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Abstract

Background: Platinum resistance is an important cause of clinical recurrence and death for ovarian cancer. This
study tries to systematically explore the molecular mechanisms for platinum resistance in ovarian cancer and
identify regulatory genes and pathways via text mining and other methods.

Methods: Genes in abstracts of associated literatures were identified. Gene ontology and protein-protein
interaction (PPI) network analysis were performed. Then co-occurrence between genes and ovarian cancer subtypes
were carried out followed by cluster analysis.

Results: Genes with highest frequencies are mostly involved in DNA repair, apoptosis, metal transport and drug
detoxification, which are closely related to platinum resistance. Gene ontology analysis confirms this result. Some
proteins such as TP53, HSP90, ESR1, AKT1, BRCA1, EGFR and CTNNB1 work as hub nodes in PPI network. According
to cluster analysis, specific genes were highlighted in each subtype of ovarian cancer, indicating that various
subtypes may have different resistance mechanisms respectively.

Conclusions: Platinum resistance in ovarian cancer involves complicated signaling pathways and different subtypes
may have specific mechanisms. Text mining, combined with other bio-information methods, is an effective way for
systematic analysis.
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Background
Ovarian cancer is the most lethal cause of all
gynecological malignancies [1]. Due to lack of specific
symptoms, the majority of patients (60%) are diagnosed at
advanced stages and the five-year survival rate is about
30% [2, 3]. Nowadays cytoreducitve surgery combined
with chemotherapy has been accepted as a standard treat-
ment of this disease, where platinum-based agents such as
cisplatin and carboplatin are considered to be the essential
components of most chemotherapy regimens [4–6]. Initial

response rate to such first-line chemotherapy is as high as
65–80%. However, about half of these patients eventually
develop platinum resistance, leading to an unfavorable
prognosis [2]. Presently, platinum-resistance is a major
obstacle in the treatment of ovarian cancer.
Although a plenty of genes and pathways have been in-

vestigated for platinum resistance in ovarian cancer,
mechanisms of drug resistance are still not fully under-
stood. Most researchers examined only a small part of
genes, meanwhile the majority of them focused on specific
subtypes of ovarian cancer. As platinum resistance seems
to be regulated by sophisticate molecular networks, we try
to systematically assess reported genes with text mining
and other bioinformatics methods, quantitatively describe
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their relationships and make prediction of potential regu-
latory molecules and pathways in this study.

Methods
The methods for data preparation and gene identifica-
tion have been described previously [7]. Briefly, Ovarian
cancer AND (cisplatin OR carboplatin) were used as re-
trieval statement on Pubmed and 6160 literatures were
listed (up to July 24th, 2017). All abstracts were collected
from PubMed retrieval system. Genes and proteins were
identified with ABNER (V1.5) [8, 9] and were verified
based on Entrez Gene Database. To cover the descrip-
tion of cisplatin and carboplatin, words and shorthands
such as “platinum”, “platin”, “cisplatin”, “DDP”, “carbo-
platin” and “CBP” were selected. Similarly, both “resist-
ance” and “resistant” were identified. Only the genes that
co-appeared with these two groups of words in the same
sentence will be treated. If a gene appeared several times
in one sentence, it would be counted once. Word fre-
quency analysis was performed with Microsoft Excel
2010. Gene ontology analysis was carried with FunRich
(V3.0) software [10] and p-value were corrected with
Bonferroni method.
Protein-protein interaction (PPI) network analysis was

performed using Cytoscape (V3.4.0). Plugins such as
BisoGenet [11] and CytoNCA [12] were used to generate
network, while interaction information from MINT [13],
BIND [14, 15], BioGrid [16], DIP [17], IntAct [18] and
HPRD [19] were used for analysis. All interactions were
based on experiments. Hierarchical cluster analysis was
performed between genes and cancer subtypes (“serous”,
“mucinous”, “endometrioid”, “clear cell cancer” or
“OCCC”) using HemI (V1.0) [20] with maximum dis-
tance similarity metric. Data were normalized for each
subtype in advance.

Results
Platinum-resistance related genes in ovarian cancer
According to the criterion of frequency analysis, 473
genes were identified within 6160 abstracts and top
genes among them (count≥15) were listed in Table 1.
TP53 were mentioned more than 100 times, while
ABCB1, AKT1, ERCC1 and other genes were also widely
studied in the past years.

Gene ontology analysis
To explore the functions of these genes, gene ontol-
ogy (GO) analysis was carried out. Significant bio-
logical processes that may involve (corrected p < 0.05)
in platinum resistance were shown in Table 2. Apop-
tosis were highlighted as the most significant process,
while signal transduction, cell communication, cell

cycle, anti-apoptosis, and nucleobase & nucleic acid
metabolism were also included.

