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Abstract 

Ovarian aging refers to the process by which ovarian function declines until eventual failure. The pathogenesis of 
ovarian aging is complex and diverse; oxidative stress (OS) is considered to be a key factor. This review focuses on 
the fact that OS status accelerates the ovarian aging process by promoting apoptosis, inflammation, mitochondrial 
damage, telomere shortening and biomacromolecular damage. Current evidence suggests that aging, smoking, 
high-sugar diets, pressure, superovulation, chemotherapeutic agents and industrial pollutants can be factors that 
accelerate ovarian aging by exacerbating OS status. In addition, we review the role of nuclear factor E2-related factor 
2 (Nrf2), Sirtuin (Sirt), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), Forkhead box O (FoxO) and 
Klotho signaling pathways during the process of ovarian aging. We also explore the role of antioxidant therapies such 
as melatonin, vitamins, stem cell therapies, antioxidant monomers and Traditional Chinese Medicine (TCM), and inves-
tigate the roles of these supplements with respect to the reduction of OS and the improvement of ovarian function. 
This review provides a rationale for antioxidant therapy to improve ovarian aging.
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Introduction
Aging is an irreversible physiological and pathologi-
cal phenomenon in normal metabolism [1]. Aging is 
complex and multiple factors are known to contribute 
towards the overall aging process and phenotype [2]. In 
the female body, the ovary acts as a natural biological 
clock, thus controlling the process of aging [3]. Ovarian 
aging refers to the process of gradual decline and even-
tual exhaustion of ovarian function.

Two major categories of ovarian aging have been iden-
tified: physiological and pathological. Physiological ovar-
ian aging refers to the process by which ovarian function 
deteriorates naturally with age until menopause. Patho-
logical ovarian aging refers to the premature decline of 

ovarian function, including diminished ovarian reserve 
(DOR), premature ovarian insufficiency (POI), and poor 
ovarian response (POR) in the field of in  vitro fertiliza-
tion-embryo transfer (IVF-ET). Pathological aging can 
be caused by a variety of pathogenic factors [4]. Ovarian 
aging is characterized by menstrual disorders (amenor-
rhea or oligomenorrhea) and reduced reproductive func-
tion, accompanied by elevated levels of gonadotropins 
and decreased levels of estrogen. In terms of pathology, 
ovarian aging predominantly manifests as a reduction 
in the number of follicles and a decline in the qual-
ity of oocytes [5]. The terminal stage of ovarian aging is 
menopause. Following menopause, dysfunction of the 
endocrine, cardiovascular and nervous systems, among 
others, becomes apparent or aggravated with hormonal 
changes in female body. Therefore, ovarian aging is con-
sidered an important node in the process of female aging.

As a classic theory of aging, free radical theory was first 
proposed in the 1950s. The important role of free radi-
cal has been extensively studied across multiple diseases 
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and is considered a key mechanism of ovarian aging. 
Free radicals are a high-activity pro-oxidation group of 
molecules produced during aerobic metabolism, includ-
ing reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) [6]. ROS is primarily a byproduct of 
mitochondrial oxidative phosphorylation. A temperate 
amount of ROS is essential for the normal physiological 
functions of the body. ROS are not only involved in the 
synthesis of active substances, cellular detoxification and 
immune function [7], they also act as an important sec-
ond messenger that participates in the intercellular signal 
transduction and regulation of gene expression, thereby 
maintaining cellular homeostasis [8].

Under physiological conditions, the oxidative and 
antioxidant systems are in dynamic equilibrium. The 
antioxidant system is composed of both enzymes and 
non-enzymes. Of these, the key enzymes include super-
oxide dismutase (SOD), catalase (CAT), glutathione 
(GSH) and glutathione peroxidase (GSH-Px). Non-
enzymes mainly include melatonin, vitamins (C, E) and 
trace elements (copper, zinc and selenium). However, 
when ROS are overproduced or antioxidant utilization 
increases, this leads to an imbalance of redox reactions 
and induces an oxidative stress (OS) state in the body 
[9]. Extensive studies have shown that the OS state of 
the ovarian microenvironment can result in pathologi-
cal damage, including meiotic arrest in oocytes, granu-
losa cell apoptosis, and corpus luteum dysfunction, thus 
accelerating the process of ovarian aging. Supplemen-
tation with antioxidants can improve the ovarian OS 
state and enhance ovarian function. This article reviews 
research progress in the field of OS in relation to ovarian 
aging.

The physiological role of ROS in the ovary
In the ovary, ROS are involved in the regulation of oocyte 
growth, meiosis, ovulation and other physiological pro-
cesses [10]. During follicular growth, increased ster-
oid production leads to the expression of cytochrome 
P450, thus resulting in ROS formation. Meanwhile, the 
increased secretion of estradiol (E2) in growing follicles 
triggers the expression of peroxidase CAT, resulting in 
a dynamic balance between ROS and antioxidants [11]. 
The precise regulation of meiotic arrest and recovery 
of oocytes is essential for female reproductive develop-
ment. ROS stimulation regulates the progress of meio-
sis I; in contrast, the progression of meiosis II is mainly 
controlled by antioxidants in the ovary. This demon-
strates the complex relationship between free radicals 
and antioxidants within the meiotic maturation process 
of oocytes [12]. The surge of luteinizing hormone (LH) 
prior to ovulation increases the levels of inflammatory 
precursors in the ovary, thus leading to the excessive 

production of ROS. Increased ROS induces apoptosis in 
the granulosa cells, which further leads to follicular wall 
rupture and ovulation; therefore, this is regarded as an 
important ovulation signal [13]. Similarly, the regression 
of the corpus luteum is also mediated by OS-induced 
apoptosis of luteinized granulosa cells [14]. The balance 
of ROS is also critical within the in vitro setting, and can 
exert influence on oocyte maturation, fertilization, and 
subsequent embryo implantation and development [15]. 
The appropriate concentration of ROS in follicular fluid 
is not only an indicator of good follicular metabolic activ-
ity but can also be used as a potential marker for predict-
ing the outcome of IVF-ET [16].

Pathological mechanisms related with OS 
in ovarian aging
Apoptosis
Apoptosis has been studied extensively in ovarian aging 
[17, 18]. Apoptosis in ovarian cells can cause extensive 
follicular atresia or regression and is considered to be 
one of the most important mechanisms underlying ovar-
ian aging [19]. OS has been shown to induce apoptosis in 
ovarian cells by various processes, including exogenous 
pathways, endogenous pathways and by endoplasmic 
reticulum stress (ERS) [20–22]. In the exogenous path-
way, excess ROS in ovarian tissue can activate the Fas/
FasL pathway and recruit caspase-8 (CASP8) to form a 
death-inducing signaling complex (DISC) with Fas and 
FasL. Activated CASP8 then activates CASP3, CASP6, 
CASP7 and cleaves various downstream intracellular 
substrates that are necessary for cell survival, thereby 
inducing apoptosis [23]. In the endogenous pathway, 
ROS can disrupt mitochondrial homeostasis in ovar-
ian cells, thus resulting in the release of Cytochrome C 
from the mitochondria. Cytochrome C and apoptotic 
protease-activating factor (Apaf-1) form a multimeric 
complex, continue to activate CASP3 and CASP9, and 
upregulate the Bax/Bcl-2 ratio, thus inducing apopto-
sis [24]. In addition, OS can activate inositol-requiring 
enzyme 1 (IRE1) and protein kinase RNA-like ER kinase 
(PERK), induce unfolded protein response (UPR) factors 
and ultimately promote apoptosis in granulosa via the 
ERS pathway [25, 26].

