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Abstract 

Objective: Ovarian cancer has the highest mortality rate among gynecological malignant tumors, and it preferen-
tially metastasizes to omental tissue, leading to intestinal obstruction and death. scRNA-seq is a powerful technique 
to reveal tumor heterogeneity. Analyzing omentum metastasis of ovarian cancer at the single-cell level may be more 
conducive to exploring and understanding omentum metastasis and prognosis of ovarian cancer at the cellular func-
tion and genetic levels.

Methods: The omentum metastasis site scRNA-seq data of GSE147082 were acquired from the GEO (Gene Expres-
sion Omnibus) database, and single cells were clustered by the Seruat package and annotated by the SingleR pack-
age. Cell differentiation trajectories were reconstructed through the monocle package. The ovarian cancer microarray 
data of GSE132342 were downloaded from GEO and were clustered by using the ConsensusClusterPlus package into 
omentum metastasis-associated clusters according to the marker genes gained from single-cell differentiation trajec-
tory analysis. The tumor microenvironment (TME) and immune infiltration differences between clusters were ana-
lyzed by the estimate and CIBERSORT packages. The expression matrix of genes used to cluster GSE132342 patients 
was extracted from bulk RNA-seq data of TCGA-OV (The Cancer Genome Atlas ovarian cancer), and least absolute 
shrinkage and selection operator (LASSO) and multivariate Cox regression were performed to establish an omentum 
metastasis-associated gene (OMAG) signature. The signature was then tested by GSE132342 data. Finally, the clinico-
pathological characteristics of TCGA-OV were screened by univariate and multivariate Cox regression analysis to draw 
the nomogram.

Results: A total of 9885 cells from 6 patients were clustered into 18 cell clusters and annotated into 14 cell types. 
Reconstruction of differentiation trajectories divided the cells into 5 branches, and a total of 781 cell trajectory-related 
characteristic genes were obtained. A total of 3769 patients in GSE132342 were subtyped into 3 clusters by 74 cell 
trajectory-related characteristic genes. Kaplan-Meier (K-M) survival analysis showed that the prognosis of cluster 
2 was the worst, P < 0.001. The TME analysis showed that the ESTIMATE score and stromal score in cluster 2 were 
significantly higher than those in the other two clusters, P < 0.001. The immune infiltration analysis showed differ-
ences in the fraction of 8 immune cells among the 3 clusters, P < 0.05. The expression data of 74 genes used for GEO 
clustering were extracted from 379 patients in TCGA-OV, and combined with survival information, 10 candidates 
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Introduction
Ovarian cancer has the highest mortality rate among 
gynecological malignant tumors [1]. At present, no effec-
tive method for the early detection of ovarian cancer has 
been found. 70% of clinical ovarian cancer is advanced 
at the time of diagnosis, while after surgery and chemo-
therapy, 70% of patients will still have metastasis within 
2–3 years [2]. Ovarian cancer metastasis has distinct 
characteristics: it preferentially metastasizes to omental 
adipose tissue, leading to intestinal obstruction and death 
[3]. However, the mechanism of this tropism remains 
unclear. Finding the cause of this transfer and prevent-
ing it has been a crucial problem that researchers hope to 
solve for many years.

The omentum is a special adipose tissue in the perito-
neal cavity that is composed of adipocytes and stromal 
blood vessels, comprising preadipocytes, fibroblasts, 
vascular endothelial cells and a variety of immune cells 
that can promote various immune responses, including 
inflammation, tolerance and fibrosis, thereby promoting 
peritoneal immunity [4]. Studies have found that after 
the initial cytoreductive surgery, there are still residual 
latent cancer cells [5]. The production of substances such 
as inflammatory factors may lead to the migration/inva-
sion of latent cancer cells into the omentum, resulting 
in changes in the omental microenvironment. Epithe-
lial mesenchymal transformation (EMT), angiogenesis, 
immune infiltration, inflammation, etc. [6–9] drive the 
formation of a niche before metastasis and contribute to 
successful transmission, that is, the premetastatic micro-
environment (PMN). It has been demonstrated that cir-
culating tumor cells (CTCs) exist in the blood of ovarian 
cancer patients, and hematogenous metastasis can be a 
crucial mode of omentum metastasis [3]. When tumor 
cells are planted in the omentum, they can support tumor 
growth through immune and metabolic mechanisms [8]. 
The interaction between latent cancer cells and the PMN 
may be decisive for the metastasis program [10].

