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Abstract

Background: Epithelial ovarian cancer is one of the most severe public health threats in women. Since it is still
challenging to screen in early stages, identification of core genes that play an essential role in epithelial ovarian cancer
initiation and progression is of vital importance.

Results: Seven gene expression datasets (GSE6008, GSE18520, GSE26712, GSE27651, GSE29450, GSE36668, and GSE52037)
containing 396 ovarian cancer samples and 54 healthy control samples were analyzed to identify the significant
differentially expressed genes (DEGs). We identified 563 DEGs, including 245 upregulated and 318 downregulated
genes. Enrichment analysis based on the gene ontology (GO) functions and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways showed that the upregulated genes were significantly enriched in cell division, cell
cycle, tight junction, and oocyte meiosis, while the downregulated genes were associated with response to
endogenous stimuli, complement and coagulation cascades, the cGMP-PKG signaling pathway, and serotonergic
synapse. Two significant modules were identified from a protein-protein interaction network by using the
Molecular Complex Detection (MCODE) software. Moreover, 12 hub genes with degree centrality more than 29
were selected from the protein-protein interaction network, and module analysis illustrated that these 12 hub
genes belong to module 1. Furthermore, Kaplan-Meier analysis for overall survival indicated that 9 of these hub
genes was correlated with poor prognosis of epithelial ovarian cancer patients.

Conclusion: The present study systematically validates the results of previous studies and fills the gap regarding
a large-scale meta-analysis in the field of epithelial ovarian cancer. Furthermore, hub genes that could be used as
a novel biomarkers to facilitate early diagnosis and therapeutic approaches are evaluated, providing compelling
evidence for future genomic-based individualized treatment of epithelial ovarian cancer.
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Introduction
Ovarian cancer is the most lethal gynecological cancer in
the world and a general term which contains some
cancers derived from various tissues [1]. Epithelial ovarian
cancer is the most common and representative histo-
logical types in primary ovarian cancer and is the primary
cause of deaths in female cancer patients in North Amer-
ica and over 100,000 deaths every year worldwide [2].

High-grade serous carcinoma (HGSC) is the most lethal
subtype in the epithelial ovarian cancer, and most of them
are diagnosed in an advanced stage [3]. The standard
treatment for ovarian cancer is maximal cytoreductive
surgery and platinum-based chemotherapy [4]. Although
ovarian cancer actively responds to the initial anticancer
therapy, nearly 75% of patients may relapse within two
years and cannot be treated with the available chemother-
apy drugs [5, 6]. Meanwhile, metastasis within the periton-
eal cavity and resistance to chemotherapy are the leading
causes of the high mortality rate associated with ovarian
cancer, because this cancer is often diagnosed in late clin-
ical stages as what has been mentioned above [5]. Thus,
identifying new targets for treatment and seeking effective
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chemotherapy drugs are crucial for overcoming drug re-
sistance in advanced ovarian cancer [7].
Thus far, many genetic factors, such as BRCA1, BRCA2,

P53 (TP53), KRAS, PIK3CA, CTNNB1, and PTEN, have
been correlated with ovarian cancer [8]. In recent years,
many studies have shown promise for gene-targeted ther-
apies in ovarian cancer [9–11]. The poly-ADP-ribose poly-
merase (PARP) inhibitor olaparib, a targeted therapeutic
drug approved by the Food and Drug Administration, is
used to treat ovarian cancer patients with BRCA1 and
BRCA2 mutations. Olaparib has also been used as
maintenance therapy for patients with platinum-sensitive
recurrent BRCA-mutated ovarian cancer [12]. Therefore,
gene-targeted therapies provide a new possibility for the
personalized treatment of ovarian cancer patients.
However, the lack of large-scale studies for the identifica-

tion of differentially expressed genes (DEGs) in ovarian
cancer limits the reliability of previous results and makes it
difficult to screen potential targets. DNA microarray ana-
lysis is a systematic and global approach to analyze genomic
expression profiles and physiological mechanisms in dis-
eases [13, 14]. High-throughput microarray experiments
have been used to analyze gene expression patterns and
identify potential target genes in ovarian cancer [15].
To fill the gap regarding the identification of DEGs in