Oocyte apoptosis leads to the loss of germ cells 
directly. Granulosa cell apoptosis leads to nutrient 
deprivation in ovarian cells and induces metabolic 
disorders in the ovarian microenvironment, thus 
aggravating the decline in ovarian function [27]. Fur-
thermore, OS can lead to apoptosis in female germline 
stem cells (FGSCs). Phenotypic changes in FGSCs 
reduce their proliferative capacity and stemness. And 
the ovary also loses the potential to replenish the pri-
mordial follicle pool and produce oocytes, ultimately 
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reducing ovarian reserve [28]. The cell debris gener-
ated by apoptosis can continue to affect the ovarian 
microenvironment. Apoptosis elevated the levels of 
cell-free DNA in follicular fluid which stimulates the 
massive production of intracellular ROS and ultimately 
exacerbates apoptosis [29].

Inflammation
Long-term chronic inflammation accelerates aging in 
the body [30]. An abundance of evidence has shown 
that chronic inflammation is closely related with ovar-
ian aging [31]. Clinical studies have found that the 
serum levels of IL-6 and IL-21 were significantly higher 
in POI patients than in healthy women of the same age 
[32]. NLRP3, as an inflammasome in the NLR family, 
plays an important role in inflammation [33]. NLRP3 
was found to be highly expressed in the granulosa cells 
of DOR patients [34]. After NLRP3 reduction, the lev-
els of pro-inflammatory cytokines were down-regulated 
while the levels of AMH and the number of primordial 
follicles increased [34].

OS is closely linked with inflammation. Excessive 
levels of ROS in the body can trigger the assembly and 
activation of the NLRP3 inflammasome [35], which sub-
sequently promotes the infiltration of inflammatory cells 
and the secretion of the pro-inflammatory cytokines 
IL-1β and IL-18 in tissues [36]. ROS can also directly 
activate nuclear factor-k-gene binding (NF-κB) to pro-
mote inflammation while activation of NF-κB further 
upregulates NLRP3 expression [37]. Moreover, after 
immune cells are activated, intracellular ROS are pro-
duced in large quantities to participate in the activation 
of the immune response, further leading to increased OS 
damage [38].

OS and inflammation produce synergistic disruptive 
effects on ovarian tissue. A previous study showed that 
the levels of the products of OS damage (carbonylated 
and nitrated proteins) and inflammatory markers (TNF-
α, IL-1β) were significantly higher in the ovaries of aged 
mice than in younger mice [39]. Ovarian RNA tran-
scriptome analysis further revealed that OS-related pro-
teins (Nrf2, SOD2, CAT, GSH-px1) and genes encoding 
NLRP3 inflammatory vesicles could be used as key bio-
markers to differentiate between young and aging mice 
[40]. A variety of models of functional ovarian damage 
were shown to exhibit high levels of inflammatory fac-
tors and OS markers [41, 42]. Furthermore, the use of 
antioxidants or dietary supplements (quercetin, ginseno-
side Rg1, Vitamin B12) has been shown to significantly 
improve both inflammation and OS, thus enhancing 
ovarian function [43–45]. Therefore, inflammation plays 
an important role in ovarian aging.

Mitochondria
Mitochondria are important organelles in cells. They 
can generate ATP through the process of oxidative 
phosphorylation and are known as the energy produc-
tion machinery for cells [46]. Mitochondria also have 
their own genomes that encode polypeptides involved in 
energy production [47]. Mitochondrial DNA (mtDNA) is 
vulnerable to ROS attack due to the lack of histone pro-
tection and an overlap with the ROS generation site in 
the mitochondrial inner membrane [48]. Excessive lev-
els of ROS not only induce mtDNA mutations to result 
in inefficient electron transport chain (ETC) expression, 
but also mediate abnormal mtDNA-protein cross-link-
ing, thus leading to mitochondrial dysfunction in several 
ways [49]. Mitochondrial dysfunction further exacerbates 
the leakage of ROS from the ETC, thereby exacerbating 
intracellular OS damage [50]. Ultimately, this cascade of 
amplified injury can have serious adverse effects on ovar-
ian function.

Mitochondria are the most numerous organelles in 
the oocyte and provide sufficient energy to allow ferti-
lization and maintain embryogenesis [51]. Mitochon-
dria are involved in important processes during oocyte 
meiosis, including spindle assembly, chromosome seg-
regation and cell maturation [52]. Therefore, the number 
and distribution of mitochondria, along with alterations 
of the mtDNA sequence, are closely related to the qual-
ity of oocytes and have important impacts on embryonic 
development [53]. Zhang et al. constructed a secondary 
oocyte OS injury model and found that the ATP level and 
mitochondrial membrane potential were both decreased; 
this was accompanied by spindle damage [54]. Recom-
binant peroxiredoxin 3 (Prdx3) is localized in the mito-
chondria and acts as a key regulator of mitochondrial 
ROS [55]. Global gene expression analysis of aged mouse 
oocytes revealed reduced Prdx3 mRNA expression and 
increased sensitivity of oocytes to OS [56].

Granulosa cells represent the largest cell population 
in the ovary. Their growth, proliferation and division 
require abundant and stable mitochondria to supply 
appropriate amounts of energy [57]. During prolifera-
tion, granulosa cells experience a significant increase 
in ROS levels and mtDNA damage [58]. At the same 
time, granulosa cells exhibit reduced mitochondrial 
membrane potential and reduced expression lev-
els of mitochondrial-related genes (Nd1, Cytb, Cox1 
and ATPase6), ultimately resulting in a poor state of 
decreased viability and cell cycle arrest [59]. Tanabe 
et al. reported that the OS damage products 8-OHdG, 
yH2AX and HEL were significantly elevated and that 
the proportion of active mitochondria was significantly 
reduced in an OS injury model of granulosa cells [60]. 
Mitochondrial dysfunction disrupted the bidirectional 
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interaction between oocytes and granulosa cells, block-
ing the exchange of important substances such as pyru-
vate, amino acids and nucleotides, which in turn lead to 
stagnant cell growth and development [61].

Telomeres
Telomeres are short repetitive sequences that are located 
at the ends of eukaryotic chromosomes and mainly com-
posed of non-coding DNA and telomere-binding pro-
teins. The telomeres are responsible for maintaining 
genome integrity and chromosomal stability [62]. Tel-
omere length gradually shortens with an increasing num-
ber of cell divisions and are therefore considered to be 
closely associated with the degree of aging in the human 
body [63]. The correlation between telomere status and 
ovarian function in women has also received increas-
ing levels of attention. Clinical studies have also found 
that the length of telomeres in the granulosa cells of 
POI patients is significantly shorter, and that telomerase 
activity is significantly reduced [64]. Telomere damage 
was also observed in naturally aged ovarian cells, along 
with reduced expression levels of telomerase (TERC), 
telomeric reverse transcriptase (TERT) and telomere-
related proteins (TRF1, TRF2, POT1) [65, 66]. The rela-
tive length of telomeres in cumulus cells is closely related 
to oocyte and embryo quality and can be used as a poten-
tial marker for screening high-quality oocytes in the field 
of assisted reproductive technology (ART) [67].