Single-cell RNA sequencing (scRNA-seq) uses opti-
mized next-generation sequencing technology to define 

the global gene expression profile of single cells, which 
is helpful to isolate the previously hidden heterogeneity 
in the cell population, especially for the study of tumor 
heterogeneity [11]. Therefore, exploring the microenvi-
ronment of omental ovarian cancer at the single-cell level 
may be a feasible strategy to find the reasons for this ten-
dency of metastasis. What characteristics of the omen-
tum microenvironment are easily colonized by tumor 
cells, and what characteristics of ovarian cancer cells will 
be more prone to metastasis and invasion, furthermore, 
can these characteristics be used for the prognosis of 
clinical ovarian cancer patients. These are the questions 
that this study attempts to answer.

Recently, by using scRNA-seq from ovarian tumors 
resected from omental metastases, Olalekan S et al. [12] 
focused on T cell infiltration and performed remarkable 
work in revealing immune cell types and subsets with 
possible roles in the management of disease, suggesting 
an antitumor response in high T cell infiltration patients. 
Liu C et al. [13] used the scRNA-seq data of the former, 
combined it with the bulk RNA-seq data of TCGA-
OV, identified four M2 tumor-associated macrophage 
(TAM)-associated genes with prognostic value in ovarian 
cancer patients and validated them by experiments. Their 
research is undoubtedly valuable but mainly focuses 
on certain types of immune cells. Millstein J. et  al. [14] 
selected 200 genes associated with overall survival (OS) 
from a meta-analysis of six transcriptome-wide micro-
array studies and 313 genes based on the literature and 
unpublished data. They finally determined 276 genes 
associated with OS by using 2702 tumors from 15 studies 
and evaluated 1067 tumors from six studies. This discov-
ery provides a fabulous opportunity for the development 
of targeted therapeutic approaches; however, the specific 
mechanism of these genes in the progression of ovarian 
cancer and the correlation between them need to be fur-
ther clarified.

Here, we used the scRNA-seq data of Olalekan S’s study 
to explore significantly differentially expressed genes 
during the differentiation trajectories of ovarian cancer 

for OMAGs were filtered by LASSO. By using multivariate Cox regression, the 6-OMAGs signature was established as 
RiskScore = 0.307*TIMP3 + 3.516*FBN1–0.109*IGKC + 0.209*RPL21 + 0.870*UCHL1 + 0.365*RARRES1. Taking TCGA-OV 
as the training set and GSE132342 as the test set, receiver operating characteristic (ROC) curves were drawn to verify 
the prognostic value of 6-OMAGs. Screened by univariate and multivariate Cox regression analysis, 3 (age, cancer 
status, primary therapy outcome) of 5 clinicopathological characteristics were used to construct the nomogram com-
bined with risk score.

Conclusion: We constructed an ovarian cancer prognostic model related to omentum metastasis composed of 
6-OMAGs and 3 clinicopathological features and analyzed the potential mechanism of these 6-OMAGs in ovarian 
cancer omental metastasis.
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omentum metastasis sites. According to the expression 
levels of these genes, 3769 ovarian cancer patients from 
Millstein J.’s study (GSE132342) were grouped to deter-
mine their relationship with clinical characteristics, 
physiological relevance with omentum metastasis and 
prognosis. These genes were further used to screen ovar-
ian cancer omentum metastasis-related prognostic genes 
by using bulk RNA-seq data in TCGA-OV and verified 
with patients in GSE132342. The results might provide 
insight into the molecular mechanism and characteristics 
of ovarian cancer omentum metastasis and its connec-
tion with patient survival.

Materials and methods
Data acquisition
The scRNA-seq data were downloaded from the Gene 
Expression Omnibus (GEO, https:// www. ncbi. nlm. 
nih. gov/ geo/) database, accession number GSE147082, 
including 9,885 cells and 16,041 genes isolated from the 
omental metastatic site of 6 ovarian cancer patients. 
The bulk RNA-seq data of 379 ovarian cancer patients 
and 56,461 genes in TCGA-OV were obtained from The 
Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. 
gov/) database. The microarray data were acquired from 
GEO with accession number GSE13234, which contained 
3769 ovarian cancer patients of 513 genes (Fig. 1).

scRNA‑seq data processing and analysis
By using the R package Seurat [15] (version 4.0.6), the 
scRNA-seq data were converted into a Seurat object 
by the function CreateSeuratObject(), while the Per-
centageFeatureSet() function was used to calculate the 
percentage of mitochondrial genes. The raw data were 
already filtered by the uploader by the criteria of reject-
ing unqualified data: a minimum cutoff of 600 genes per 
cell was set, and 7.8% counts of mitochondrial origin per 