ovarian cancer, we performed this meta-analysis to iden-
tify DEGs between ovarian cancer and healthy control
tissues and aimed to provide a powerful tool to investi-
gate microarray datasets by integrating data from mul-
tiple studies. An important advantage of this large-scale
analysis lies in the reduction of discrepancies among dif-
ferent study conditions; additionally, this analysis com-
bines the results from previous studies to assess an
existing problem from a novel perspective [16]. it is
worth noting that although ovarian cancer is known as a
series of different molecular and histological diseases
[17], we aim to uncover those common genes across dif-
ferent molecular subtypes of epithelial ovarian cancer.
Genes discovered in meta-analyses generally overlap
with genes identified in various studies, indicating in-
creased reliability [18]. The present meta-analysis aimed
to identify DEGs between ovarian tissues and control tis-
sues. In addition, we attempted to identify potential core
genes associated with epithelial ovarian cancer and to in-
vestigate some possible related mechanisms.

Materials and methods
Selection of microarray datasets for the meta-analysis
According to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines pub-
lished in 2009, we performed a comprehensive search of
Gene Expression Omnibus (GEO) databases from the
National Center for Biotechnology Information (NCBI,
http://www.ncbi.nlm.nih.gov/geo/). The keywords “ovarian

neoplasms” and “ovarian cancer” were used in our search.
The datasets were required to meet the following criteria:
(1) the samples had to be from the Affymetrix Human
Genome U133A Array platform or Affymetrix Human
Genome U133 Plus 2.0 Array platform; (2) the study organ-
isms had to be Homo sapiens; (3) the datasets had to con-
tain ovarian cancer and normal ovarian tissue samples; and
(4) the number of normal ovarian tissue samples had to be
greater than three. Studies were excluded if (1) they were
cell line studies; (2) they involved dual-channel arrays; (3)
they did not have literature traceability; (4) they were DNA
methylation studies; (5) they were miRNA-based studies;
and (6) they lacked cases and controls. The data from the
original studies were selected by two independent analysts.
Any disagreement between the two analysts was solved by
consultation with a third analyst.

Meta-analysis of multiple microarray datasets
From the GEO database, we downloaded Ovarian files
(.CEL) of microarray datasets that met the inclusion cri-
teria. A total of 13,294 common genes were obtained by
integrating the genes from seven datasets using the R stat-
istical software (http://www.r-project.org/). Then, we per-
formed a meta-analysis of gene expression profiles of the
13,294 common genes according to combined p-values
and Z scores using R statistical software. Combined
p-values (pval_test) included the test-statistic and p-value.
The meta-analysis of common genes was conducted by
the MAMA, mataMA, affyPLM, CLL and RankProd pack-
ages. In performing two meta-analysis with R statistical
software, combined p-values method (where the threshold
was an absolute value more than 5) and Z-scored
meta-analysis (where the threshold was an absolute value
more than 7) were used as the cutoff criteria, and a list of
DEGs (up- or downregulated) was identified.

GO annotations and KEGG pathway enrichment analysis
Identifying the biological characteristics of DEGs is vital.
Based on the results of the meta-analysis, the most signifi-
cant DEGs were evaluated by enrichment analyses. Then,
gene ontology (GO) annotations and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment ana-
lyses were conducted to identify the most significant
DEGs using the WEB-based GEne SeT AnaLysis Toolkit
(http://www.webgestalt.org/option.php) with a signifi-
cance threshold of false-discovery rate (FDR) less than 0.1.

PPI network construction
The Search Tool for the Retrieval of Interacting Genes
(STRING) database (http://string-db.org) displays infor-
mation on protein-protein interactions (PPIs) [19]. We
charted a PPI network of DEGs using STRING with
confidence score more than 0.7 as the significance cutoff
criterion to acquire an in-depth understanding and
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predict the cellular functions and biological behaviors of
the identified DEGs. Further, PPI networks were visual-
ized utilizing the Cytoscape software [19].