Telomeres lack protective proteins and are therefore 
highly susceptible to ROS attack and shortening [68]. 
Sirtuin 6 (Sirt6) is thought to play an important role in 
the stabilization of telomeres in oocytes [69]. As a trans-
activator, Sirt6 participates in the regulation of Nrf2, thus 
maintaining cellular redox homeostasis [70]. Liao et  al. 
found that both the mRNA and protein levels of Sirt6 
were significantly lower in aged oocytes and that this was 
accompanied by a reduction in telomere length [71]. Ge 
et al. found that Sirt6-specific depletion in oocytes could 
exacerbate mitochondrial dysfunction and apoptosis in 
early embryos [72].

Antioxidant supplementation was previously shown to 
improve OS and telomere status, thus alleviating ovarian 
aging. A study by Akino et al. showed that the adminis-
tration of dimethyl fumarate (DMF) led to the activation 
of the Keap1/Nrf2 signaling pathway in the ovaries of 
aged mice [73]. DMF supplementation increased mRNA 
and protein expression levels of telomerase and increased 
the number of primordial follicles [73]. In another study, 
Liu et al. found that long-term supplementation with low 
doses of NAC increased telomere length, elevated telom-
erase activity, improved oocyte quality and the number 
of fertilized oocytes, ultimately increasing litter size [74].

Biomacromolecules
Excess ROS can result in oxidative damage to intracel-
lular biomacromolecules such as proteins and lipids [75]. 
Approximately 70% of oxidized molecules in cells are 
proteins, indicating that proteins are the main targets of 
ROS attack [76]. OS can lead to multiple modifications 
of proteins, including tyrosine nitration, sulfonation, 
thiol oxidation and 4-hydroxynonenal (4HNE) protein 
adducts [77]. Impaired protein function further leads 
to abnormal activation or inactivation of the signaling 
pathways required for normal ovarian physiology [77]. 
A number of studies have shown that multiple protein 
OS damage products can be observed in ovarian cells 
and follicular fluid, including advanced oxidation protein 
products (AOPPs), carbonylated and nitrated proteins, 
4-HNE [78–81]. Follicular membranes contain large 
amounts of unsaturated fatty acids which are susceptible 
to ROS attack, thus leading to lipid peroxidation (LPO). 
LPO leads to the formation of acrolein and malondial-
dehyde (MDA) which can lead to a further increase in 
ROS production [82]. Oocyte meiosis and granulosa cell 
proliferation require an adequate supply of protein, car-
bohydrate and lipid; however, OS can directly damage 
macromolecular structures and therefore lead to ovarian 
damage [83].

Factors related to OS that lead to ovarian aging
Aging
Age is the most important intrinsic factor affecting ovar-
ian function and fertility [84]. With increasing age, the 
number of primordial follicles decreases exponentially, 
while the frequency of aneuploidy in oocytes increases, 
eventually leading to a significant reduction in pregnancy 
and live birth rates [85]. Clinical studies have shown that 
a woman’s fertility declines linearly by approximately 10% 
per year after the age of 35, with only 1% fertility by the 
age of 43 [86].

Aging leads to increased ROS production and reduced 
activity of antioxidant systems, which together lead 
to increased intracellular OS damage. Accumulation 
of DNA damage is one of the key factors in damage of 
oocyte quality with age [87]. DNA damage accumula-
tion increases chromosomal fragmentation and affects 
meiosis, spindle assembly and mitochondrial distribution 
in the oocyte, ultimately affecting embryo development 
[88]. Prolonged quiescence during meiosis I renders 
oocytes unusually sensitive to the accumulation of DNA 
damage [89].

DNA damage occurs frequently in aged oocytes, such 
as DNA double-strand breaks (DSBs), however, DNA 
damage response (DDR) repair is inefficient [90]. Stud-
ies have confirmed that the expression levels of oocyte 
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DNA repair genes, such as BRCA1, MRE11, and H2AX, 
decrease significantly with age [91, 92]. BRCA1 recruits 
various DNA repair proteins to promote the homolo-
gous recombination (HR)-based pathway for DNA dou-
ble-strand break repair (DSBR), and therefore plays an 
important role in DNA repair in aging ovaries [93, 94]. 
In addition, BRCA1 is required to prevent abnormal 
chromosome segregation [95]. Genome-wide association 
study (GWAS) analysis confirmed that genes associated 
with DDR, particularly BRCA1, are key determinants of 
the natural menopausal age in women [96].

Mitochondrial dysfunction due to aging has also been 
found to be a fundamental factor in the decline of oocyte 
quality. Mitochondrial dysfunction increases ROS leak-
age and mtDNA mutations and reduces ATP synthesis, 
thus affecting meiosis and decreasing oocyte quality [56]. 
In addition, biomacromolecular damage also accumu-
lates in ovarian cells with age; this represents another 
cause of ovarian hypofunction [97].

Cigarette smoking
The extensive harm of cigarette smoking to the human 
body is well established. Smoking has been demonstrated 
to damage ovarian function and closely related with 
infertility, pregnancy complications and fetal abortion 
[98]. Tobacco smoke contains stable pro-oxidants that 
can directly increase ROS in the body [99]. Tobacco also 
contains harmful chemicals such as nicotine and tar that 
can deplete protective antioxidants, ultimately leading to 
an OS state [100].

Researchers collected follicular fluid from female 
patients undergoing ART. High levels of tobacco metab-
olites were found in the follicular fluid of women who 
smoked, along with increased levels of lipid peroxidation 
damage and decreased levels of antioxidants [101, 102]. 
A meta-analysis of 12 studies reported that time to con-
ception, the incidence of infertility, and the number of 
IVF treatment cycles, were significantly higher in smok-
ers than in non-smokers; this was associated with ovarian 
OS damage caused by tobacco exposure [98].

The extent of ovarian OS damage is thought to fluctuate 
with the amount and duration of smoke exposure [103]. 
Any level of smoke exposure cannot be considered safe, 
either passively or only at low levels [104]. This raises 
a warning for women of childbearing age who have a 
smoking habit or are often passively exposed to cigarette 
smoke. Moreover, the harm caused by cigarette smoking 
can also impair ovarian function in female offspring of 
smokers. Studies investigating the ovaries of female off-
spring (F1 generation) of smoking mothers showed sig-
nificantly increased OS levels in oocytes, further leading 
to apoptosis and the abnormal proliferation of granulosa 
cells [105]. This effect continued into the F2 generation 

with impact on ovarian function not declining until the 
F3 generation [106].

High‑sugar diet
High-sugar diets are generally considered to be an 
unhealthy lifestyle [107]. Abundant clinical studies have 
confirmed that a high-sugar diet can lead to an OS state 
in the body, which accelerates the development of mul-
tisystem pathologies, such as diabetes, neurodegenera-
tive and cardiovascular diseases [108–110]. A high-sugar 
diet, whether long-term, short-term or fluctuating, can 
affect the body’s redox status and thus have a negative 
impact on ovarian function [111].

Excess carbohydrates in the body combine with pro-
teins to form advanced glycation end products (AGEs) 
[112]. AGEs bind to specific cell surface receptors 
(RAGE) and promote ROS production via NF-κB and 
NADPH oxidase [113]. RAGE proteins are abundantly 
distributed on the membranes of oocytes, stromal cells 
and granulosa cells. Therefore, prolonged exposure to 
high concentrations of AGEs can lead to a gradual accu-
mulation of OS damage in the ovary [114].