PPI network analysis
To find out important molecules in platinum resistance
mechanism, PPI network was generated with
Cytoscape (V3.4.0) software and its plugins. The
interactions were illustrated in Fig. 1 and the most
popular nodes with their degrees (the number of
interactions) were listed in Table 3. TP53 has the

Table 1 The top platinum-resistance related genes based on
text mining

Gene Description Count

TP53 tumor protein p53 108

ABCB1 ATP binding cassette subfamily B member 1 64

AKT1 AKT serine/threonine kinase 1 59

ERCC1 ERCC excision repair 1, endonuclease
non-catalytic subunit

40

BCL2 BCL2, apoptosis regulator 28

EGFR epidermal growth factor receptor 27

BRCA1 BRCA1, DNA repair associated 26

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha

25

MAPK1 mitogen-activated protein kinase 1 24

ABCC1 ATP binding cassette subfamily C member 1 22

IL6 interleukin 6 20

NFKB1 nuclear factor kappa B subunit 1 20

STAT3 signal transducer and activator of transcription 3 19

MTOR mechanistic target of rapamycin kinase 18

PARP1 poly (ADP-ribose) polymerase 1 17

TNFSF10 TNF superfamily member 10 17

BRCA2 BRCA2, DNA repair associated 15

HDAC1 histone deacetylase 1 15

TNF tumor necrosis factor 15

Only the genes that co-appeared with drug name (such as “cisplatin”) and
phenomenons (such as “resistance”) in the same sentence will & be treated

Table 2 Significant biological process (GO analysis) for platinum
resistance in ovarian cancer

Biological Process Number of
Genes

Corrected
P-Value

Apoptosis 31 6.64 × 10−
13

Signal transduction 154 5.19 × 10−08

Cell communication 143 9.82 × 10−07

Regulation of cell cycle 8 0.012

Anti-apoptosis 6 0.020

Regulation of nucleobase, nucleoside,
nucleotide and nucleic acid metabolism

99 0.024

All 473 identified genes were treated as input. P values were corrected with
Bonferroni method
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highest degree than other proteins, which implies the
critical function of it in platinum resistance regulation. In
addition, HSP90AA1 (degree = 41), ESR1 (degree = 40),
AKT1 (degree = 39), BRCA1 (degree = 35) and other pro-
teins were also predicted as remarkable hubs among the
signaling network.

Cluster analysis for subtypes
Based on histopathology, ovarian cancer can be mainly
classified into four subtypes: serous, mucinous, endome-
trioid and ovarian cancer of clear cell (OCCC) [21]. Each
major histological type has characteristic morphological
features and biological behaviors [22], and the incidence
of platinum resistance differs from the others. For ex-
ample, mucinous ovarian cancer has been reported to
have a much lower sensitivity and higher resistance rate
compared with serous ovarian cancer [23, 24].
To investigate the specific regulatory molecules for

each subtype, genes co-appearing with “serous”, “mu-
cinous”, “endometrioid” and “clear cell” (or OCCC)
were collected respectively, then cluster analysis were
performed. As shown in Fig. 2, each subtype has its

distinctive combination for platinum-resistance mole-
cules. Some genes such as TP53 are commonly fo-
cused in most subtypes. By comparison, BCL2 and
AKT1 were frequently mentioned in endometrioid
cancer while ERBB2 and AGR3 were repeatedly men-
tioned in mucinous cancer. Such genes may be
regarded as specific regulators or markers for each
subtype.

Discussion
Cisplatin and carboplatin exert antitumor effects by
binding to DNA and forming cross-links, thus disrupts
DNA structure and finally results in cell apoptosis [25].
Dysregulation in that process may cause platinum resist-
ance. Among all possible regulatory mechanisms, the
most important ones include the followings [26]: (1)
Suppressed uptake or enhanced efflux can reduce cyto-
sol accumulation of platinum. (2) Drug detoxification
mechanism can protect cells from bioactive platinum
aquo-complexes. (3) DNA repair can be activated and
enhanced to restore DNA damages. (4) Changes in sig-
naling pathways make cells evade fate of apoptosis.