Selection of hub genes and modules
CentiScaPe 2.1 was used to calculate the degree, close-
ness, and betweenness of the PPI network. The degree
of a node is the average number of edges (interactions)
incident on the node [20]. According to the degree of a
node, we identified the hub genes. The Molecular
Complex Detection (MCODE) software was employed
to select the most important clustering modules of PPI
networks in Cytoscape with degree cutoff = 2, node score
cutoff = 0.2, k-core = 2, and max. Depth = 100. Further-
more, KEGG pathway enrichment analysis was con-
ducted for DEGs in every module using the WEB-based
GEne SeT AnaLysis Toolkit with a significance threshold
of FDR less than 0.1.

Survival analysis using hub genes
The Kaplan-Meier plotter (KM plotter, http://kmplot.com/
analysis/) was used to display the relevance of the identified
genes regarding patient survival using 1816 ovarian cancer
samples. Gene expression data and relapse-free and overall
survival (OS) information were downloaded from the GEO
(Affymetrix microarrays only), the European Genome-phe-
nome Archive (EGA) and the Cancer Genome Atlas
(TCGA) databases. Hazard ratios (HRs) with 95% confi-
dence intervals and log-rank p-value were calculated and
displayed on the plot.

Results
Identification of upregulated or downregulated DEGs
through the meta-analysis
According to the inclusion criteria, the following seven
GEO datasets from the NCBI were obtained: GSE6008,
GSE18520, GSE26712, GSE27651, GSE29450, GSE36668,
and GSE52037 (see “Materials and Methods”, Fig. 1). A
total of 396 ovarian cancer samples and 54 normal ovarian
tissue samples were analyzed. The GEO Platform Files
(GPLs) from the seven datasets were obtained using
Affymetrix gene chips (Table 1).
We identified common genes across all datasets and

performed a meta-analysis of multiple gene expression
profiles using two platforms according to combined
p-values and Z scores. According to the combined
p-values (the threshold was 5) and Z scores (the limit
was 7), 563 DEGs including 245 upregulated and 318
downregulated genes were identified (Additional file 1:
Table S1 and Additional file 2: Table S2). The overlap-
ping DEGs based on the combined p-values and Z
scores are shown in Fig. 2.

GO term and KEGG pathway enrichment analyses
To further investigate the functions of the DEGs, we sep-
arately classified the upregulated and downregulated genes
into functional GO and KEGG categories and then per-
formed pathway enrichment analyses with a significance
threshold less than 0.05. The top five terms enriched in
each category were selected according to the p-value.
For biological processes, GO analysis results showed that

the upregulated DEGs were separately enriched in ‘cell div-
ision’ (GO:0051301), ‘cell-cell junction’ (GO:0005911) and
‘enzyme binding’ (GO:0019899), whereas and the downreg-
ulated DEGs were enriched in ‘response to endogenous
stimulus’ (GO:0009719), ‘extracellular space’ (GO:0005615)
and ‘RNA polymerase II transcription factor activity, and
‘sequence-specific DNA binding’ (GO:0000981, Table 2).
The most enriched KEGG pathway term for the upreg-

ulated DEGs was ‘cell cycle’ (KEGG:04110) and for the
downregulated DEGs was ‘complement and coagulation
cascades’ (KEGG:04610, Table 3).

Hub gene and module screening from the PPI network
First, we determined the PPI network of the DEGs. The
PPI network consisted of 275 nodes and 770 edges with a
confidence score of more than 0.7 based on the STRING
database. The top 12 hubs with degree centrality more
than 29 were screened from the PPI network as hub genes.
These hub genes included Cyclin-dependent kinase 1
(CDK1), DNA topoisomerase 2-alpha (TOP2A),
cell-division cycle protein 2 (CDC20), G2/mitotic-specific
cyclin-B2 (CCNB2), baculoviral inhibitor of apoptosis
repeat-containing 5 (BIRC5), ubiquitin-conjugating enzyme
E2 C2 (UBE2C), budding uninhibited by benzimidazoles 1

