf
mice were smaller in size and had a different morph-
ology than ovaries from 2-year-old WT control mice.
We found a regular cuboidal epithelium on the surface
and, more importantly, morphological structures typical
of ovaries seen in younger mice at reproductive age. Spe-
cifically, we observed primary, preantral, antral and
Graffian follicles, and the interstitial cells were less nu-
merous than in 2-year-old WT controls. At the same time,
we observed some degenerative follicles and macrophages,
and blood vessels were present in the medullary region of
the ovary. Overall, the morphology of ovaries from 2-year-
old Laron dwarf mice suggests that there is no ovarian fail-
ure (Figure 1B, D, and E and Figure 2).

The morphology of ovaries in 0.5-year-old bGHTg mice
(with high circulating plasma IGF-1 levels) and normal
age-matched WT littermates

As expected, 0.5-year-old WT mice displayed normal
ovarian morphology, including regular cuboidal epithe-
lium on the surface, the presence of all types of follicles
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Figure 1 Ovaries of 2-year-old wild type (WT) mice (A, C, E) and 2-year-old Laron dwarf (GHR/GHBP-KO) mice (B, D, F). In WT mice, the

ovarian follicles are missing. Cuboidal epithelium on the ovarian surface (arrow) and large numbers of interstitial cells (IT), blood vessels (BV),
macrophages (M), and inflammatory cells (IC) are visible (A, C, E). In contrast, Laron dwarf mouse ovaries are very well developed and all types of
follicles are present, including preantral (PAF), antral (AF), and degenerative (DF) follicles, and granulosa cells (asterix) are also visible. Well-
organized cuboidal epithelium on the ovarian surface (arrow), macrophages (M), and interstitial tissue (IT) were also observed (B, D, F). H+E

staining. Bar =500um (A and B), Bar=200 um (C and D), Bar=100 um (E and F).

in the cortex (primary, preantral, antral, and Graffian),
the presence of blood vessels in the medullary region of
the ovaries, and a small amount of interstitial tissue. The
corpora lutea were visible in some of the sections, and
cells in these structures had brightly eosinophilic cyto-
plasm with centrally located nuclei (Figure 3A, C, and E).

In contrast, ovaries isolated from 0.5-year-old bGHTg
mice were larger in size than ovaries isolated from age-
matched WT littermates. The cuboidal epithelium on
the surface was well developed and we observed the
presence of follicles at different stages of development
(primary, preantral, antral, and Graffian) that tended to
be bigger than in normal control ovaries. The medullary
regions of the ovaries were enriched in blood vessels,

and we also observed an increase in interstitial tissue
surrounding the follicles. Between the interstitial cells,
we also found some degenerating follicles (Figure 3B, D,
and F).

Discussion

In our study we compared the morphology of the ovaries
isolated from 2-year-old Laron mice (with low circulat-
ing plasma levels of IGF-1) and 0.5-year-old bGHTg
mice (with high circulating plasma levels of IGF-1) with
their normal age-matched littermates. The ages of Laron
dwarf mutants employed in our studies were selected on
the basis of their overall survival (.4 years for Laron
dwarf mice and _1 year for bGHTg mice). Thus, Laron
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Bar=100 um (A), Bar=50 um (B - F).
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Figure 2 Histochemical images of ovaries from 2-year-old Laron (GHR/GHBP-KO) mice (A, B, C, D, E, F). Primary (PF), preantral (PAF), antral
(AF), and degenerative (DF) follicles, as well as granulosa cells (asterix), theca cells (white arrowhead), and zona pellucida (black arrowheads) are
visible. Cuboidal epithelium on the ovarian surface (arrow), as well as macrophages (M) and interstitial tissue (IT) are also visible. PAS staining.

SO LR A ) o A

dwarf and bGHTg animals were investigated at approxi-
mately the midpoints of their respective lifespans.
Ovarian morphology of 2-year-old Laron dwarf mice
exhibited significant differences compared with 2-year-old
WT mice, which had all the signs of senescence. While
ovaries in Laron dwarf mice were smaller, they showed a
normal structure, including cuboidal epithelium on the
surface and all types of ovarian follicles (primary, pre-
antral, antral and Graffian follicles) in the cortex. How-
ever, we also observed some degenerative follicles and
macrophages, which is unsurprising given the advanced
age of these mice. The interstitial tissue was less pro-
nounced compared with 2-year-old WT mice, and blood
vessels and arteries were found in the central region of
the medulla. Overall, the ovaries of Laron dwarf mice
had a morphological structure similar to the structure of

normal wild type mice at reproductive age [24,25], which
suggests no significant ovarian failure in these mice. In
support of this conclusion, we observed that some 2-year-
old Laron dwarf mice can became pregnant and deliver
life off spring (unpublished data). The lower biological
age of ovaries in Laron dwarf mice and their continued
fertility are, likely due to delayed aging [26].