In addition, ROS are involved in a key step in the modi-
fied advanced glycation in AGE production. Thus, the 
accumulation of AGEs and the increase of ROS form a 
positive feedback loop that together increase OS [115]. 
Both AGEs and ROS can interfere with insulin signaling 
pathways and affect the normal function of ectopic glu-
cose transporters. And this leads to a reduction in the 
uptake of glucose by ovarian cells, resulting in poor fol-
licle development and an acceleration of ovarian aging 
[116]. OS damage induced by AGEs may also induce 
inflammation and hypoxia, damaging the blood vessels of 
the ovaries and further accelerating ovarian aging [116]. 
In addition, AGEs can directly stimulate the production 
of extracellular matrix (ECM) and the abnormal cross-
linking of collagen and elastin in the ovary, thus affecting 
the proliferation and division of granulosa cells and ulti-
mately disrupting ovarian function [117].

Pressure
Females are frequently exposed to multiple forms of pres-
sure, including career, family and childbirth [118]. Both 
repeated acute stress and long-term persistent psycho-
logical stress have been shown to be independent risk 
factors for pregnancy rates, live birth rates, preterm 
delivery and low birth weight [119].

Pressure can impair ovarian function in many ways. On 
the one hand, pressure can induce the release of the stress 
hormone cortisol, which acts on the hypothalamic–pitui-
tary–adrenal (HPA) and hypothalamic-pituitary-ovarian 
(HPO) axes to elicit direct negative effects on the ovary 
[120]. At the same time, the body’s adaptation to pressure 
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leads to a dramatic rise in intracellular OS and an endog-
enous burst of internal calcium stores [121]. These trig-
ger multiple regulatory mechanisms in ovarian cells, such 
as autophagy, apoptosis and paraptosis, further leading to 
cell cycle arrest and a decline in ovarian function [122, 
123]. On the other hand, cortisol also reduces the secre-
tion of antioxidants such as estradiol-17β, thus leading to 
decreased OS defense in ovarian cells [124]. Zhao et  al. 
investigated the effect of chronic unpredictable mild 
stress (CUMS) on ovarian function in rats. The results 
showed that the CUMS group had increased ovarian 
ROS levels, mitochondrial dysfunction and cell apopto-
sis, along with decreased AMH and E2 levels. [125, 126]. 
In addition, pressure has been found to decrease levels 
of nerve growth factor (NGF) and brain-derived neuro-
trophic factor (BDNF) [127, 128]; thus leading to over-
activation of the sympathetic nerves in the ovary, thereby 
impairing ovarian function [129].

Superovulation
Controlled ovarian hyperstimulation (COH) is widely 
used in IVF-ET to obtain a sufficient number of oocytes 
for downstream processing [130]. However, successful 
ovulation is accompanied by a rapid increase in OS lev-
els and inflammatory response [131]; thus, whether COH 
can lead to ovarian OS damage has received widespread 
attention.

Clinical studies have identified significantly lower lev-
els of antioxidants (including alpha-tocopherol, TAA and 
paraoxonase) in the follicular fluid of women receiving 
COH intervention when compared to women receiv-
ing natural cycle (NC) intervention [132]. Women who 
receive COH also exhibited an abnormal inflammatory 
response [133, 134]. OS damage to the ovaries was also 
significantly correlated with COH cycles. Higher mark-
ers of OS damage and lower antioxidant enzymes in the 
ovaries could be observed in cycles 3–5 when compared 
to cycles 1–2. This was accompanied by lower quality 
embryo rates, implantation rates and clinical pregnancy 
rates [135].

Similarly, related experimental studies have confirmed 
the oxidative damage to the ovaries by superovulation. 
Nie et al. performed continuous superovulation interven-
tion in mice and observed a significant increase in OS 
damage products and oocyte apoptosis in the super-pro-
moting group that was associated with activation of the 
Sirt1/FoxO1 signaling pathway [136]. Repeated ovulation 
promotion increased the number of abnormal mitochon-
dria in mouse oocytes, reduced the volume of the pri-
mordial follicular pool, decreased serum AMH levels and 
significantly inhibited embryo development [137]. This 
process also significantly increases the risk of long-term 
complications such as osteoporosis and cardiovascular 

disease [138]. In contrast, oral contraceptives have been 
shown to alleviate age-related ovarian aging and fertility 
decline by suppressing ovulation [139].

Chemotherapy
The application of chemotherapy agents has increased 
the chances of long-term survival for cancer patients. 
However, the damage that these agents cause to ovar-
ian function has received increasing levels of attention 
[140]. Chemotherapy not only induces atresia of grow-
ing follicles leading to temporary amenorrhea [141], but 
also accelerates overactivation of the primordial follicu-
lar leading to a reduced ovarian reserve [142]. Multiple 
clinical trials have identified varying degrees of impaired 
ovarian function in women who have received chemo-
therapy [143–145].

OS damage has been identified as an important 
mechanism by which chemotherapy side effects occur 
[146]. Cisplatin is commonly used to treat solid tumors. 
Researchers gave rats an intraperitoneal injection of cis-
platin and found that the expression levels of 8-OHdG 
and MDA increased significantly, while the levels of 
antioxidant enzymes SOD and GSH-Px decreased sig-
nificantly in the ovaries [147]. At the same time, the 
ovarian cortex was significantly damaged or was even 
indistinguishable from the medulla [146]. Paclitaxel is 
often used in combination with carboplatin as a chemo-
therapy regimen for non-small cell lung cancer and ovar-
ian cancer. Qin et  al. found that paclitaxel intervention 
in mice resulted in a significant increase in the lipid per-
oxidation product 4-HNE and apoptosis in the ovary; this 
was accompanied by a reduced number of follicles, along 
with morphological abnormalities of follicles at all stages 
[140]. Methotrexate (MTX) is commonly used to treat 
tumors and autoimmune diseases. MTX has been shown 
to deplete NADPH and antioxidant enzymes and to 
induce mitochondrial dysfunction, DNA breaks and dis-
ruption of the spindle assembly, thereby affecting oocyte 
maturation [148]. MTX could also cause severe follicular 
degeneration and intra-ovarian hemorrhage and edema, 
ultimately destroying ovarian function [149].

Industrial pollution
With the rapid development of industrialization, many 
industrial by-products have been shown to affect ovar-
ian function by increasing ROS levels. Bisphenol A (BPA) 
is an important material used in the synthesis of poly-
carbonate and epoxy resins. BPA was found to increase 
ROS levels in ovarian cells in a dose- and time-dependent 
manner, reduce mitochondrial membrane potential, and 
activate the JNK signaling pathway to accelerate granu-
losa cell apoptosis [150]. Fluorene 9-bisabolol (BHPF), 
as a substitute for BPA, also poses a risk to ovarian 
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function. Following BHPF intervention, oocytes were 
found to exhibit increased levels of ROS and DNA dam-
age, accompanied by mitochondrial dysfunction, polar 
body extrusion and disruption of the spindle assembly 
[151]. Nonylphenol (NP) is an important raw material for 
the fine chemical industry. Related studies have shown 
that NP can increase ROS levels in rat ovarian granulosa 
cells, further activating the AKT/AMPK/mTOR signal-
ing pathway, triggering excessive cellular autophagy and 
ultimately reducing ovarian function [152]. Di-phthalate 
(DEHP) is a type of common plasticizer and has been 
found to increase intracellular β-galactosidase (β-gal) 
activity, activate the Bax/Bcl-2 signaling pathway and 
CASP3 expression, and inhibit steroid synthesis, ulti-
mately leading to premature ovarian aging [153].