cell; therefore, further filtering was not necessary [12]. 
The data were then normalized with the method “Log-
Normalize”. The top 1500 genes with a large coefficient 
of variation between cells were extracted by the func-
tion FindVariableFeatures(). Dimheatmap, JackStrawPlot 
and ElbowPlot were used to define the most significant 
principal component (PC) value for cell clustering. Sub-
sequently, cell cluster classification was assessed by t-SNE 
(t-Distributed Stochastic Neighbor Embedding), and the 
maker genes of each cluster were screened by the func-
tion FindAllMarkers() with the cutoff values of |log2 
fold change(FC)| > 1, the expression ratio of cell popu-
lation > 0.25 and adjusted P-value < 0.05. SingleR [16] 
(Version: 1.8.0) package was utilized for cell cluster anno-
tation, while the reference was loaded from the celldex 
package HumanPrimaryCellAtlasData() and combined 
with marker genes from the literature [17–20]. Cell dif-
ferentiation trajectories were reconstructed through the 
monocle [21] (Version: 2.22.0) package. Based on marker 
genes that differed between clusters, dimension reduc-
tion was conducted by the reduceDimension function 
with reduction_method = “DDRTree” and max_com-
ponents = 2. Characteristic genes of different cell states 
for downstream analysis were filtered by the criteria of 
|log2FC| > 1 and adjusted P-value < 0.05.

GEO microarray data processing and analysis
The microarray data downloaded from GSE132342 were 
already log2 transformed, and the data were then stand-
ardized by using the normalizeBetweenArrays() func-
tion in the limma [22] (Version: 3.50.0) package. The 
characteristic genes of the different cell states above 
were used for clustering the patients in GSE132342 via 
the ConsensusClusterPlus [23] (Version: 1.58.0) pack-
age, with the specific parameters maxK = 6, reps = 50, 
pItem = 0.8, pFeature = 1, distance="euclidean”, and 

Fig. 1 The technical workflow

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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clusterAlg="pam“ [24]. The difference in survival among 
clusters of patients was analyzed by Kaplan-Meier (K-M) 
survival curve.

Tumor microenvironment analysis
In the tumor microenvironment (TME), immune cells 
and stromal cells are two main types of normal cells. By 
using the expression data, an estimate algorithm can pre-
dict the score of stromal cells and immune cells, and the 
tumor purity in each tumor sample can then be calcu-
lated [25]. The ESTIMATE score, immune score, stromal 
score, and tumor purity of different clusters of patients 
from GSE132342 were calculated by using the estimate 
(https:// bioin forma tics. mdand erson. org/ estim ate/ rpack 
age. html) R package.

Immune infiltration analysis
CIBERSORT is an analytical tool developed by Newman 
et al. [26] to provide an estimation of the abundances of 
member cell types in a mixed cell population. With the 
R package “e1071” (Version: 1.7-9) loaded as a precon-
dition, CIBERSORT was used to estimate the different 
abundances of 22 immune cells among different clusters 
of GSE132342.

Immune checkpoint analysis
Several important immune checkpoints related to cancer 
were analyzed by the limma [22] (Version: 3.50.0) pack-
age. Differentially expressed immune checkpoint-related 
genes significantly associated with overall survival (OS) 
in clustered GSE132342 patients were determined by 
K-M survival analysis.

Construction of a nomogram model in accordance 
with the OMAG risk signature
The characteristic genes of different cell states used for 
clustering the patients in GSE132342 were taken as the 
candidate genes for omentum metastasis-associated 
genes (OMAGs). The glmnet [27] (Version: 4.1-3) and 
survival (Version: 3.2–13) R packages were used to per-
form LASSO Cox regression analysis and 10-fold cross-
validation to narrow the range of OMAG candidate 
genes. The OMAG candidates were then screened again 
by Cox multivariate regression analysis to determine the 
ultimate OMAG risk model. The formula of the OMAG 
signature was as follows: Risk score = Ʃ (βi x Expi), where 
βi represented the coefficient of gene i, standing for the 
weight of gene i, and Expi represented the expression 
level of gene i. Then, the TCGA-OV dataset was set as the 
training set, while GSE132342 was used as the test set. 
The effects of high- and low-risk scores on survival and 
the prognostic value of the OMAG risk signature were 
evaluated. The clinicopathological features and risk score 

of the TCGA-OV cohort were analyzed by univariate 
Cox regression and multivariate Cox regression using the 
survival (Version: 3.2–13) R package, with p < 0.05 as the 
criterion, and the HR and regression coefficient for each 
prognostic feature were calculated. Finally, the rms (Ver-
sion: 6.2-0) R package was used to construct a nomogram 
to predict the OS of ovarian cancer patients, which incor-
porated these clinicopathological features and OMAGs. 
The nomogram model was a prognostic statistical model 
made using simple graphs according to previous studies 
[28].

Correlation analysis between 6‑OMAGs and tumor‑related 
pathways
By using the GSVA [29] R package, the parameter was 
chosen as method=’ssgsea’. The correlation between 
6-OMAGs and 20 tumor-related pathway scores in 
TCGA-OV was analyzed by Spearman correlation [30]. A 
P-value < 0.05 and ρSpearman > 0.3 were considered sta-
tistically significant.

