
Yin et al. Journal of Ovarian Research          (2022) 15:117  
https://doi.org/10.1186/s13048-022-01051-8

RESEARCH

Alterations of bacteriome, mycobiome 
and metabolome characteristics in PCOS 
patients with normal/overweight individuals
Guoshu Yin1*†, Fu Chen2†, Guishan Chen1, Xiaoping Yang1, Qingxia Huang1, Lan Chen1, Minjie Chen3, 
Weichun Zhang1, Miaoqiong Ou2, Man Cao4, Hong Lin5, Man Chen5, Hongzhi Xu6, Jianlin Ren6*, 
Yongsong Chen1* and Zhangran Chen6* 

Abstract 

To characterize the gut bacteriome, mycobiome and serum metabolome profiles in polycystic ovary syndrome 
(PCOS) patients with normal/overweight individuals and evaluate a potential microbiota-related diagnostic method 
development for PCOS, 16S rRNA and ITS2 gene sequencing using 88 fecal samples and 87 metabolome analysis from 
serum samples are conducted and PCOS classifiers based on multiomics markers are constructed. There are significant 
bacterial, fungal community and metabolite differences among PCOS patients and healthy volunteers with normal/
overweight individuals. Healthy individuals with overweight/obesity display less abnormal metabolism than PCOS 
patients and uniquely higher abundance of the fungal genus Mortierella. Nine bacterial genera, 4 predicted pathways, 
11 fungal genera and top 30 metabolites are screened out which distinguish PCOS from healthy controls, with AUCs 
of 0.84, 0.64, 0.85 and 1, respectively. The metabolite-derived model is more accurate than the microbe-based model 
in discriminating normal BMI PCOS (PCOS-LB) from normal BMI healthy (Healthy-LB), PCOS-HB from Healthy-HB. 
Featured bacteria, fungi, predicted pathways and serum metabolites display higher associations with free androgen 
index (FAI) in the cooccurrence network. In conclusion, our data reveal that hyperandrogenemia plays a central role in 
the dysbiosis of intestinal microecology and the change in metabolic status in patients with PCOS and that its effect 
exceeds the role of BMI. Healthy women with high BMI showed unique microbiota and metabolic features.The priority 
of predictive models in discriminating PCOS from healthy status in this study were serum metabolites, fungal taxa and 
bacterial taxa. 
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Introduction
Polycystic ovary syndrome (PCOS) is the most common 
endocrine disorder that causes infertility in reproductive-
aged women [1], which is also associated with insulin 
resistance (IR), type 2 diabetes mellitus (T2DM), dys-
lipidemia, nonalcoholic fatty liver disease (NAFLD) and 
cardiovascular disease [2, 3]. To date, the precise under-
lying triggers for PCOS remain unclear, but multifacto-
rial factors, including genetics, intrauterine environment, 
lifestyle and gut microbiota, are thought to be involved in 
its development.
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Microbiota dysbiosis is associated with endocrine and 
metabolic diseases such as obesity [4], diabetes [5] and 
PCOS [6, 7]. Recent studies have shown that gut micro-
biota of PCOS patients differs from that of healthy con-
trols. Qi et  al. [7] found that Bacteroides vulgatus was 
markedly elevated in PCOS individuals. Yang et  al. [8] 
showed that Bacteroides is a key microbial biomarker 
for PCOS and even has diagnostic value. The dynamic 
change of predominant bacteria in PCOS may be affected 
by race, lifestyle [9], disease severity and the sample size. 
Previously, we found that Prevotella_9, Dorea, Maihella 
and Slackia were significantly changed in PCOS patients 
[6]. Nevertheless, whether the gut microbiota contributes 
to the occurrence and development of PCOS needs fur-
ther investigation.

Recent evidence suggests that fungi influence local 
and peripheral immune responses, enhance relevant 
disease status [10], trigger the occurrence and develop-
ment of diseases, such as colitis [11], colorectal cancer 
[12], primary sclerosing cholangitis [13], alcohol-asso-
ciated liver disease [14] and COVID-19 [15]. Although 
limited reports have indicated that fungi play a certain 
role in endocrine and metabolic diseases, the illumina-
tion of their role is still in its infancy. Mar Rodríguez 
et al. [16] firstly revealed gut fungal composition altera-
tions in obese patients. Honkanen et  al. [17] showed 
that bacterial and fungal dysbiosis may be associated 
with the development of type 1 diabetes mellitus (T1D) 
in children with beta-cell autoimmunity. Patients with 
coronary heart disease complicated with NAFLD show 
an increase in the abundance of Preussia, Xylodon and 
Cladorrhinum and a reduction of Candida glabrata and 
Ganoderma [18].