In conclusion, a variety of external factors can acceler-
ate ovarian aging by increasing the OS state in the body. 
External factors include lifestyle choices such as smok-
ing, high-sugar diets, and excessive psychological pres-
sure; superovulation during ART, chemotherapy drugs 
and industrial environmental pollutants are also impor-
tant factors, as summarized in Table 1. An increased OS 

state can cause cellular damage, including DNA damage, 
mitochondrial dysfunction and biomacromolecular dam-
age. OS damage in cells can lead to the meiotic arrest of 
oocytes, the inhibition of granulosa cell proliferation, 
and the abnormal proliferation of interstitial cells, all of 
which can accelerate the ovarian aging process, as dem-
onstrated in Figs. 1 and 2.

OS‑related signaling pathways in ovarian aging
Excessive ROS can result in crosstalk between a series of 
signaling pathways and protein factors within the body. 
This section focuses on signaling pathways related to OS 
and ovarian function, including Nrf2, Sirtuins, MAPK, 
AKT, FoxO family and Klotho signaling pathways, as 
demonstrated in Fig. 3.

Nrf2 signaling pathway
Nuclear factor-E2-related factor 2 (Nrf2) is a transcrip-
tion factor involved in regulating antioxidant responses 
to protect cellular functions [154]. Under normal condi-
tions, Nrf2 binds to Kelch-like ECH-associated protein 
1 (Keap1), leading to the ubiquitination and degradation 

Table 1  Related OS factors leading to ovarian aging

ROS Reactive oxygen species, DSBs DNA double-strand breaks, DDR DNA damage response, IVF-ET In vitro fertilization-embryo transfer, AREs Antioxidant response 
elements, HPO Hypothalamic-pituitary-ovarian, HPA hypothalamus–pituitary–adrenal

Influence Factors Injury Effects Summary

Aging • Decreased pregnancy and live birth rates
• Increased ROS production, decreased antioxidant system defense
• Frequent DSBs, inefficient DDR repair, accumulation of DNA damage
• Mitochondrial dysfunction
• Accumulation of biomacromolecules damage

Cigarette smoking • Extension of conception time, reduction of fertility incidence, extension 
of IVF-ET treatment cycles
• Increased ROS formation, depletion of protective antioxidants
• Impairment of ovarian function in female offspring

High-sugar diet • Increasing levels of ROS through AGEs production
• Dysregulation of insulin signaling pathway
• Hyperplasia of extracellular matrix
• Impairment of blood vessel
• Induction of inflammation and hypoxia

Pressure • Reduced pregnancy rate
• Direct negative effects on HPO and HPA axes
• Decrease of antioxidant expression
• Accelerated cellular autophagy, apoptosis and paraptosis
• Disorder of endocrine hormone

Superovulation • Increased ROS levels and inflammatory response
• Reduced primordial follicles
• Increased risk of osteoporosis and cardiovascular disease in the long term

Chemotherapy • Depletion of antioxidant enzymes
• Mitochondrial dysfunction, lipid peroxidation
• Exacerbated cell apoptosis
• Atresia of growing follicles, overactivation of primordial follicular

Industrial Pollution • Reduction of mitochondrial membrane potential
• Exacerbated DNA damage
• Spindle assembly destruction
• Increased cell apoptosis and autophagy
• Inhibition of steroid synthesis
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Fig. 1  Intracellular OS damage

Fig. 2  OS injury in the ovary. A OS damage of blood vessels, interstitium, follicles and corpus luteum in the ovary. B OS damage of oocytes, 
granulosa cell, ovarian interstitial cell and follicular fluid in ovarian follicles
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of Nrf2. This facilitates only a basal level of antioxidant 
enzyme expression. However, in response to cellular OS, 
the Nrf2-Keap1 complex dissociates and Nrf2 is trans-
located to the nucleus, thus leading to the rapid accu-
mulation of nuclear Nrf2. Nuclear Nrf2 binds genomic 
antioxidant response elements (AREs) to promote the 
gene expression of a series of target genes including anti-
oxidant enzymes and detoxification factors, such as heme 
oxygenase-1 (HO-1), NAD(P)H: quinone-oxidoreductase 
(NQO1), and glutamate-cysteine ligase subunit cataly-
sis (GCLC) [155]. Lead exposure in mice inhibited the 
Keap1/Nrf2 pathway and exacerbated ovarian OS dam-
age, which inhibited oocyte maturation and fertiliza-
tion [156]. Compared to wild-type mice, Nrf2−/− mice 
exhibited premature follicular activation and thus an 
age-dependent decline in ovarian function [157]. Loss of 
Nrf2 function also blocked microsomal epoxide hydro-
lase expression and reduced cellular antioxidant capacity, 
thereby increasing ovarian sensitivity to environmental 
pollutants [158, 159].

Related antioxidant treatment may also improve ovar-
ian OS status by modulating the Nrf2 pathway. The oral 

administration of DMF intervention to mice was shown 
to upregulate ovarian tissue antioxidant enzyme and tel-
omere protein expression, increase serum AMH level, 
slow down DNA damage accumulation, and protect the 
primordial follicular pool through the Nrf2 pathway [73]. 
In vitro experiments further revealed that the antioxidant 
epicatechin could protect granulosa cells from OS dam-
age by activating the Nrf2 signaling pathway, upregulat-
ing NQO1, HO-1 and SOD expression [160]. Therefore, 
the Nrf2 signaling pathway is one of the most important 
defense mechanisms for cells to resist OS damage.

Sirt signaling pathway
Sirtuins belong to the class III nicotinamide adenine 
dinucleotide NAD + dependent deacetylase family which 
included seven subtypes; these proteins are involved 
in many physiological functions in cells [161]. Of these, 
Sirt1 is a key regulatory protein of cellular metabolism 
and OS and has been extensively studied in ovarian func-
tion [162].

Sirt1 can deacetylate key proteins involved in the 
cellular stress response, such as FoxO, causing the 

Fig. 3  OS-related signaling pathways in ovarian aging. Excess levels of ROS promote the dissociation of the Keap1-Nrf2 complex and Nrf2 
translocation into the nucleus to bind to AREs, thus promoting the expression of antioxidant enzymes. Sirt can deacetylate key proteins involved 
in the cellular stress response such as FoxO, and regulate both telomerase activity and mitochondrial function through PGC1α. The MAPK cascade 
signaling pathway is activated by ROS to deliver extracellular signals to the nucleus, promote apoptosis, inhibit proliferation and induce cell cycle 
arrest. AKT plays an important role in the regulation of cellular redox homeostasis, and phosphorylated AKT can regulate a variety of downstream 
proteins (Bad, mTOR, Cyclins and Nrf2) to further regulate cellular apoptosis, autophagy and proliferation. FoxO senses cellular OS status and acts as 
a transcription factor to regulate cell apoptosis and the expression of antioxidant enzymes. Klotho regulates cellular oxidative homeostasis through 
the PI3K/AKT pathway, and the HPO axis through the FGF-Klotho endocrine system
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upregulation of antioxidant enzymes such as CAT and 
GSH-Px1 [163]. Previous research showed that consecu-
tive superovulation could exacerbate OS damage in the 
ovary, increase granulosa cell apoptosis and decrease 
oocyte quality and primordial follicle number through 
the Sirt1/FoxO1 signaling pathway [136]. Sirt1 was 
shown to be involved in the first-line defense against 
ROS via the FoxO3a-MnSod axis in the germinal vesi-
cle phase (GV) of immature mouse oocytes [164]. Sirt1 
deletion in oocytes led to reduced oocyte quality, the 
inhibition of oocyte division, and increased OS damage 
during the embryonic period, ultimately causing negative 
effects on pregnancy outcome [165]. The knockdown of 
Sirt1 in granulosa cells was found to impair E2 synthe-
sis and secretion and significantly reduce the expression 
of E2-related receptors (ESR, FSHR and AMHR2) [166]. 
In addition, Sirt1 mediates the activation of peroxi-
some proliferator-activated receptor gamma coactivator 
l-alpha (PGC1α), further promoting mitochondrial bio-
genesis and oxidative phosphorylation during primordial 
follicle activation [167]. Therefore, Sirt1 has an important 
role in the antioxidant protection of oocytes, granulosa 
cells and early embryos.