Expression analysis of 6‑OMAGs in 45 human ovarian 
cancer cell lines
The mRNA expression matrix of 45 human ovarian 
cancer cell lines were obtained from the CCLE dataset 
(https:// porta ls. broad insti tute. org/ ccle) [31]. The analysis 
was constructed by the ggplot2 (version: 3.3.3) R package.

Statistical analysis
All the data were processed and analyzed by using Perl 
and R software (version: 4.1.2). Comparisons of clinico-
pathological characteristics were performed through 
Wilcoxon rank-sum tests for quantitative variables and 
chi-square or Fisher’s exact tests for categorical variables. 
Differences among multiple groups were analyzed by 
Kruskal–Wallis’s test.

Results
scRNA‑seq data processing and analysis
A total of 9885 single-cell samples were used for down-
stream analysis. The correlation analysis between 
sequencing depth and mitochondrial genes using 
Pearson’s method is shown in Fig.  2  A. NA represents 
no correlation. The Pearson correlation analysis of 
sequencing depth and number of genes showed a posi-
tive correlation with a coefficient of 0.89 (Fig. 2B). The 
sequencing depth and number of genes in 9885 cells 
from 6 patients are shown in Fig. 2 C and D. The highly 
variable genes across the cells are shown in a volcano 
plot (Fig.  2E). PCA was carried out based on highly 
variable genes (Fig.  2  F). The definition of the princi-
pal components (PC) value depended on 3 approaches: 
Dimheatmap (Supplementary Fig.  1), the JackStraw 

https://bioinformatics.mdanderson.org/estimate/rpackage.html
https://bioinformatics.mdanderson.org/estimate/rpackage.html
https://portals.broadinstitute.org/ccle
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function was used to resample the test and calculate 
the P-values of 1–20 PCs (Fig.  2G), and the Elbow-
Plot function (Fig.  2  H) was used based on the stand-
ard deviation. Since there was no obvious elbow point 
and the p values were all < 0.01, we calculated cumu-
lative percentages for each PC. The result shown in 
Fig. 2I demonstrates that 18 is the last point where the 
change in % of variation is more than 0.1%. Therefore, 

we ultimately choose 18 as the PC value. The t-SNE 
algorithm was used for nonlinear dimension reduction 
and successfully clustered the single-cell samples into 
18 clusters (Fig.  2  J). A total of 2492 genes were used 
as marker genes for 18 cell clusters, and the top 10 sig-
nificantly differentially expressed marker genes of each 
cluster are shown in a heatmap (Supplementary Fig. 2). 
Afterwards, the 18 cell clusters were annotated into 14 
cell types (Fig. 2 K).

Fig. 2 scRNA-seq data processing and analysis. A The correlation analysis between sequencing depth and mitochondrial genes using Pearson’s 
method, NA represents no correlation; B The correlation analysis between the number of genes and sequencing depth using Pearson’s method, the 
Pearson correlation coefficient was 0.89; C The sequencing depth of 9885 cells from 6 ovarian cancer patients; D The number of genes of 9885 cells 
from 6 ovarian cancer patients; E Detection of the highly variable genes across the cells in volcano plot, the top 10 genes were marked out; F PCA 
plot of scRNA-seq samples from 6 patients; G The p values of PCs from 1–20 calculated by JackStraw function; H The standard deviation of 1–30 PCs 
calculated using ElbowPlot function; I Calculation of the cumulative percentages for each PC, 18 is the last point where change of % of variation is 
more than 0.1%; H The t-SNE algorithm divided the cells into 18 clusters by 18 PCs; I 18 cell clusters were annotated into 14 cell types
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Reconstruction of differentiation trajectories of ovarian 
cancer omentum metastasis sites
The differentiation trajectories of ovarian cancer omen-
tum metastasis were reconstructed with the monocle 
package and ordered based on 2492 marker genes of 18 
cell clusters calculated by Seurat before. The cell clus-
ters, state estimation and pseudotime analysis of single 
cells are shown in Fig. 3 A, B and C. The distribution of 
various cell types in different states is shown in Fig. 3D. 
Except for epithelial cells (cancer cells) and naive B cells, 
almost every type of cell appeared in state 1; the cell 
types in state 2 were mainly epithelial cells (CSCs, can-
cer stem cells), MSCs, and neuroepithelial cells; the cell 
composition of state 3 was similar to that of state 2, but 
a few fractions of monocytes and T cells: CD8+; the cell 
types in state 4 included epithelial cells (cancer cells), epi-
thelial cells (CSCs), MSCs and neuroepithelial cells; while 
in state 5, the cell types were naive B cells, plasma cells (B 
cells), epithelial cells (cancer cells), epithelial cells (CSCs), 
monocytes, MSCs, CD8 + T cells and gamma-delta T 

cells. From state 1 to state 5, there were 316, 225, 98, 283, 
and 464 characteristic genes, respectively (Supplemen-
tary Files 1, 2, 3, 4 and 5). After merging and removing 
duplicated genes, 781 characteristic genes of cell differen-
tiation trajectories in the omentum metastasis site were 
obtained altogether.