Fig. 1 Selection procession of microarray datasets for meta-analysis

Li et al. Journal of Ovarian Research           (2018) 11:94 Page 3 of 9

http://kmplot.com/analysis/
http://kmplot.com/analysis/


(BUB1), non-SMC condensin I complex subunit G
(NCAPG), Ribonucleoside-diphosphate reductase subunit
M2 (RRM2), Kinesin-like protein (KIF2C), centromere
protein A (CENPA), and maternal embryonic leucine
zipper kinase (MELK).
Moreover, the top 2 significant modules were obtained

from the PPI network of DEGs using the MCODE soft-
ware (Fig. 3). Then, KEGG pathway enrichment analyses
of the genes in these two modules were performed using
the WEB-based GEne SeT AnaLysis Toolkit (Add-
itional file 3: Table S3). The results demonstrated that
the genes in module 1 were mainly associated with cell
cycle, oocyte meiosis and the p53 signaling pathway,
while the genes in module 2 were primarily in tight
junction proteins, leukocyte transendo thelial migration,
hepatitis C, and cell adhesion molecules (CAMs). The
top 12 hub genes belonged to module 1 and confirmed
the critical pathways associated with ovarian cancer. In
conclusion, these essential genes provide new ideas for
the treatment of ovarian cancer.

KM plots for hub genes
The prognostic information of the 12 hub genes is freely
available in http://kmplot.com/analysis/. The results

demonstrated that the expression of CDK1 (203213_at,
HR 1.27 (1.11–1.46), p = 6 × 10− 4), TOP2A (201291_s_at,
HR 1.27 (1.11–1.44), p = 3.9 × 10− 4), CCNB2 (202705_at,
HR 1.15 (1.22–1.81), p = 0.049), UBE2C (202954_at, HR
1.28 (1.12–1.47), p = 3.8 × 10− 4), BUB1 (209642_at, HR
1.26 (1.08–1.46), p = 2.9 × 10− 3), NCAPG (218663_at,
HR 1.26 (1.09–1.46), p = 1.9 × 10− 3), RRM2 (201890_at,
HR 1.17 (1.03–1.34), p = 1.7 × 10− 2), KIF2C (209408_at,
HR 1.15 (1.01–1.32), p = 3.8 × 10− 2) and CENPA
(204962_s_at, HR 1.23 (1.08–1.41), p = 2.4 × 10− 3) was
negatively associated with the OS of epithelial ovarian
cancer patients (Fig. 4 and Additional file 4: Figure S1).

Discussion
The problematic diagnosis in an early stage and recurrence
and resistance to current chemotherapeutic agents are the
leading causes of high mortality in ovarian cancer based on
data from The Surveillance, Epidemiology, and End Results
(SEER) Program of the National Cancer Institute [21].
Therefore, the development of novel therapies for ovarian
cancer is of great urgency. Previous research has proven
that ovarian cancer is caused by the activation of oncogenes
and the inactivation of cancer suppressor gene [22]. With
continued advancements in high-throughput technologies,

Table 1 Characteristic of individual studies retrieved from Gene Expression Omnibus for meta-analysis

Dataset Samples Case/Control Country PMID Platforms Gene# Gene chip

GSE6008 103 99/4 USA 16,452,189/ 19,843,521/
17,418,409/
27538791

GPL96 13,909 Affymetrix Human Genome U133A Array

GSE18520 63 53/10 USA 19,962,670 GPL570 22,838 Affymetrix Human Genome U133 Plus 2.0 Array

GSE26712 195 185/10 USA 18,593,951/25944803 GPL96 13,909 Affymetrix Human Genome U133A Array

GSE27651 41 35/6 USA 21,451,362 GPL570 22,838 Affymetrix Human Genome U133 Plus 2.0 Array

GSE29450 20 10/10 USA 21,754,983 GPL570 22,838 Affymetrix Human Genome U133 Plus 2.0 Array

GSE36668 8 4/4 Norway 23,029,477 GPL570 22,838 Affymetrix Human Genome U133 Plus 2.0 Array

GSE52037 20 10/10 USA 24,666,724 GPL570 19,257 Affymetrix Human Genome U133 Plus 2.0 Array

Fig. 2 The 563 overlapping DEGs based on |pval_test| < 5 and |Z| > 7 were detected using Venny 2.1.0
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some genetic alterations associated with ovarian cancer,
such as specific mutations in KRAS, loss-of-function
mutations in PTEN, mutations in TP53, modifications in
BRCA1/2, and changes in homologous recombination
genes, have been uncovered [23]. Although a significant
amount of data were produced by microarray studies, the
sample sizes of most studies are small and may affect the
identification of DEGs. However, meta-analysis of multiple
microarray datasets makes the identification of DEGs more
reliable by increasing the sample size.