Other subtypes of the Sirtuins family also play a role in 
the protection of ovarian function. Sirt2 controlled his-
tone H4K16 deacetylation and is therefore a key effector 
of oocyte meiosis [167]. Sirt3 can regulate the expression 
of aromatase and 17-hydroxysteroid dehydrogenase, and 
promote progesterone secretion [168]. Sirt6 has been 
shown to prevent OS-induced DNA damage and play an 
important role in stabilizing oocyte telomeres [79].

MAPK signaling pathway
The mitogen-activated protein kinase (MAPK) pathway 
is an important transmitter that mediates extracellular 
signals from the cell membrane surface to the nucleus 
[169]. The MAPK signaling pathway consists of MAP 
kinase kinase kinase (MKKK), MAP kinase kinase (MKK) 
and MAPK. Tertiary kinases are activated sequentially 
and participate in internal and external reactions to fur-
ther regulate cell proliferation, differentiation, survival 
and death [170].

Extracellular regulated protein kinases (ERK), p38 
MAPK and c-Jun N-terminal kinase (JNK) are all part of 
the MAPK family and have been extensively studied in 
ovarian aging [171]. Sun et al. demonstrated that CUMS 
could exacerbate ROS levels in mouse ovaries, inhibit 
granulosa cell proliferation and accelerate cellular senes-
cence via the MAPK pathway [172]. The ERK pathway 
was shown to be involved in autophagy-related inhibi-
tion of cell proliferation and cellular senescence, while 
the JNK and p38 MAPK pathways have been shown to 
be associated with cell cycle arrest [172]. Apoptosis 

signal-regulating kinase 1 (ASK1) is a widely expressed 
redox-sensitive mitogen/threonine kinase. Upon cellular 
OS injury, ASK1 was activated and further activated JNK, 
thereby inducing downstream signaling [173]. Exposure 
to bisphenol AF can regulate the ROS-ASK1-JNK path-
way, reduce mitochondrial membrane potential, and 
induce apoptosis in ovarian granulosa cells [174].

Antioxidant supplementation can reduce the dam-
aging effects of ROS on the ovaries through the MAPK 
pathway. Melatonin can inhibit mROS production and 
increase antioxidant enzyme expression through the ERK 
pathway to further improve excessive autophagy induced 
G2/M cell cycle arrest [175]. NAC was shown to be able 
to attenuate OS damage in ovarian granulosa cells by 
advanced oxidation protein products (AOPPs) via the 
JNK/p38 MAPK-p21 pathway, ultimately improving fol-
licular atresia [176].

AKT signaling pathway
Serine/threonine kinase AKT is the central survival 
mediator in cell signaling transmission and is activated 
by a variety of stimuli including ROS, growth factors 
and cytokines [177]. Phosphorylated AKT can regulate 
a variety of downstream proteins, such as Bad, mTOR 
and Cyclins, thus playing an important role in various 
biological processes such as apoptosis, autophagy and 
proliferation [178].

Bad is a Bcl-2 homology domain 3-related protein 
involved in apoptosis. AKT can regulate Bad activity 
by phosphorylating at Ser-136 [179]. Dephosphorylated 
Bad was able to form a pro-apoptotic complex with 
anti-apoptotic factors Bcl-2 or Bcl-xL, which activated 
pro-apoptotic members such as Bax or Bak, and jointly 
promoted cell apoptosis [180]. Studies have shown that 
H2O2 can inhibit the PI3K/AKT pathway, and induce 
the elevated expression of Bad, Bax and CASP9, further 
accelerating granulosa cell apoptosis [181]. Meanwhile, 
OS can also increase the expression of p53 up-regulated 
modulator of apoptosis (PUMA) through the PI3K/
AKT pathway and induce apoptosis in another way 
[182]. mTOR is a serine/threonine protein kinase in 
the PI3K-related kinase (PIKK) family. AKT blocks the 
negative regulation of small G protein Rheb by TSC1/2 
and indirectly activates mTOR complex 1 (mTORC1) 
which is involved in the critical regulation of cellu-
lar autophagy [183]. OS injury initiates autophagy by 
inhibiting the PI3K/AKT signaling pathway, promot-
ing the dissociation between mTORC1 and ULK1, fur-
ther phosphorylating autophagy-related proteins such 
as Atg13 [184]. It was found that H2O2 intervention in 
granulosa cells inhibited the PI3K/AKT/mTOR path-
way and increased LC3-II/LC3-I and Beclin-1 expres-
sion [185]. Activation of AKT regulates the cell cycle by 
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regulating the function of cell cycle proteins (cyclins). 
Intervention of isorhamnetin reduced cellular OS level, 
and increased the expression of Cyclin D, Cyclin E and 
Cyclin A by PI3K/AKT pathway, ultimately promoting 
granulosa cell proliferation [186].

FoxO signaling pathway
Forkhead box O (FoxO) is a family of transcription fac-
tors consisting of FoxO1, FoxO3, FoxO4 and FoxO6. OS 
can activate FoxO signaling pathway through phospho-
rylation, mono-ubiquitination and glycosylation [187]. 
Activated FoxO is transferred to the nucleus and reg-
ulates the expression of a series of downstream genes, 
further regulating apoptosis, autophagy and cell cycle 
arrest [188].

FoxO1 has been extensively studied in ovarian aging. 
It was confirmed that FoxO1 expression was most 
abundant in the granulosa cells of atretic follicles and 
was mainly localized in the nucleus [189]. Liu et  al. 
found that 3-NP intraperitoneal injection significantly 
promoted FoxO1 transfer into the nucleus, upregu-
lated the expression of PUMA, induced granulosa cell 
apoptosis and eventually led to follicular atresia [190]. 
In  vitro experiments further showed that H2O2 acti-
vated the FoxO1 pathway and promoted the expression 
of downstream FasL, CASP3, and Bim, thus leading 
to apoptosis in the ovarian granulosa cells in a dose-
dependent manner [191].

FoxO1 is also involved in the majority of the regulatory 
processes of FSH on granulosa cells [192]. FSH was pre-
viously shown to block post-translational modification 
of FoxO1 in granulosa cells and reduce FoxO1 expres-
sion, thus promoting cellular differentiation and follicle 
growth [189]. Furthermore, FSH inhibited the production 
of acetylated FoxO1 and its interaction with autophagy-
related gene (Atg) protein through the PI3K/AKT path-
way, thus reducing the level of cellular autophagy and 
ultimately inhibiting the death of ovarian granulosa cell 
[193].