Metabolomics is a useful method to discover and iden-
tify metabolites involved in disease [19, 20]. Our previ-
ous study showed that Prevotella_9 correlates positively 
with Lysopc 18:1, Glu-Gln, lysophosphatidyl choline 
(LPC) 22:1, PC(14:1E/8:0), and LPC 17:2 [6] but nega-
tively with estrone sulfate [6]. The correlation between 
the gut microbiota and plasma metabolites suggests that 
the former may participate in the metabolic pathway 
of PCOS. Therefore, integrated analysis of multiomics 
data from the gut bacteriome, mycobiome, metabolome 
and phenome may provide a clue to mechanistic links 
between PCOS and the gut microbiota. Furthermore, 
metabolomics provides potential metabolic markers for 
the prognosis and diagnosis of PCOS [19, 20]. Daan et al. 
reported that retinol-binding protein 4 (RBP-4), dipepti-
dyl peptidase IV (DPP-IV) and adiponectin are potential 
discriminative markers for PCOS with obvious hyperan-
drogenemia [21].

PCOS may have different etiological causes, and cur-
rently we can see that PCOS patients with normal/

overweight individuals also differ in clinical phenotypes, 
such as levels of insulin and polyunsaturated fatty acids 
including arachidonic acid [22]. Dapas et al. [23] showed 
that reproductive and metabolic subtypes of PCOS 
appeared to have distinct genetic architecture and these 
two subtypes had obvious difference of BMI. Therefore, 
we are of great concern about the etiological differences 
in obese and lean PCOS patients and the differences in 
their gut microbes and plasma metabolites.

In this study, PCOS patients and healthy volunteers 
with different body mass index (BMI) levels were used to 
determine gut bacteria and fungi by 16S and ITS2 gene 
sequencing methods, and serum metabolites from widely 
targeted metabolomes. The microbiome and metabolome 
data were then integrated to distinguish PCOS-related 
alterations in fecal microbial and serum metabolic fea-
tures, and potential links and roles of the microbiome 
and metabolome in disease diagnosis were assessed.

Methods
Subject recruitment
The study was a cross-sectional study and all experimen-
tal procedures were approved by the Ethics Committee of 
the First Affiliated Hospital Shantou University Medical 
College. The biological sample banks, including plasma, 
DNA and fecal samples were established. Written 
informed consent was obtained from all participants. The 
inclusion and exclusion criteria for the healthy volunteers 
and PCOS patients were the same as those described pre-
viously [6]. Patients with PCOS were diagnosed accord-
ing to the 2003 Rotterdam criteria, which require the 
presence of at least two of the following: oligo-ovulation 
and/or anovulation; clinical and/or biochemical signs 
of hyperandrogenism; and ultrasound findings of poly-
cystic ovaries in 1 or 2 ovaries, ≥ 12 follicles measuring 
2 to 9 mm in diameter, and/or ovarian volume ≥ 10 mL. 
Diagnoses of PCOS were made after the exclusion of 
other etiologies for hyperandrogenemium or ovulatory 
dysfunction including Cushing syndrome, 21-hydroxy-
lase deficiency, thyroid disease, androgen-secreting 
tumors, congenital adrenal hyperplasia and hyperprol-
actinemia. The healthy volunteers with regular menstrual 
cycles, normal ovarian morphology, and normal level of 
androgen were from the general community. A total of 
eighty-eight participants were recruited between June 
2019 and November 2020. The cohort was divided into 
four groups: Healthy-LB (Healthy individuals, BMI < 24) 
(n = 21), PCOS-LB (PCOS patients, BMI < 24) (n = 22), 
Healthy-HB (Healthy individuals, BMI ≥ 24) (n = 20) and 
PCOS-HB (PCOS patients, BMI ≥ 24) (n = 25). All neces-
sary clinical parameters and DNA methylation determi-
nation were determined as previously reported [6]. All 
the participants were asked to come to our department 
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during days 2–4 of the menstrual period after an over-
night fast. Peripheral blood samples were collected from 
all subjects for the parameters measurements and then 
oral glucose tolerance test and insulin releasing test were 
performed. Further blood samples were taken at 120 min 
for measurement of glucose and insulin.