In the present study, we performed a meta-analysis to
determine the DEGs between ovarian cancer and normal
ovarian tissues. We identified 563 DEGs, including 245
upregulated and 318 downregulated DEGs, in ovarian
tissues by combining p-values (cutoff value of 5) and Z
scores (cutoff value of 7). We classified the DEGs into
functional categories based on their GO functions and
KEGG pathways. Furthermore, we screened the follow-
ing top 12 hub nodes with degree centrality more than
29 from the PPI network as hub genes: CDK1, TOP2A,

Table 2 GO analysis of differentially expressed genes

Category Term O C E R P Value

Up-regulated

GOTERM_BP_DIRECT GO:0051301~cell division 32 553 7.28 4.40 1.64E-12

GO:0051276~chromosome organization 33 597 7.86 4.20 2.48E-12

GO:0000819~sister chromatid segregation 19 215 2.83 6.71 6.47E-11

GO:0007059~chromosome segregation 23 329 4.33 5.31 7.00E-11

GO:0000278~mitotic cell cycle 40 972 12.79 3.13 9.53E-11

GOTERM_CC_DIRECT GO:0005911~cell-cell junction 28 626 7.05 3.97 4.55E-10

GO:0030054~cell junction 39 1357 15.28 2.55 4.45E-08

GO:0000777~condensed chromosome kinetochore 10 101 1.14 8.79 2.05E-07

GO:0000776~kinetochore 11 130 1.46 7.52 2.52E-07

GO:0043296~apical junction complex 11 130 1.46 7.52 2.52E-07

GOTERM_MF_DIRECT
GO:0019899~enzyme binding 44 1756 22.14 1.99 6.09E-06

GO:0098632~protein binding involved in cell-cell adhesion 14 288 3.63 3.86 1.79E-05

GO:0098631~protein binding involved in cell adhesion 14 293 3.69 3.79 2.17E-05

GO:0042802~identical protein binding 35 1330 16.77 2.09 2.39E-05

GO:0098641~cadherin binding involved in cell-cell adhesion 13 277 3.49 3.72 5.15E-05

Down-regulated

GOTERM_BP_DIRECT GO:0009719~response to endogenous stimulus 62 1536 25.89 2.40 5.06E-11

GO:0071495~cellular response to endogenous stimulus 53 1190 20.06 2.64 5.06E-11

GO:0009725~response to hormone 42 832 14.02 3.00 1.65E-10

GO:0032870~cellular response to hormone stimulus 34 608 10.25 3.32 8.17E-10

GO:1901700~response to oxygen-containing compound 55 1445 24.35 2.26 6.68E-09

GOTERM_CC_DIRECT GO:0005615~extracellular space 49 1385 17.58 2.79 3.25E-11

GO:0005578~proteinaceous extracellular matrix 21 347 4.40 4.77 3.59E-09

GO:0031012~extracellular matrix 25 503 6.39 3.92 6.13E-09

GO:0042995~cell projection 42 1806 22.93 1.83 7.75E-05

GO:0005925~focal adhesion 15 390 4.95 3.03 1.44E-04

GOTERM_MF_DIRECT
GO:0000981~RNA polymerase II transcription factor activity, sequence-specific DNA
binding

31 652 10.49 2.95 6.92E-08

GO:0003700~transcription factor activity, sequence-specific DNA binding 42 1203 19.36 2.17 1.53E-06

GO:0001071~nucleic acid binding transcription factor activity 42 1204 19.38 2.17 1.56E-06

GO:0000982~transcription factor activity, RNA polymerase II core promoter proximal
region sequence-specific binding

19 342 5.50 3.45 2.96E-06

GO:0001228~transcriptional activator activity, RNA polymerase II transcription regulatory
region sequence-specific binding