FoxO3a is considered to be an ideal candidate gene 
for longevity and health [194]. The absence of FoxO3a 
led to the premature depletion of primordial follicles 
[195]. Cisplatin intervention significantly downregulated 
p-FoxO3a and antioxidant enzyme expression in mouse 
ovaries, impaired mitochondrial function, and ultimately 
accelerated apoptosis [196, 197]. A maternal high-fat diet 
could also reduce the number of primordial follicles in 
the ovaries of offspring via the FoxO3a pathway [198]. 
Conversely, oyster peptides upregulated the expression 
of FoxO3a and T-SOD, downregulated the expression of 
p53 and Bad, and attenuated D-galactose-induced pre-
mature ovarian decline [199].

Klotho signaling pathway
Klotho is known to play an important role in the inhibi-
tion of aging. High levels of Klotho expression can pro-
long human lifespan, while low expression levels can 
lead to accelerated aging and increase the risk of multi-
system diseases [200]. Klotho is mainly present intracel-
lularly in transmembrane and secreted forms [201]. The 
transmembrane form of Klotho is a full-length transcript 
encoding 1014 amino acids. Once the short transmem-
brane structural domain is removed, this fragment can be 
released into the circulation in a secreted form [202].

Membrane Klotho is a co-receptor for endocrine fibro-
blast growth factors (FGF) and is involved in the activa-
tion of FGF receptors. Numerous studies have shown 
that the FGF-Klotho endocrine system plays a key role in 
the development of reproductive disorders by regulating 
the HPO axis [203]. Klotho-deficient mice exhibited dys-
function of the HPO axis as evidenced by a decrease in 
FSH and LH, follicular arrest in proestrus, gonadal atro-
phy and infertility [204].

Secreted forms of Klotho are more abundant than 
membrane Klotho. As an endocrine regulator, Klotho is 
thought to inhibit OS and modulate ion channel activ-
ity to exert positive anti-aging effects [205]. Studies have 
demonstrated that reduced Klotho expression activates 
the PI3K/AKT pathway, downregulates intracellular 
FoxO3a expression, disrupts oxidative homeostasis and 
inhibits autophagy, thus accelerating apoptosis [206].

Additional antioxidant therapy that can improve 
ovarian aging
Melatonin
Melatonin is an indoleamine secreted by the pineal gland 
located in the third ventricle. With lipid-soluble and 
water-soluble properties, melatonin can pass through cell 
membranes easily and is thus present in the blood and 
body fluids abundantly [207]. It has been found that mel-
atonin is present in high concentrations in human folli-
cular fluid [208]. Melatonin has a good antioxidant effect 
by neutralizing free radicals and increasing the activity 
of antioxidant enzymes such as SOD and GSH-Px [209]. 
As an important endogenous antioxidant, its antioxidant 
properties are superior to conventional antioxidants, 
such as vitamin C and E [210].

Melatonin is widely used in ART [211]. In patients 
undergoing IVF-ET, exogenous melatonin supplemen-
tation significantly reduced 8-OhdG and HEL concen-
trations in follicular fluid [212]. Additional melatonin 
also increased follicular growth rate, improved oocyte 
quality, increased fertilization rate and the number of 
quality embryos, ultimately increasing pregnancy rate 
[213]. Melatonin has also been shown to protect luteal 
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granulosa cells from OS damage and increase proges-
terone secretion [214]. Moreover, melatonin was shown 
to reduce excessive Ca2+ levels in immature human 
oocytes during in vitro maturation (IVM) and improved 
the maintenance of mitochondrial membrane potential, 
thereby avoiding further ROS production [215].

Numerous experimental studies have demonstrated the 
important role of melatonin in improving oocyte qual-
ity and pregnancy outcomes. Melatonin significantly 
reduced the production of mitochondria ROS (mROS) in 
rat ovaries, increased telomere length, improved oocyte 
quality and ultimately increased the litter size [216]. Mel-
atonin enhances the repair of DSBs via the non-homol-
ogous end joining (NHEJ) pathway to protect oocytes 
from the accumulation of DNA damage [89]. Melatonin 
can also upregulate antioxidant enzyme expression by 
inducing demethylation of the promoter regions of SOD, 
GSH-Px4 and CAT, thereby enhancing the antioxidant 
capacity of cumulus cells [217]. Melatonin activates 
ErbB1 and ErbB4 gene expression to promote embryo 
implantation and blastocyst growth, and further protects 
embryos from OS [218].

Melatonin has been shown to protect the ovaries from 
chemotherapy-induced damage. Barberino et  al. per-
formed melatonin pretreatment in mice prior to expo-
sure to cisplatin. The results showed that melatonin 
reduced ROS levels in the ovary, increased mitochon-
drial activity, inhibited CASP3 expression and alleviated 
oocyte retraction and lysis [219]. Similarly, Jang et  al. 
demonstrated that melatonin reduced cisplatin-induced 
excessive activation of the primordial follicles by modu-
lating the PTEN/AKT/FOXO3a pathway [220].

Vitamins
Vitamin C (VC), also known as ascorbic acid, is an excel-
lent water-soluble natural antioxidant [221]. Extensive 
studies have demonstrated that VC can protect ovaries 
from harmful compounds such as NaF and As2O3 by 
upregulating the expression of SOD, CAT and GSH-Px 
and by reducing lipid peroxidation (LPO) [222]. Gai et al. 
found that VC also significantly ameliorated ambient 
aerosol fine particulate matter (PM2.5)-mediated ovar-
ian damage, reduced the levels of oxidative products and 
inflammatory factors, decreased apoptosis and protected 
the mitochondrial ultrastructure [223]. In addition, VC 
could regulate cell proliferation and differentiation and 
steroid production, promote follicle growth and regu-
late endocrine secretion, and ultimately improve ovarian 
aging [224, 225].

Vitamin E (VE) is an important fat-soluble antioxi-
dant [226]. A clinical study found that VE combined with 
selenium supplementation significantly improved AMH 
index, antral follicle count (AFC) and mean ovarian 

volume (MOV) in patients with occult POI [227]. Experi-
mental studies have found that VE intervention can 
enhance the antioxidant capacity of ovarian tissue, regu-
late endocrine hormones, reverse follicular atresia, and 
restore the normal vascular distribution of ovarian tissue 
[228]. VE was also shown to be involved in the normal 
antioxidant function of GSH-Px1 as an essential cofac-
tor [229]. In addition, VE can improve glucose uptake 
by follicular cells through the upregulation of glucose 
transporter-1 (GLUT-1) expression [230] and inhibit the 
abnormal proliferation of ovarian theca-interstitial cells 
[231], thereby protecting ovarian function.

Stem cell therapy
Stem cells are a class of multipotential cells that can self-
replicate and can differentiate into cells with multiple 
functions under certain conditions [232]. According to 
their differentiation potential, stem cells can be classified 
into totipotent stem cells, pluripotent stem cells and uni-
potent stem cells [233]. Due to excellent self-replication 
and multi-directional differentiation ability, stem cell 
therapy has attracted much attention in ovarian aging 
over recent years [234].