16S rRNA gene amplicon sequencing and data processing
DNA from stool samples was extracted using HiPure 
Stool DNA Kits B (D3141-03B, Guangzhou Meiji Bio-
technology Co., Ltd., China). 16S rRNA gene amplifi-
cation [24, 25], DNA library concentration validation, 
multiplexing and Illumina sequencing were performed 
as previously described [6]. Raw sequencing data were 
trimmed for quality and length, and Illumina adapters 
were removed using Fastp (version 0.19.6) with the fol-
lowing criteria: (i) reads containing ≥ 10% N bases; (ii) 
more than 50% of the base with a quality score < 20; (iii) 
the adaptor sequence and its subsequent sequence; (iv) 
truncated reads < 200 bp. If one read in each paired-end 
reads reaches the filtering standard, the paired reads will 
be removed then.The QIIME2 pipeline [26] was applied 
to process and analyze 16S rRNA gene sequencing data 
(QIIME2, version 2019.4). The sequence file processed 
by Fastp was imported into QIIME2 for subsequent data 
filtering. The filtering steps were as follows: (i) remove 
primers with default parameters by cutadapt function 
in QIIME2; (ii) DADA2 was used to remove interfer-
ence sequence, chimeric sequence, etc. The parameters 
–p-trunc-len-f and –p-trunc-len-r were set to 0, and 
default parameters were used for other analysis param-
eters. The representative sequence and abundance table 
were obtained by DADA2 [27]. Taxonomy was assigned 
to sequences using q2-feature-classifier classifysklearn 
[28] against Silva [29]. Microbial community func-
tional composition was predicted based on 16S rRNA 
sequences using PICRUSt software [30].

ITS2 gene amplicon sequencing and data processing
DNA was extracted from stool samples using E.Z.N.A.® 
Stool DNA Kit (Omega Biotek, Norcross, GA, U.S.). The 
ITS2 gene was amplified by PCR with barcoded forward 
primers (ITS1F: 5’-CTT GGT CAT TTA GAG GAA GTAA-
3’) and reverse primers (ITS2R: 5’-GCT GCG TTC TTC 
ATC GAT GC-3’) [31]. Pooled DNA products were used 
to construct an Illumina Pair-End library following Illu-
mina’s genomic DNA library preparation procedure, and 
the amplicon library was paired-end sequenced (2 × 250 
bp) using the Illumina platform (Shanghai BIOZERON 
Biotech. Co., Ltd). The bioinformatics analysis procedure 
for ITS2 data was similar to that for 16S rRNA data, the 
UNITE (ITS) reference database was used [32].

Serum wide targeted metabolomics profiling and data 
preprocessing
The serum sample extracts were analyzed using an LC–
ESI–MS/MS system (UPLC, ExionLC AD, https:// sciex. 
com. cn/; MS, QTRAP® System, https:// sciex. com/). LIT 
and triple quadrupole (QQQ) scans were acquired with 
a triple quadrupole-linear ion trap mass spectrometer 
(QTRAP), QTRAP® LC–MS/MS System, equipped with 
an ESI Turbo Ion-Spray interface, operating in posi-
tive and negative ion mode and controlled by Analyst 
1.6.3 software (Sciex). The ESI source operation param-
eters were as follows: source temperature 500  °C; ion 
spray voltage (IS) 5500  V (positive), -4500  V (negative); 
ion source gas I (GSI), gas II (GSII), curtain gas (CUR) 
set at 55, 60, and 25.0 psi, respectively; and high colli-
sion gas (CAD). Instrument tuning and mass calibration 
were performed with 10 and 100 μmol/L polypropylene 
glycol solutions in QQQ and LIT modes, respectively. A 
specific set of MRM transitions was monitored for each 
period according to the metabolites eluted within this 
period.

Statistical analysis
All statistical tests were performed using R (version 
4.0.2). The α diversity index was calculated using the R 
program package ‘vegan’ (version 2.5.7). Group compari-
sons were conducted by ANOVA tests, and the LDun-
can method (package laercio, 1.0–1) was used to group 
differences. Differences in community were determined 
by principal co-coordinates analysis (PCoA) and RDA 
(package vegan, 2.5.7). PERMANOVA and ANOSIM 
were conducted to assess statistical significance. Mantel 
tests were carried out to examine Spearman’s rank cor-
relation between bacterial, fungal, and functional path-
ways, metabolites and the clinical index matrix (vegan 
package). Linear discriminant analysis effect size (LEfSe) 
analysis was performed [33, 34]. Kruskal–Wallis tests 
among multiple groups and Wilcoxon tests between 
paired groups were conducted. Multiple hypothesis tests 
were adjusted using the Benjamini-Hochberg (B-H) false 
discovery rate (FDR).