The relevance between cell state characteristic genes 
and the clinical features of ovarian cancer
Among the 513 genes detected by GSE132342, 74 genes 
belong to the 781 characteristic genes of cell differentia-
tion trajectories in the omentum metastasis site. With a 
K value determined as 3 (Supplementary Fig. 3), the 3769 
patients in GSE132342 were distributed into 3 clusters 
according to the expression level of those 74 genes. The 
K-M survival curve indicated a significantly worse prog-
nosis in patients in cluster 2 (Fig. 2). 4 A), with P < 0.01. 
Figure  4B shows that patients in cluster 3 had a signifi-
cantly younger age structure (P < 0.01), which might be 
the reason for the best prognosis of this cluster. Cluster 2 

Fig. 3 Reconstruction of differentiation trajectories of ovarian cancer omentum metastasis sites. A The trajectory plot of 18 clusters using monocle 
analysis; B The trajectory plot of 5 cell states; C The trajectory plot in pseudotime, the darker the color is, the default starting point is represented, 
and the lighter the color is, the farther it is from the starting point of the pseudotimeline; D The trajectory plot of 14 cell types in 5 states
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Fig. 4 The relevance between cell state characteristic genes and the clinical features of ovarian cancer. A K-M survival curve of 3 clusters; B Age 
distribution in each cluster; C Proportions of tumor stages in each cluster; D Distribution of sample sources in each cluster; E Distribution of 
anatomical sites in each cluster; F‑O Expression of upregulated and downregulated characteristic genes in 5 states of patients in 3 clusters
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had a significantly higher proportion of advanced patients 
(P < 0.01) (Fig. 3 C), and it is widely known that the prog-
nosis of patients in the later period is poor. In addition, 
the scale of the omentum in both the sample and ana-
tomical site in cluster 2 was significantly larger than that 
in the other two clusters (Fig. 3D, E). This suggested that 
patients with omental metastasis were associated with 
poor survival. The expression levels of characteristic 
genes in five cell states of patients in three clusters were 

analyzed to find the possible relations of cell states and 
the cells in the samples of the patients in three clusters 
(Fig. 4 F-O).

Analysis of the TME, immune cell infiltration and immune 
checkpoints
The proportion of 22 immune cells in 3 clusters was 
evaluated by CIBERSORT, and only samples with a 
P-value < 0.05 were selected for comparison (Fig.  5  A). 

Fig. 5 Analysis of the TME, immune cell infiltration and immune checkpoints. A The proportion of 22 immune cells built on 3 clusters; B The 
difference of the fraction of 22 immune cells in 3 clusters; C The relationship between the proportion of dendritic cells resting and survival; D The 
relationship between the proportion of macrophages M2 cells and survival; E‑G The relationship between the expression level of PDCD1, CD274, 
CTLA4 and survival; H The expression of 6 immune checkpoint genes with significant differences among the 3 clusters; I‑L The ESTIMATE Score, 
Immune Score, Stromal Score, Tumor Purity were significantly different between 3 clusters. (*p < 0.05, **p < 0.01, ***p < 0.001, ns: nonsignificance)



Page 9 of 17Zhang et al. Journal of Ovarian Research          (2022) 15:123  

The proportion of 8 of the 22 immune cells showed sig-
nificant differences among the 3 clusters (Fig. 5B). Sam-
ples in cluster 1 had a higher ratio of activated mast 
cells and macrophage M0; cluster 2 had a higher ratio 
of activated NK cells, activated dendritic cells and neu-
trophils; and cluster 3 had a higher ratio of plasma cells, 
follicular helper T cells, and M1 macrophages. Through 
K-M analysis, it was found that among the patients with 
GSE132342, the higher dendritic cell resting proportion 
and the lower macrophage M2 proportion had a more 
favorable prognosis (Fig.  5  C-D). Currently, the main 
targets of immunotherapy are PD-1, PD-L and CTLA4; 
PD-1 is encoded by PDCD1, and PD-L1 is encoded 
by CD274. K-M survival analysis of CD274, CTLA4, 
PDCD1 and survival showed that high expression levels 
of CD274, CTLA4 and PDCD1 were associated with bet-
ter prognosis (Fig. 5E-G). However, the expression level 
of cluster 2 with the worst survival was not the lowest 
among the 3 clusters (Fig.  5H). The TME analysis dis-
played the highest ESTIMATE score and stromal score in 
cluster 2, the highest immune score in cluster 1 and the 
highest tumor purity in cluster 3 (Fig. 5I-L).