While we investigated ovaries from 2-year-old Laron
dwarf mice, the ovaries from these animals have also
been studied extensively at younger ages. For example,
Slot et al. [6] reported that ovaries from 9-week-old
Laron dwarf mice contain more primordial follicles than
WT mice. Bachelot et al. [4] studied reproductive system
morphology in 10-week-old Laron dwarf mice and found
that, despite normal structure, the number of follicles in
ovaries from these animals was reduced. Furthermore,
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Figure 3 Ovaries of 0.5-year-old wild type (WT) mouse (A, C, E) and 0.5-year-old bovine GH transgenic (bGHTg) mice (B, D, F). All types
of well-developed follicles, including preantral (PAF), antral (AF), Graffian (GF) follicles, as well as granulose cells (asterix) and theca cells
(arrowhead) are visible in WT mouse ovaries. Numerous corpora lutea (CL), cuboidal epithelium on the surface (arrow), and blood vessels (BV) are
also present (A, C, E). The ovaries from bovine GH transgenic mice (B, D, F) were bigger than ovaries from WT mice (A, C, E). All types of follicles
were observed, including antral (AF) and Graffian (GF) follicles, and granulose cells (asterix) and theca cells (arrowhead) are also visible. In addition,

Bar=500um (A and B), Bar=200 um (C and D), Bar=100 um (E and F).

corpora lutea (CL), cuboidal epithelium on the surface (arrow), interstitial tissue (IT), and blood vessels (BV) are visible (B, D, F). H+E staining.

the ovulation rate was reduced and was not increased
after gonadotropin stimulation, which indicates an ovar-
ian defect rather than deficiency in gonadotropins. The
intraovarian expression of IGF-I mRNA was similar to
that found in WT mice. Interestingly, 18-month-old
mice were able to reproduce, which suggests prolonged
ovarian function [4]. In other reports [5,11], Laron dwarf
females were found to be fertile, but the estrous cycle
was irregular. The number of pre-ovulatory follicles and
corpora lutea and the ovulation and implantation rates
were also reported to be reduced [5,11].

The origin of oocytes in ovaries at advanced ages is
still somehow controversial. It has been demonstrated

that ovaries even at advanced age contain a population
of primitive embryonic-like stem cells that can poten-
tially give rise to oocytes [27-32]. These cells have been
assigned different names in the literature and could be
related as postulated by Bhartiya [28] and Virant-Klun
[29] to a population of so-called very small embryonic-
like stem cells (VSELs). In support of this hypothesis,
our recent studies demonstrated that Laron dwarf mice
have increased numbers of these cells in BM [33,34].
Thus, it is important to see whether the number of
VSELs is increased in the ovaries of Laron dwarf mice.
The changes that we observed in ovaries of 2-year-old
WT littermates, such as a blurred border line between
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cortex and medulla, large degenerative antral follicles
developing into cysts, small degenerative follicles ad-
mixed with interstitial tissue, an increase in interstitial
tissue, hypertrophic corpora lutea, numerous inflamma-
tory cells and macrophages, and, most important, a lack
of ovarian follicles that are observed at reproductive age,
were similar to those described in the literature [25,35].
Laszczynska et al. [36] observed similar changes in the
ovaries of postmenopausal women.

In contrast to Laron dwarf mice, in bGHTG mice
(with high circulating plasma IGF-1 levels) the ovarian
and follicle dimensions were larger. This could be ex-
plained as a response to bGH, which leads to hyper-
trophy of several organs, including bones, skeletal
muscle, heart, liver, and spleen [19,20,37]. Danilovich
et al. [15] reported that high level of GH protects granu-
losa cells from apoptosis and reduces follicular atresia.
Cecim et al. [38,39] found that bGHTg mice show accel-
erated prepubertal somatic growth and sexual matur-
ation, but that the mating and pregnancy rates are
reduced. Similar changes in fertility were observed in
normal mice exposed to a prolonged series of bGH in-
jections [38,39]. The suppression of female fertility in
bGHTg mice is proportional to plasma GH level [21,22],
and the elevated bGH in plasma could therefore explain
the reduced fertility due to luteal failure and reduced
progesterone levels during early pregnancy. Since the in-
jection of progesterone enhanced the rate of pregnancy
in bGHTg mice, the observed luteal failure is probably
caused by inadequate prolactin (PRL) secretion, as injec-
tions of PRL significantly increased pregnancy rates in
transgenic female mice [38,39].

One has also take into consideration that despite high
level of IGF-1 in bGHTg mice, IGF-1 may not be un-
available to the ovaries due to the high circualting
IGEBP1 level that has a high binding affinity for IGF-1
and could sequester it — thus reducing bio-availability of
IGF-1 to various tissues [40]. This could explain the nor-
mal appearing ovarian morphology despite high levels of
IGF-1 in bGHGTg mice at age of 6 month.

Overall, our observations indicate that decreased fertil-
ity in transgenic bGH mice is not caused by morpho-
logical abnormalities. We also did not observe malignant
transformation of ovarian tissue; however, this could be
explained by the relatively small group of mice involved
in this study [41]. We expect to see more changes in
bGHT mice at the age of approximately 1 year.

Conclusions

Morphological analysis revealed a lower biological age of
ovaries isolated from 2-year-old Laron dwarf mice com-
pared with ovaries from normal WT littermates at the
same age. At the same time, no morphological features
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of accelerated aging were found in 0.5-year-old bGHTg
mice.
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