Metabolome data were analyzed by PLS-DA with the 
package mixOmics (6.14.1). Characterized metabolites 
were screened out based on (1) variable importance in 
projection (VIP) > 1, (2) fold change of > 2 or < 0.5 and (3) 
FDR adjusted p < 0.05 (Wilcox test). Randomforest [35] 
algorithms were trained with the multiomics data using 
the randomForest R package [36] and graphed by pROC 
package. Input features were excavated on the basis of 
Wilcox test comparison and the mean decrease in Gini 
by random forest importance parameter evaluation. Data 
were assigned to training (80%) and test (20%) datasets 
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after the whole dataset was shuffled. Subsequently, we 
further explored the complicated network interaction 
of discriminative features derived from multiomics data 
using Cytoscape (v3.5.1).

Results
Clinical characteristics of the participants
The participant design and demographics are shown in 
Fig.  1a and Table  1. Compared with the Healthy group, 
PCOS patients displayed significantly higher luteiniz-
ing hormone (LH), follicle-stimulating hormone (FSH), 
estrogen (E2), androstenedione (AD), total testosterone 
(TT), free androgen index (FAI), glucose level at fasting 
status (G0), insulin level at 120  min after glucose load 
(I120), and glucose level at 120  min after glucose load 
(G120) while lower progesterone (PROG) and sex hor-
mone-binding globulin (SHBG) (FDR adjusted p < 0.05) 
(Table S1). PCOS-HB patients (PCOS patients, BMI ≥ 24) 
had significantly higher LH, LH/FSH, AD, TT, dehydroe-
piandrosterone (DHEA), and FAI while lower SHBG 
than that of Healthy-HB subjects (FDR adjusted p < 0.05) 

(Fig. 1b, Table 1). There were significant differences in the 
clinical parameter structure among the four groups based 
on PCoA (Fig.  1c) (PERMANOVA: p < 0.001; ANOSIM: 
p < 0.05).

Altered bacterial diversity and community in PCOS 
patients
An average of 143 observed OTUs/sample were obtained 
from 88 samples after 16S rRNA gene sequencing (Table 
S2). Significantly reduced α-diversity was observed in 
PCOS-HB compared with Healthy-HB (p < 0.05) (Fig. 2a). 
There were no significant relationships between the bac-
terial diversity index and key clinical variables(p > 0.05) 
(Table S3). PCoA revealed significant differences (Fig. 2b) 
among the groups (PERMANOVA: p < 0.05; ANOSIM, 
p < 0.05). There were no significant correlations between 
key clinical variables and bacterial community (p > 0.05) 
(Fig.  2c).Firmicutes, Bacteroidetes, Proteobacteria and 
Actinobacteria accounted for more than 90% of the total 
phylum (Figure S1a). Bacteroides, Prevotella_9, Faecali-
bacterium, and Roseburia were the dominant bacterial 

Fig. 1 Clinical parameter distribution. a Overview of the study design. b Differences in clinical index. Data are shown as the mean ± SD, and an 
error bar is shown. p values denote the significance among groups. Letters indicate ANOVA grouping. c Differences in clinical index structures as 
revealed by principal co-ordinates analysis (PCoA)
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Fig. 2 Fecal bacterial characteristic variations associated with PCOS. a α diversity. p values denote the significance among groups. Letters indicate 
ANOVA grouping. b Differences in bacterial structures as revealed by PCoA analysis. c RDA analyses reflecting differences in gut microbiota 
structures fitted with significantly correlated clinical properties. d Characteristic bacterial taxa based on LDA effect size (LEfSe) analysis between 
PCOS patients and healthy individuals. e The distinguished bacterial genera screened by Kruskal–Wallis tests. f The heatmap depicts the relationship 
between distinguished bacterial genera (screened by Kruskal–Wallis tests) and key clinical parameters
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genera (Figure S1b). LEfSe analysis revealed Ruminococ-
cus torques,Escherichia/Shigella, Allisonella, Eggerthella 
and Hungatella as PCOS-featured genera (Fig. 2d). Lacto-
bacillus, Coprococcus_1, Coprococcus_3 and Catenibacte-
rium showed suggestive differences between Healthy-LB 
and PCOS-LB (p < 0.05) (Table S4, Figure S2a). Moreo-
ver, genus comparison between Healthy-HB and PCOS-
HB by the Wilcoxon signed-rank test and LEfSe analysis 
revealed 25 significant taxa (Table S4, Figure S2b). Bac-
terial taxa enriched in Healthy-LB were Blautia (4.10%), 
Dorea (1.50%), whereas Agathobacter (3.28%) and Lac-
tobacillus (0.42%) were enriched in PCOS-LB patients. 
In the Healthy-HB group, Alistipes (2.10%), Ruminococ-
cus_1 (1.38%) were enriched. Lachnoclostridium (1.66%) 
and Erysipelotrichaceae_UCG-003 (0.67%) were overrep-
resented in the PCOS-HB group (Fig. 2e). Coprobacillus 
and Coprococcus_1 were significantly positively related to 
SHBG (p < 0.05), and HOMA-IR displayed a positive cor-
relation with Lachnospiraceae_UCG-001 (Fig. 2f ).