Construction of a nomogram model based on the OMAG 
risk signature and clinicopathological characteristics
The 74 cell state characteristic genes used to cluster 
patients in GSE132342 were passed for the candidate 
genes of OMAGs. The expression profiles of these 74 
genes were extracted from bulk RNA-seq data of TCGA-
OV, and the candidates were reduced to 10 genes by using 
LASSO regression (Fig. 6 A-B). Multivariate Cox regres-
sion was then used to determine the final 6-OMAGs and 
their correlation coefficients (Table 1). The formula was 
Riskscore = 0.307*TIMP3 + 3.516*FBN1–0 .10 9*I GKC + 
0.365*RARRES1 + 0.209*RPL21 + 0.870*UCHL1. Taking 
TCGA-OV as the training set and GSE132342 as the test 
set, risk scores were calculated in patients of both data-
sets, and the K-M survival curves reflected a better prog-
nosis of patients with low risk scores (Fig.  6  C-D). The 
sensitivity in both sets was assessed by receiver operating 
characteristic (ROC) curves. The area under the curve 
(AUC) of TCGA-OV was 0.602 at 3 years, 0.675 at 5 years 

and 0.808 at 10 years (Fig.  6E), which increased with 
time, while GSE132342 was stable above 0.55 (Fig. 6 F). 
Univariate Cox regression and multivariate Cox regres-
sion were used to analyze the correlation between clin-
icopathological characteristics and survival of patients in 
TCGA-OV successively. In univariate regression analysis, 
the P-values of stage and grade were > 0.1, and in mul-
tivariate Cox regression, the P-values were also > 0.05 
(Fig.  6G-H). However, it is well known that stage and 
grade have important value in prognosis, and the possi-
ble reason for this result might be that most patients in 
TCGA-OV were stage III-IV and grade 3. Finally, a nom-
ogram related to the prognosis of ovarian cancer accord-
ing to risk scores and clinicopathological characteristics 
was constructed (Fig.  6I). The ROC curves showed that 
the accuracy of this nomogram at 5 years was 0.835 
(Fig. 6 K).

Analysis of the expression and function of 6‑OMAGs
The expression levels of 6-OMAGs in 18 cell clusters of 
ovarian cancer omentum metastasis sites were analyzed 
(Fig. 7 A). TIMP3 had a higher expression in clusters 0, 
1, 14, and 15, which corresponded to mesenchymal cells, 
endothelial cells and tissue stem cells (Fig.  7B); FBN1 
had a higher expression in clusters 0 and 8, which cor-
responded to mesenchymal cells (Fig. 7 C); UCHL1 had 
a higher expression in cluster 4, which corresponded to 
epithelial cells (CSCs) (Fig. 7D); RARRES1 had a higher 
expression in clusters 4 and 6, which corresponded to 
epithelial cells (CSCs) and fibroblasts (Fig.  7E); IGKC 
was expressed in multiple clusters but had a signifi-
cantly higher average expression in cluster 12, which 
corresponded to B cells: plasma (Fig.  7  F); RPL21 was 
expressed in almost all clusters, except cluster 4, which 
corresponded to epithelial cells (CSCs) (Fig. 7G).

The correlation between the expression of 6-OMAGs 
and 20 tumor-related pathway scores (tumor inflam-
mation signature, cellular response to hypoxia, 
tumor proliferation signature, EMT markers, ECM-
related genes, angiogenesis, apoptosis, DNA repair, 
G2/M checkpoint, inflammatory response, PI3K/
AKT/mTOR pathway, P53 pathway, MYC targets, 

Table 1 The correlation coefficient and P-value of the 6-OMAGs

ID coef HR HR.95 L HR.95 H P-value

TIMP3 0.306572630383264 1.35876015116403 1.10849467977926 1.66552819970137 0.00316056503098236

FBN1 3.51582487967028 33.6436684591936 1.95070915522894 580.248687692912 0.0155261896254875

IGKC -0.10885566235626 0.896859858795168 0.83457415677356 0.963794049683628 0.00303526487570912

RARRES1 0.364589124350441 1.43992225759669 1.09997372335329 1.88493239784095 0.00796736160943154

RPL21 0.209439598882362 1.23298689907489 1.02201637531489 1.48750717699794 0.0287125482536819

UCHL1 0.87010129427505 2.38715264617469 0.936784113156544 6.08304269479703 0.0682829566218594
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TGFβ, IL-10 anti-inflammatory signaling pathway, 
genes upregulated by reactive oxygen species (ROS), 
DNA replication, collagen formation, degradation of 
ECM, ferroptosis, generated by ssGSEA (Supplemen-
tary File 6)) were analyzed by Spearman correlation 

(Supplementary Figs. 4, 5, 6, 7, 8 and 9). P-value < 0.05 
and ρSpearman > 0.3 are listed below (Table  2). The 
expression of FBN1, RARRES1, and TIMP3 was posi-
tively correlated with multiple tumor-related pathways.