Mesenchymal stem cells (MSCs) are one of the most 
widely studied pluripotent stem cells. MSCs derived from 
different sources such as bone marrow, fat and amni-
otic fluid have been found to play a key role in restor-
ing ovarian function and reproductive potential [235]. 
In the ovary, stem cells migrate mainly to the hilum and 
medulla after transplantation, with a few migrating to 
the cortex [236]. The migration of stem cells can exert 
effects on cell OS, proliferation and apoptosis mainly via 
paracrine action, thus repairing damaged ovaries [237]. 
Research has shown that human placental mesenchymal 
stem cells (hPMSCs) secreted a large amount of epider-
mal growth factor (EGF) which further activated the 
Nrf2/HO-1 signaling pathway to promote granulosa cell 
proliferation and oocyte maturation [238, 239]. Human 
umbilical cord mesenchymal stem cells (hUCMSCs) have 
been shown to reduce the autophagy level of theca inter-
stitial cells (TICs) through the AMPK/mTOR signaling 
pathway, attenuate ovarian cell apoptosis, and ultimately 
improve ovarian function in POI rats [240]. It has been 
demonstrated that transplanted MSCs are able to restore 
ovarian function, including reducing OS damage, and 
participating in follicular maturation [241]. These find-
ings provide new insights into our understanding of stem 
cell therapy and provide new avenues for developing 
more effective anti-aging treatments.

Antioxidant monomers
Extensive research has demonstrated that a variety 
of monomers can protect ovarian function through 
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antioxidant mechanisms. Tea polyphenols (TPS) is the 
general term for the polyphenols in tea leaves and it has 
been widely investigated for its important healthcare 
effects [242]. TPS has been shown to inhibit the surge 
of OS and relieved autophagic pressure in ovarian tissue 
caused by industrial plasticizers [243]. Grape seed proan-
thocyanidin extract (GSPE) is an excellent oxygen free 
radical scavenger [244]. GSPE exerts protective effects 
on both D-gal-induced ovarian hypofunction and natu-
ral ovarian aging. It can maintain the balance between 
cell proliferation and apoptosis, and reduce nuclear 
chromatin clumping in ovarian granulosa cells [245]. 
Resveratrol (Res) is a natural plant-derived phenol with 
excellent antioxidant activity [246]. Res has been found 
to attenuate the damage caused by cyclophosphamide on 
ovarian function, including reducing OS damage, inhib-
iting apoptosis and promoting ovarian stem cell repair 
[18]. In vitro studies have also revealed that Res can acti-
vate Nrf2 protein expression and reverse H2O2-induced 
OS damage in oogonial stem cells in a dose-dependent 
manner [18]. Curcumin is a diketone compound with 
excellent antioxidant and anti-inflammatory effects 
[247]. Curcumin intervention is shown to upregulate 
the expression of growth differentiation factor-9 (GDF-
9) and bone morphogenetic protein 15 (BMP-15) and 
increase the number of follicles in mouse ovaries [248].

Traditional Chinese medicine
Traditional Chinese Medicine (TCM) has a long history 
in the treatment of ovarian aging. Several TCM thera-
pies have been demonstrated to modulate ovarian aging 
by alleviating OS damage. Kuntai capsule is a proprietary 
Chinese medicine that is widely used to treat meno-
pause syndrome [249]. Research has shown that Kuntai 
capsule can upregulate SOD2, reduce ovarian apoptosis 
and follicular atresia, and increase AMH level in the ova-
ries of superovulated mice [250]. Bu Shen Huo Xue Tang 
(BSHXT) is a TCM formula that is clinically used in the 
treatment of POI. Research has shown that BSHXT can 
upregulate the expression of antioxidant enzymes SOD, 
HO-1 and NQO1 by activating the Nrf2/Keap1 signal-
ing pathway and increase the levels of AMH and E2 in 
POI mice [251]. Acupuncture is an important external 
TCM treatment that has been proven to treat multiple 
age-related diseases [252]. Transcutaneous electrical acu-
point stimulation (TEAS) is a combination of acupoint 
stimulation and electrical stimulation. TEAS interven-
tion has been shown to upregulate the expression of anti-
oxidant enzymes and proliferating cell nuclear antigen 
(PCNA), reduce apoptosis, and inhibit the loss of primor-
dial follicles in ovarian senescent mice [253].

In conclusion, additional antioxidant therapy can 
improve the redox imbalance in the body, as summarized 

in Table  2. Some of the existing antioxidants, such as 
melatonin and vitamin E, have been used clinically and 
have proven their excellent antioxidant efficacy. However, 
it should be noted that most of the current antioxidant 
monomer studies have been applied only in animal mod-
els. Moreover, the efficacy of stem cell therapy in anti-
oxidant therapy is also gaining attention. Therefore, these 
therapies should be validated in clinical settings in the 
future.

Table 2  Additional antioxidant therapy improving ovarian aging

DSBs DNA double-strand breaks, OS Oxidative stress, GSH-Px Glutathione 
peroxidase, GLUT-1 glucose transporter-1, EGF Epidermal growth factor, TICs 
Theca interstitial cells, TCM Traditional Chinese Medicine

Antioxidant
Therapy

Therapeutic Effects Summary

Melatonin • Increased fertilization rate, number 
of quality embryos and pregnancy 
rate
• Acceleration of follicle growth, 
improvement of oocyte quality and 
increase of progesterone production
• Improvement of primordial follicu-
lar hyperactivation
• Neutralization of free radicals and 
increase of antioxidant enzymes 
activity
• Enhancement of DSBs repair
• Improvement of mitochondrial 
membrane potential
• Increased telomere length
• Inhibition of cell apoptosis

Vitamin C • Reduced accumulation of OS 
damage products and inflammatory 
factors
• Increase of antioxidant enzyme 
expression
• Regulation of cell proliferation and 
differentiation
• Promotion of steroid production

Vitamin E • Assistance of GSH-Px1 to exert 
antioxidant function
• Upregulation of GLUT-1 expression
• Inhibition of abnormal proliferation 
of TICs

Stem cell therapy • Secretion of large amounts of EGF
• Promotion of granulosa cell prolif-
eration and oocyte maturation
• Reduced autophagy in TICs

Antioxidant Monomer • Antioxidant and anti-inflammatory 
effects
• Maintenance of homeostasis 
between cell proliferation and 
apoptosis
• Reduced condensation of nucleus 
chromatin
• Promotion of damaged ovarian 
stem cell repair

TCM related • Reduction of cell apoptosis
• Decreased follicular atresia
• Upregulation of antioxidant 
enzyme expression
• Inhibition of primordial follicles loss
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Conclusion and future directions
The role and mechanisms of OS in ovarian aging have 
been extensively studied. Multiple factors, such as 
aging, smoking, and high sugar diets, can promote 
an OS state in the body; these factors could further 
accelerate ovarian aging via several key mechanisms, 
including apoptosis, increased inflammation and mito-
chondrial damage. The regulation of Nrf2, Sirt, MAPK, 
AKT and other OS signaling pathways play important 
roles in ovarian OS damage. Related antioxidants, such 
as melatonin and vitamin E, could improve OS status 
to restore ovarian function and therefore have poten-
tial clinical applications. There are still several aspects 
that need to be studied in the future: (1) multiple pro-
teins and pathways are involved in the regulation of OS; 
the regulatory networks and key mechanisms of OS in 
ovarian aging still need to be studied in depth; (2) the 
majority of OS-related studies have focused on in vivo 
and in  vitro experiments; further extension of these 
findings to clinical trials is needed to explore the safety 
and efficacy of antioxidant therapies; (3) antioxidant 
therapy has been initially proven to improve the quality 
of oocytes in  vitro; further studies are now needed to 
determine whether it can improve pregnancy outcomes 
in patients undergoing ART.
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Phosphatidylinositol 3-kinase; POI: Premature ovarian insufficiency; ROS: Reac-
tive oxygen species; Sirt: Sirtuin; SOD: Superoxide dismutase; TCM: Traditional 
Chinese Medicine.
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