Altered fecal fungal profile in PCOS patients
Healthy-HB exhibited significantly higher Chao1 and 
Shannon indices than PCOS-LB (Fig.  3a). A signifi-
cantly positive relationship for BMI and negative rela-
tionships for FAI, LH, AD, TT, HDL-C and DHEA with 
observed OTUs and Chao1 were detected (p < 0.05) 
(Table S3). Overall, there were significant alterations 
in the gut fungal community among the four groups 
(Fig.  3b) (PERMANOVA: p < 0.05; ANOSIM: p < 0.05). 
TT exerted a significantly higher influence on the fun-
gal community structure (r2 = 0.08, p < 0.05) (Fig.  3c). 
Ascomycota, Basidiomycota, and Mortierellomycota 
were the dominant fungal phyla and Mortierellomycota 
was uniquely higher in Healthy-HB (Figure S3a). Fun-
gal genera, Candida depletion while Fusarium, Mor-
tierella and Solicoccozyma enrichment was observed in 
Healthy-HB (Figure S3b). Multiple group comparison 
revealed 16 significantly differential fungal genera in 
Healthy-LB versus PCOS-LB and 75 taxa in Healthy-
HB versus PCOS-HB (Fig.  3d, Table S5). Candida 
was positively related to HDL-C, and Mortierella was 

Fig. 3 Fecal fungal characteristic variations associated with PCOS. a α diversity measured by Chao1 and Shannon indices was highest in Healthy-HB. 
p values denote the significance among groups. Letters indicate ANOVA grouping. b Differences in fungal structures among Healthy-LB, Healthy-HB, 
PCOS-HB and PCOS-LB, as revealed by PCoA analysis. c RDA analyses reflecting differences in gut fungal structures fitted with significantly correlated 
clinical properties. d Distinguished fungal genera screened by Kruskal–Wallis tests. e Correlation between distinguished fungal genera and key 
clinical parameters. f Characteristic fungal taxa based on LDA effect size (LEfSe) analysis between PCOS patients and healthy individuals
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negatively related to BMI but adversely to LH, AD, 
TT, HDL-C and DHEA (Fig.  3e). PCOS featured fun-
gal indicators in genus level were Candida, Malassezia, 
Kazachstania, Microascus, Coniochaeta, Xepicula, Par-
aphoma, Pyrenochaetopsis, Cephaliophora, Epicoccum 
and Sclerophora (Fig.  3f ). PCOS-HB had more distin-
guished fungal genera as indicators than that of PCOS-
LB (Figure S4,S5).

Serum metabolomics alterations in PCOS patients
A total of 601 metabolites were identified and quanti-
fied, with significant differences among the four groups 
(PERMANOVA:p < 0.05; ANOSIM: p < 0.05) (Fig.  4a). 
BMI, FAI, LH, AD, TT, SHBG and DHEA exerted sig-
nificantly higher influences on the metabolite community 
structure (p < 0.05) (Figure S6a). Multiple group compari-
sons revealed 284 significantly differential metabolites 

Fig. 4 Serum metabolite variations associated with PCOS. a Differences in fungal structures as revealed by PCoA analysis. b Heatmap showing the 
relative abundance of the 40 metabolites screened by Kruskal–Wallis tests. c PLS-DA plot revealing the differential metabolite pattern between 
Healthy-LB and PCOS-LB. d PLS-DA plot revealing the differential metabolite pattern between Healthy-HB and PCOS-HB. e The distribution of the 
top 10 metabolites as VIP values ranked as shared by comparison between Healthy-LB and PCOS-LB and between Healthy-HB and PCOS-HB. f 
Characteristic metabolites based on LDA effect size (LEfSe) analysis between PCOS patients and healthy controls



Page 10 of 15Yin et al. Journal of Ovarian Research          (2022) 15:117 

in Healthy-LB versus PCOS-LB and 358 metabolites 
in Healthy-HB versus PCOS-HB (p < 0.05) (Table S6). 
Metabolite indicators associated with PCOS, PCOS-
LB and PCOS-HB were also revealed by LEfSe analysis 
(Fig.  4f, Figure S7, S8). The healthy and PCOS groups 
showed totally different metabolite patterns (Fig. 4b, Fig-
ure S6 b,c,d). VIP scores obtained by PLS-DA analysis 
(partial least squares discriminant analysis) (Fig. 4c, 4d), 
together with the threshold of FDR adjusted p < 0.05 and 
|log2FC|> 1, were set as thresholds to screen out featured 
metabolites. Ten commonly featured serum metabo-
lites of the top VIP value were both observed between 
comparison pairs of Healthy-LB versus PCOS-LB and 
Healthy-HB versus PCOS-HB. 3-Hydroxy-2-methyl-4H-
pyran-4-one, furfuryl alcohol, iminodiacetic acid, L-dihy-
droorotic acid, hydroxyacetone, L-ascorbate, myoinositol 
and pyrroloquinoline quinone were enriched in PCOS 
patients, and Phe-Phe and Asp-Phe were abundant in 
healthy individuals (Fig. 4e).