Fig. 6 Construction of a nomogram model based on the OMAG risk signature and clinicopathological characteristics. A The confidence interval 
under each lambda; B The trajectory of each independent variable: the horizontal axis represents the log value of the independent variable lambda, 
and the vertical axis represents the coefficient of the independent variable. C Survival difference in high- and low-risk scores of the training set 
(TCGA-OV); D Survival difference in high- and low-risk scores of the test set (GSE132342); E The prognostic value of the 6-OMAGs signature was 
evaluated using the ROC curves in the training set (TCGA-OV); F The prognostic value of the 6-OMAGs signature was evaluated using the ROC 
curves in the test set (GSE132342). G Univariate Cox regression analyses of the 6-OMAGs and clinicopathological data; H Multivariate Cox regression 
analysis of the 6-OMAGs and clinicopathological data; I The nomogram model was constructed to predict the 3-, 5-, and 10-year survival of ovarian 
cancer patients. CStatus for person neoplasm cancer status, 0 for tumor free, 1 for with tumor; POutcome for primary therapy outcome success, 
1 for complete remission/response, 2 for partial remission/response, 3 for stable disease, 4 for progressive disease. J The calibration curve of the 
nomogram at 1, 3, and 5 years; K The ROC curve of the nomogram at 5 years
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The expression distribution of 6-OMAGs mRNA in 45 
human ovarian cancer cell lines obtained from the CCLE 
dataset demonstrated that there were large variations 
in the expression levels of FBN1, TIMP3, and UCHL1 
between cell lines (Fig. 8 A, E, F). The expression levels of 
IGKC and RARRES1 were overall low in 45 cell lines and 
only higher than 5 in specific cell lines (Fig. 8B, C). The 
expression level of RPL21 in all cell lines was relatively 
average and high (Fig. 8D).

Discussion
In this study, the scRNA-seq data of omentum metasta-
sis sites from 6 ovarian cancer patients, GEO microarray 
data of 3769 patients, TCGA-OV bulk RNA-seq data of 
379 patients and clinical information were combined to 
construct a prognostic prediction model of ovarian can-
cer composed of a 6-OMAGs signature and 3 clinico-
pathological features.

In comparison with the original authors [12], they 
performed the hierarchical clustering with a resolu-
tion of 0.2, PCs varied from 10 to 20 depending on the 
sample and UMAP dimension reduction, with 12 clus-
ters detected. While we selected a PC value of 18, a 
resolution of 0.5, and t-SNE dimensionality reduction 
analysis identified the single cells into 18 clusters. The 
difference between these parameters and methods will 
change the cluster distribution and mapping. The origi-
nal authors adopted a sophisticated way of cell annota-
tion, integrating canonical genes, functional categories, 

and cell line correlation. Finally, they annotated the 
12 clusters into nine types of cells and three unidenti-
fied clusters. We mainly used the SingleR package and 
adjusted the annotation results according to the marker 
genes in the literature, and obtained 14 cell types. In 
our cell annotation results, six cell types are the same 
as those of the original author, including epithelial cells, 
fibroblasts, mesenchymal stem cells, endothelial cells, B 
cells, and plasma B cells. But there are also some dif-
ferences. For example, the original authors only anno-
tated T cells, but we divided T cells into two different 
clusters, they annotated macrophages, but we only had 
monocyte. Interestingly, in our results, the epithelial 
cells (cancer cells) were separated into three clusters. 
This may be attributed to the heterogeneity of tumors. 
It may be valuable to further investigate the differences 
between these epithelial cell clusters in our follow-up 
research, which may provide some ideas for the precise 
treatment of ovarian cancer.

The differentiation trajectory analysis of ovarian can-
cer omentum metastasis sites revealed that each cell type 
was not necessarily in only one state, and each state con-
tained multiple cell types. Cells might express diverse sets 
of genes during different states; when cells move between 
states, some genes might be silenced, while some might 
be newly activated to carry out their work. Hence, these 
781 characteristic genes might have a connection with 
the composition, function and state of cells in the TME 
and are likely related to the progression of ovarian cancer.

Fig. 7 Analysis of the expression and function of 6-OMAGs. A Bubble plot of the 6-OMAGs expression level in 18 cell clusters; B‑G tSNE maps of the 
expression of 6-OMAGs in 18 cell clusters
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When the patients from GSE132342 were grouped into 
3 clusters in accordance with the expression of 74 cell 
state marker genes, patients in cluster 1 had relatively low 
expression in the downregulated genes of states 2, 3, 4, 
and 5 and relatively high expression in the upregulated 
genes, and it was speculated that the samples’ TME might 
be in states 2, 3, 4, and 5. Similarly, it could be inferred 
that the TME of samples in cluster 2 might be in state 1, 
and the TME of samples in cluster 3 might be in states 2, 
3, and 4. Comparing this conjecture with the conclusion 
of the original author of scRNA-seq data, they found high 
T cell infiltration group had an anti-tumor response. Our 
results showed that T cells were mainly concentrated in 
state 5, while patients with cluster 1 had similar expres-
sion characteristics to those with state 5, and the progno-
sis of patients with cluster 1 was significantly better than 

that of patients with cluster 2, which was also consistent 
with the original author’s conclusion.