17 323 5.20 3.27 2.00E-05

If there are more than five pathways in this category, the top five are selected according to the P value
O number of genes in this category in the user gene list, E expected number of genes in this category, R concentration ratio
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CDC20, CCNB2, BIRC5, UBE2C, BUB1, NCAPG, RRM2,
KIF2C, CENPA, and MELK. Additionally, we obtained
two top significant modules from PPI networks of DEGs
using MCODE analysis. Genes in module 1 were mainly
associated with cell cycle, oocyte meiosis and the p53
signaling pathway, while genes in module 2 were primar-
ily enriched in tight junction proteins, leukocyte transen-
dothelial migration, hepatitis C, and CAMs.
Among the top 12 hub genes, nine hub genes were

associated with poor OS in epithelial ovarian cancer patients.
Based on GO functional analysis, KEGG pathway analysis,
and survival analysis, we found that CDK1, TOP2A, and
UBE2Cmight be the core genes contributing to the develop-
ment of epithelial ovarian cancer at the molecular level.
CDK1 plays a vital role in the regulation of the cell cycle

by modulating the centrosome. CDK1 not only promotes
G2-M transition but also regulates G1 progression and
G1-S transition by binding with multiple interphase
cyclins [24, 25] In ovarian cancer, the expression of CDK1
is significantly associated with survival status, histological
grade, FIGO stage, lymph node metastasis, and metastasis
in epithelial ovarian cancer patients [26].
TOP2A is a nuclear enzyme involved involved in cell

division and the cell cycle. TOP2A controls topological
states of DNA by transiently breaking and subsequently
rejoining of DNA strands [27]. Additionally, TOP2A is a
direct molecular target of topoisomerase inhibitor, and
its upregulation has been reported in several cancers in-
cluding lung, nasopharyngeal, esophageal, gallbladder,
hepatocellular, colorectal, breast, endometrial, pancreatic
and ovarian cancer [28–31].

UBE2C, an essential factor of the anaphase-promoting
complex/cyclosome (APC/C), is required for the de-
struction of mitotic cyclins and cell cycle progression
[32]. The N-terminal extension of UBE2C contributes to
the regulation of APC/C activity for substrate selection
and checkpoint control [33]. UBE2C, the exclusive part-
ner of APC/C, participates in the degradation of the
APC/C target protein family by initiating the formation
of a Lys11-linked ubiquitin chain. Thus, UBE2C plays a
vital role in the destruction of mitotic cyclins and other
mitosis-related substrates. During early mitosis, the APC
is activated through cyclin B/Cdk1-dependent phosphor-
ylation and binding of its activator CDC20. During
metaphase, UBE2C degrades securin and cyclin B by
APC/CCDC20 to promote progression to anaphase [34].
UBE2C is significantly upregulated in several types of
cancer including bladder, breast, brain, cervical, esopha-
geal, colorectal, liver, lung, nasopharyngeal, prostate
(late-stage), pancreatic, thyroid, stomach, and ovarian
cancer [33]. UBE2C is associated with tumor progres-
sion. I. van Ree et al. identified UBE2C as a prominent
proto-oncogene that contributes to whole chromosome
instability and tumor formation over a wide range of
overexpression levels [35].
In our study, in addition to UBE2C upregulation,

CDC20, CDK1, and CCNB2 are overexpressed. Com-
bined with the above results, it is logic to assume
that the interaction among UBE2C, CDC20, CDK1,
and CCNB2 may play a vital role in the formation
and development of ovarian cancer. Overexpression of
UBE2C was associated with poor OS for ovarian

Table 3 KEGG enrichment analysis of differentially expressed genes

Term C O E R P Value Genes

Up-regulated

hsa04110: Cell cycle 124 11 1.90 5.79 2.64E-06 E2F3, SFN, MCM4, BUB1, BUB1B, TTK, YWHAZ, CCNE1,
CCNB2, CDK1, CDC20

hsa04530: Tight junction 139 9 2.13 4.22 0.00026240 CLDN4, CLDN3, CLDN7, TJP3, KRAS, LLGL2, PRKCI,
CLDN10, MAGI1

hsa04114: Oocyte meiosis 124 8 1.90 4.21 0.00059620 ITPR3, BUB1, YWHAZ, CCNE1, CCNB2, CALML4, CDK1,
CDC20

hsa01230: Biosynthesis of amino acids 75 6 1.15 5.22 0.00096638 PSAT1, IDH2, PFKP, PKM, PYCR1, TPI1

hsa00051: Fructose and mannose metabolism 33 4 0.51 7.91 0.00151933 PFKP, SORD, TPI1, TSTA3