Integrative multiomic signatures in the diagnosis of PCOS
We built random forest models based on multiomics 
characteristics individually or their combination to dis-
criminate PCOS patients, PCOS-LB patients and PCOS-
HB patients from the corresponding healthy individuals. 
A five-fold cross-validated random forest model was 
further employed to select key discriminatory charac-
teristics after first screening by Wilcoxon signed-rank 
test comparison (Figure S9, Figure S10). This method 
identified 9 bacterial genera, 4 predicted pathways, 11 
fungal genera and the top 30 metabolites that distin-
guished PCOS from healthy individuals with AUCs of 
0.84, 0.64, 0.85 and 1, respectively, and their combina-
tion also reached an AUC of 1 in the training dataset 
(Fig. 5a). Robust efficacy was verified by fungal taxa and 
metabolites in the test dataset (Fig.  5b). Similarly, the 
metabolite-derived model was more accurate than the 
microbe-based model in discriminating PCOS-LB from 
Healthy-LB (metabolites, AUC = 1; 16S, AUC = 0.75; 

Fig. 5 Disease status classification using disease-associated taxa and/or metabolites. (a, c, e) Random forest classifiers were constructed to 
discriminate PCOS and healthy, PCOS-LB and Healthy-LB, PCOS-HB and Healthy-HB, respectively, in the training dataset. (b, d, f) Random forest 
classifiers composed of bacterial and fungal genera, metabolites, predicted pathways and their combinations were constructed to discriminate 
PCOS and healthy, PCOS-LB and Healthy-LB, PCOS-HB and Healthy-HB in the test dataset. ROC, receiver operating characteristic curve. AUC, area 
under the curve. The input features were excavated on the basis of Wilcox test comparison and the mean decrease in Gini by random forest 
importance parameters. Data were assigned to training (80%) and test (20%) datasets after the whole dataset was shuffled
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predicted pathway, AUC = 0.91; ITS2, AUC = 0.88) 
(Fig.  5c). Functional pathway performed weaker in 
the test dataset (Fig.  5d). The use of 16S and predicted 
pathway data showed good performance in distinguish-
ing PCOS-HB from Healthy-HB (AUC = 0.88 and 0.92, 
respectively), but poor performance (AUC = 0.67 and 
0.58) was observed in the test dataset (Fig.  5e, 5f ). The 
findings indicated that metabolites alone can achieve 
great performance in distinguishing disease from health, 
much better than microbiota-driven features. Neverthe-
less, fungal features performed better than bacterial gen-
era in discriminating PCOS from health.

Multiomic data interaction associated with PCOS patients
The Mantel test indicated that only the metabolite dis-
tance matrix, and not 16S or ITS2, predicted pathway 
distance, remained significantly positively correlated 
with phenotypic distance (r = 0.15, p = 0.001) (Table 
S7). Although there was a significantly positive relation-
ship between the 16S and ITS2 data matrices (r = 0.07, 
p = 0.015), the bacterial diversity showed no significant 
linear correlation with fungal diversity (Figure S11).

We tested for the correlations of different multiom-
ics characteristics derived from the above-mentioned 
diagnostic study based on Spearman’s correlation test 
(∣r∣ > 0.4). In healthy vs. PCOS, fecal bacteria, fungi, and 
predicted pathways displayed more associations with the 
clinical indices FAI, PROG and AD. For example, higher 
levels of FAI were accompanied by increased cytidine-
5-monophosphate (p < 0.05, r = 0.67) and iminodiacetic 
acid (p < 0.05, r= 0.63) and lower allopurinol (p < 0.05, 
r = -0.63), lactulose (p < 0.05,  r= -0.62), lactose (p < 0.05, 
r = -0.62) and maltose (p < 0.05, r = -0.62) levels. The fun-
gal taxa Solicoccozyma, Tetracladium, Malassezia, Knu-
fia and Exophiala were also center-connected (Fig.  6a). 
Therefore, higher levels of Solicoccozyma were negatively 
related to 2,4-hexadienoic acid but positively to L-homo-
cystine. Malassezia showed negative correlations with 
L-homocystine (p < 0.05, r = -0.59) but positive correla-
tions with 2-c-methyl-d-erythritol 2,4-cyclodiphosphate 
(p < 0.05, r = 0.54).