Fig. 1 The PPI network of platinum-resistance related genes. Self-loops and isolated nodes were deleted. All interactions were based on
experiments. Network was generated just among input nodes rather than their neighbours. Molecules with count less than 3 were excluded
before PPI analysis
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These mechanisms and pathways interact with each
other, making platinum-resistance regulation very com-
plex. It should be noted that cisplatin and carboplatin
share similar molecular structures and are cross-
resistant in most cases. In contrast, oxaliplatin are not
cross-resistant with them, which may be explained by
the lipophilic cyclohexane residue [27]. So oxaliplatin re-
sistance is not discussed in this study.
According to Table 1, most of the top genes can be

classified into the four categories mentioned above, and

apoptosis is the most significant process in Table 2. The
tumor-supressor P53 is a central hub for the activation
of intrinsic apoptotic pathway [28]. It can trigger cell
death via the expression of apoptotic genes and by inhi-
biting the expression of anti-apoptotic genes [29]. BCL2
can inhibit cell death induced by cytotoxic factors such
as chemotherapeutic drugs and enhance cell resistance
[30, 31].
For platinum accumulation, both ABCB1 (MDR1) and

ABCC1 (MRP1) belong to ATP binding cassette (ABC)
transport protein family, which works as ATP-
dependent drug efflux pump and is responsible for de-
creased platinum accumulation [32, 33]. Among all the
identified molecules, ABCG2 (count = 13) and ABCC2
(count = 10) have similar functions though not listed in
Table 1. Another example for transporter protein is
SLC31A1 [34] (also known as CTR1), a member of cop-
per transporter family, which plays a significant role in
platinum uptake [35].
For DNA damage/repair, ERCC1 (ERCC excision re-

pair 1) is a critical member of nucleotide excision repair
induced by platinum [36]. Meanwhile, BRCA1 [37] and
BRCA2 [38] exert their functions in double-stranded
breaks repair of DNA. PARP1 can recognize DNA le-
sions and modifies various nuclear proteins which are
involved in the regulation of DNA repair [39].
Both GSTA1 (count = 12) and GSTP1 (count = 9) be-

long to the top 10% of all identified genes though not
listed in Table 1. The expression products of them are
members of cellular detoxification system, which can
add glutathione to platinum, block the formation of Pt-
DNA and reduce cytotoxicity of platinum [40, 41].
Besides, some popular genes such as AKT1, EGFR,

PIK3CA, MAPK1, NFKB1 and MTOR, are difficult to be
classified. All of them have multiple functions in physio-
logical and pathological processes and are regarded as key
nodes in platinum-resistance signaling network (as shown
in Table 3). Their effects toward platinum resistance have

Table 3 The top nodes (degree> 20) in platinum-resistance
related PPI network

Node Description Degree

TP53 tumor protein p53 56

HSP90AA1 heat shock protein 90 alpha family class
A member 1

41

ESR1 estrogen receptor 1 40

AKT1 AKT serine/threonine kinase 1 39

BRCA1 BRCA1, DNA repair associated 35

EGFR epidermal growth factor receptor 34

CTNNB1 catenin beta 1 31

CASP3 caspase 3 30

HDAC1 histone deacetylase 1 28

MAPK1 mitogen-activated protein kinase 1 26

STAT3 signal transducer and activator of
transcription 3

26

MAPK8 mitogen-activated protein kinase 8 25

SP1 Sp1 transcription factor 24

GSK3B glycogen synthase kinase 3 beta 23

CDKN1A cyclin dependent kinase inhibitor 1A 23

PARP1 poly (ADP-ribose) polymerase 1 22

BCL2 BCL2, apoptosis regulator 21

CASP8 caspase 8 21

All edges are treated as undirected. The degree of each node is calculated
with CytoNCA, a plugin for Cytoscape

Fig. 2 Hierarchical cluster analysis for genes among subtypes of ovarian cancer. Cluster analysis was performed based on maximum-linkage,
using similarity metric of maximum distance. Each subtype was normalized respectively before cluster analysis
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been extensively explored, together with their various tar-
gets or regulators [42–45].
There are specific genomic alterations and gene-

expression patterns for different subtypes of ovarian can-
cer. According to previous reports, K-RAS mutation is
very common in mucinous ovarian carcinomas (75%),
but the rate is generally low in clear cell carcinomas [46,
47]. Meanwhile, genes involved in nucleotide excision
repair (such as XPB and ERCC1), were found to be pref-
erentially expressed in ovarian clear cell carcinomas [48,
49]. That suggests each subtype may have specific mech-
anism and molecular character for platinum resistance,
but there are few reports for this topic. In our study,
genes were enriched according to their co-occurring
subtypes and then subjected to cluster analysis. This
method helps us understand the differences in regula-
tory mechanisms among subtypes of ovarian cancer. It is
also meaningful for clinical accurate diagnosis and indi-
vidualized treatment of ovarian cancer.
A potential limitation in this study is the performance

of text mining. It can recognize names of genes and pro-
teins, calculate their frequencies and judge the functions
of them via co-occurrence analysis, but it cannot really
“understand” literatures. However, it is still an effective
method to quantitatively assess gene functions and their
relationships, especially for comprehensive analysis with
large input data.
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