Down-regulated

hsa04610: Complement and coagulation cascades 79 7 1.42 4.93 0.00051053 PROCR, CFH, TFPI, THBD, C1S, C4BPB, C7

hsa04022: cGMP-PKG signaling pathway 168 10 3.02 3.31 0.00084616 AKT3, ADCY2, EDNRA, AKT2, GATA4, ITPR1, KCNJ8,
MEF2C, PLN, RGS2

hsa04726: Serotonergic synapse 113 8 2.03 3.94 0.00092536 DUSP1, GNG4, GNG11, HTR2B, ITPR1, MAOA, MAOB, TRPC1

hsa04550: Signaling pathways regulating
pluripotency of stem cells

142 9 2.55 3.53 0.00098921 AKT3, AKT2, APC, ID3, IL6ST, WNT4, TBX3, LEFTY2, KLF4

hsa04270: Vascular smooth muscle contraction 121 8 2.18 3.68 0.00144356 CALCRL, ADCY2, EDNRA, ITPR1, PPP1R12B, PLA2G1B,
PLA2G5, CALD1

If there are more than five pathways in this category, the top five are selected according to the P value
O number of genes in this category in the user gene list, E expected number of genes in this category, R concentration ratio
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cancer patients, and thus UBE2C might be a promis-
ing prognostic molecular biomarker and therapeutic
target for ovarian cancer. It is worth to emphasize
that though a series of distinct molecular and histo-
logic subtypes of ovarian cancer exists and each sub-
type has different tumor microenvironment. The
present research mainly focuses on those common
pathways of epithelial ovarian cancer. Yet we have an-
alyzed the corresponding gene expression data

acquired from GSE9891 and the results shows that 11
out of 12 hub genes (expression data of CDK1 cannot
be found in the datasets GSE9891) are significantly
up-regulated (Additional file 5: Figure S2,
Additional file 6: Figure S3, Additional file 7: Figure
S4, Additional file 8: Figure S5, Additional file 9:
Figure S6, Additional file 10: Figure S7, Add-
itional file 11: Figure S8, Additional file 12: Figure S9,
Additional file 13: Figure S10, Additional file 14: Fig-
ure S11 and Additional file 15: S12, Additional file 16:
Table S4) in all of the molecular subtypes (differential,
immunoreacted, proliferation and mesenchymal) com-
paring to control group. Subsequent researches will
be conducted to investigate the role each hub gene
played in each subtype of ovarian cancer,
Besides, we consider the protein expression of these

hub genes might be instructive to the further study.
The protein expression data of hub genes is acquired
from the Human Protein Atlas for evaluation. The
protein expressions of 5 hub genes (CDK1, TOP2A,
CDC20, NCAPG, and MELK) are significantly
up-regulated in ovarian cancer compared to normal
tissues (Additional file 17: Table S5.). Also, we have
done a chi-square analysis to explore the relationship
between the expression of 12 hub genes and the
metastasis of ovarian cancer. The results show none
of these genes has connections to the cancer metasta-
sis (P > 0.05). Overall, the present study was designed
to identify DEGs through integrated bioinformatics
analysis to find potential biomarkers and predict the
development and prognosis of ovarian cancer. How-
ever, to obtain more accurate correlation results, we
need to performed a series of validation experiments.
In conclusion, this study provides robust evidence for
future genomic-based individualized treatment of
ovarian cancer.

Conclusion
Until now, a large-scale meta-analysis identifying DEGs
was absent from the ovarian cancer literature. Our study

Fig. 3 2 modules obtained from PPI network of DEGs using the
MCODE software. The top 12 hub genes were all in the module 1

Fig. 4 Top 3 genes (CDK1, TOP2A and UBE2C) significantly correlates with poor OS of ovarian cancer
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systematically validated previous studies and filled the gap
regarding a large-scale meta-analysis in the field of ovarian
cancer. Moreover, our meta-analysis identified three spe-
cific genes, namely, CDK1, TOP2A and UBE2C, which
may be potential targets of ovarian cancer. Thus, this
study provides convincing evidence for future genomic
individualized treatment of epithelial ovarian cancer.
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