In Healthy-LB vs. PCOS-LB, we observed that many 
metabolic features were associated with FAI, E2 and 
SHBG. For example, FAI was positively associated with 
methylguanidine (p < 0.05, r = 0.76) and hydroxyacetone 

(p < 0.05, r = 0.70) but negatively correlated with 2-deox-
yribose 1-phosphate (p < 0.05, r = -0.70). Featured 
bacterial taxa, Catenibacterium, Coprococcus_1 and 
Lactobacillus, were highly related to Westerdykella, glu-
conic acid and xanthine individually. The fungal taxa 
Cylindrocarpon and Neurospora exhibited positive and 
negative relationships with D-malic acid (Fig. 6b). With 
regard to Healthy-HB vs. PCOS-HB, increased Candida 
was linked to higher levels of 3-hydroxy-2-methyl-4H-
pyran-4-one (p < 0.05, r = 0.87) and 2-c-methyl-d-eryth-
ritol 2,4-cyclodiphosphate (p < 0.05, r = 0.83) and lower 
levels of barbituric acid (p < 0.05, r = -0.82). Mortierella 
showed a highly negative correlation with D-fructose 
6-phosphate-disodium salt (p < 0.05, r = -0.82) and 
D-mannose 6-phosphate (p < 0.05, r = -0.82) but a posi-
tive correlation with cytosine (p < 0.05, r = 0.83) and 
barbituric acid (p < 0.05, r = 0.75). The FAI was nega-
tively related to Agathobacter (p < 0.05, r = -0.53) but 
positively with Erysipelotrichaceae_UCG-003 (p < 0.05, 
r = 0.43) (Fig. 6c).

Discussion
In this study, we outlined landscapes and interaction net-
works of clinical indices, differential gut bacteria, fungi and 
serum metabolites in PCOS patients with different BMIs. 
According to integrated analysis of multiomics data, the 
most important index is FAI, which is used as a common 
indicator of hyperandrogenemia [37]. Overall, androgen 
plays an important leading role in the changes in gut bac-
teria, gut fungi and metabolites in patients with PCOS. 
Moreover, we identified and independently validated a 
combinatorial marker panel that was able to distinguish 
PCOS from non-PCOS subjects with high accuracy.

Saccharomyces cerevisiae, Malassezia restricta, Can-
dida albicans, Candida sake, Cyberlindnera jadinii, 
Cladosporium spp., Penicillium spp., and Galactomyces 
candidum are the most prevalent fungi in the human gut 
[38]. Mar Rodríguez et al. [16] showed that patients with 
and without obesity could be distinguished by their spe-
cific fungal composition. Candida, Nakaseomyces and 
Penicillium were the most abundant genera detected in 
patients with obesity, and Mucor was the most prevalent 
genera in patients without obesity. Chacón et al. [39] paid 
attention to the compositions of Mucor spp. and found that 
subjects with obesity and undetectable Mucor spp. showed 

(See figure on next page.)
Fig. 6 Integrative co-occurrence network reflecting multiomic-phenotype interactions. (a,b,c) Network revealed both significant (p < 0.05) and 
suggestive correlations (∣r∣ > 0.4, Spearman analysis) between differentially abundant bacterial, fungal, predicted pathway, metabolites and clinical 
indices in PCOS and healthy, PCOS-LB and Healthy-LB, PCOS-HB and Healthy-HB. Nodes represent characteristics. Purple, blue, red, green and yellow 
nodes denote metabolites, bacterial taxa, predicted pathways, fungal taxa and clinical parameters. Lines connecting nodes indicate positive (red) or 
negative (green) correlations
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a significantly worse cardiovascular risk profile. Research 
on gut fungi in metabolic diseases is still very limited to 
date. Jayasudha et al. [40] showed that Mucoromycota was 
the only phylum showing significantly decreased abun-
dance in T2DM compared to control mycobiomes, and the 
median abundance of Candida along with Cladosporium, 
Kodamaea, Meyerozyma and Mortierella were increased 
in people with T2DM. In our study, Ascomycota, Basidi-
omycota, and Mortierellomycota were the dominant fun-
gal phyla, and Mortierellomycota was uniquely higher in 
healthy HB individuals than in the other groups. Reduced 
fungal family diversity has been demonstrated in individu-
als with obesity prepiously [16]. In our study, Non-PCOS 
patients with overweight/obesity seemed less metaboli-
cally abnormal than those with PCOS, and whether the 
composition of different gut fungi exerts metabolic pro-
tection needs to be further assessed. Overall, the human 
gut mycobiome has been poorly studied and character-
ized in patients with PCOS. Our study showed that PCOS 
patients are featured in fungal indicators, such as Can-
dida, Malassezia, Kazachstania, Microascus, Coniochaeta, 
Xepicula, Paraphoma, Pyrenochaetopsis, Cephaliophora, 
Epicoccum and Sclerophora, while PCOS-HB patients hav-
ing more distinguished fungal genera as indicators.

Several factors in the host will have an effect on mycobi-
ome composition and variations, including genotype, phys-
iology, immune system, and lifestyle [41, 42]. Among them, 
diet is an important factor [43]. For example, Methanobre-
vibacter and Candida are positively associated with diets 
high in carbohydrates but negatively associated with diets 
high in amino acids, protein, and fatty acids [44]. A plant-
based diet is also associated with enrichment in Candida 
spp., whereas an animal-product-based diet is associated 
with enrichment in Debaryomyces spp. and Penicillium spp 
[43]. It is widely recognized that gut fungal diversity is sig-
nificantly lower than bacterial diversity [45], but each fun-
gal cell genome is approximately 100-fold larger than that 
of bacterial cells, which represents a significant biomass 
with numerous functions [46]. Bacteria are fundamental 
to maintain a balanced gut microbiota and to avoid fungal 
overgrowth [46], whereas imbalance in gut fungi leads to 
an abnormal composition of gut bacteria. Hoffmann et al. 
[44] reported that Candida and Saccharomyces are both 
positively associated with Methanobrevibacter and that 
both fungal genera are negatively associated with Nitros-
osphaera. Wheeler et  al.[10] showed that fungi, including 
Penicillium brevicompactum and Candida tropicalis, are 
significantly decreased with antifungal treatment in mice 
but that this treatment leads to relative expansion of Asper-
gillus amstelodami, Epicoccum nigrum, and Wallemia sebi. 
Our study shows that in patients with PCOS, the change 
in gut fungi is more significant than that in gut bacteria. 

According to Mims et al. [47], jejunal fungal communities 
are indeed dynamic and more susceptible to environmental 
influences than bacteria in healthy mice. The significance 
and value of gut fungi in the occurrence and development 
of PCOS are still not very clear, but previous studies may 
give some hints. For example, Candida albicans is consid-
ered as the major inducer of human antifungal Th17 cells 
[48] and increases interleukin-22 (IL-22) production [49]. 
Qi el at. [7] reported that Bacteroides vulgatus is markedly 
elevated in the gut microbiota and that the level of IL-22 
is reduced. Taken together, both gut bacteria and gut fungi 
can affect the level of IL-22 and promote the occurrence 
and development of PCOS.At present, many hospitals and 
clinical centers use the Rotterdam standard for the diagno-
sis of PCOS. Haoula et  al. [50] tentatively identified lipid 
biomarkers of PCOS, which may be useful in distinguish-
ing PCOS according to targeted lipomics analysis. To find 
more effective and simple indicators used for the diagno-
sis and screening of PCOS, we built random forest models 
based on multiomics characteristics individually or their 
combination to discriminate PCOS from healthy controls. 
The findings showed that metabolites alone can achieve 
great performance in distinguishing disease from health, 
much better than microbiota-driven features, and that fun-
gal features still perform better than bacterial genera in dis-
criminating a PCOS status from a healthy status.

Our study still had limitations. Firstly, this is a single-
center study with limited sample size, future multicenter 
research involving multiple different geographic areas are 
necessary to verify the data before clinical application. 
Secondly, although 16S rRNA gene sequencing analysis 
was conducted, higher taxa resolution until species level 
by metagenomics sequencing would enhance the results 
power. Thirdly, although multiomics data were used to 
reveal functional links between microbiome, metabo-
lome and phenotype, cause-and-effect evidence which 
would address the chicken-and-egg debate problem need 
to be further clarified in animal studies. Last but not 
the least, fecal metabolomic analysis is also valuable to 
deeply understand how the gut microbiome metabolize 
directly.

In conclusion, integrated analysis of multiomics data 
from the gut bacteriome, mycobiome, metabolome and 
phenome showed that hyperandrogenemia plays a cen-
tral role in the dysbiosis of intestinal microecology and 
the change in metabolic state in patients with PCOS 
and that its effect exceeds the role of BMI. Gut bacte-
ria, gut fungi and their interactions may be important 
in the occurrence and development of PCOS. The pri-
ority of predictive models in discriminating PCOS sta-
tus in this study were serum metabolites, fungal taxa 
and bacterial taxa.
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