The clustering results according to the marker genes 
of cell states were supplemented and examined by CIB-
ERSORT and TME analysis. This was helpful to further 
analyze the relationship between the omental metastasis 
sites’ characteristic genes of cell state and ovarian cancer 
prognosis. Cluster 2 had a higher percentage of neutro-
phils, which proved to be one of the cells facilitating the 
formation of omentum PMNs [4]. Among the immune 
cells with a higher proportion in cluster 3, follicular 
helper T cells [32] and macrophage M1 [33] were recog-
nized to have antitumor effects, similar to plasma cells. 
The original author of the scRNA-seq data discovered a 
unique plasmablast and plasma B cell clusters that may 
contribute to the immune response within the TME [12], 

Table 2 The ρSpearman value and P-value of the 6-OMAGs correlated with pathways

Pathway Gene ρSpearman P‑value

Tumor Inflammation Signature RARRES1 0.37 1.53e − 13

EMT markers FBN1 0.75 3.62e − 69

RARRES1 0.32 3.84e − 10

TIMP3 0.60 1.39e − 38

ECM‑related genes FBN1 0.70 8.72e − 56

RARRES1 0.35 4.24e − 12

TIMP3 0.59 2.55e − 36

Angiogenesis FBN1 0.76 1.02e − 71

RARRES1 0.40 8.76e − 16

TIMP3 0.59 5.05e − 36

Apoptosis FBN1 0.54 2.48e − 29

RARRES1 0.42 2.67e − 17

TIMP3 0.35 4.28e − 12

Inflammatory response FBN1 0.46 4.35e − 21

RARRES1 0.47 1.37e − 21

PI3K‑AKT‑mTOR pathway FBN1 0.35 2.61e − 12

RARRES1 0.33 6.89e − 11

P53 pathway FBN1 0.51 7.82e − 27

RARRES1 0.39 5.46e − 15

TIMP3 0.37 1.27e − 13

TGFβ FBN1 0.75 1.59e − 69

TIMP3 0.67 5.73e − 50

IL‑10 Anti‑inflammatory Signaling Pathway FBN1 0.32 2.36e − 10

RARRES1 0.43 1.21e − 18

Genes up‑regulated by reactive oxygen species (ROS) RARRES1 0.45 2.85e − 20

Collagen formation FBN1 0.84 2.12e − 101

TIMP3 0.75 7.58e − 68

Degradation of ECM FBN1 0.83 1.35e − 96

TIMP3 0.70 1.45e − 59

Ferroptosis FBN1 0.47 4.32e − 22

RARRES1 0.41 1.95e − 16
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Fig. 8 The expression distribution of 6-OMAGs mRNA in 45 human ovarian cancer cell lines. The x-axis represents the expression distribution of 
mRNA, the y-axis represents different cell lines, different colors and the size of dots represent expression



Page 14 of 17Zhang et al. Journal of Ovarian Research          (2022) 15:123 

which might be the reason why patients in cluster 3 had a 
better prognosis.

The immune checkpoint analysis displayed seem-
ingly contradictory results between expression level and 
prognosis; however, research has also shown that high 
expression of PD1 and PD-L1 is associated with favora-
ble outcome in lung cancer of early-stage but an adverse 
outcome in late-stage [34]. The ratio of stage I-II patients 
in cluster 3 was much higher than that in cluster 2, and it 
might be the dual effect of PD1 and PD-L1 on prognosis 
that leads to this result.

The TME analysis also suggested that there might 
be a correlation between the cell states and the sample 
clustering. As presumed previously, the cells of cluster 
1 samples were mainly in states 2, 3, 4, and 5; cluster 2 
was mainly in state 1; and cluster 3 was mainly in states 
2, 3, and 4. The expression characteristics of state 5 were 
unique to cluster 1, and state 5 contained a large quantity 
of immune cells. The expression characteristics of state 1 
were unique to cluster 3, which consisted of many stro-
mal cells. In comparison, cluster 3 indeed had the highest 
tumor cell content. This result implied that the progres-
sion and prognosis of tumors not only depended on the 
characteristics of tumor cells but also relied on interac-
tions within the niche.

The 6-OMAGs finally screened were TIMP3, FBN1, 
IGKC, RARRES1, RPL21 and UCHL1. TIMP3 (tissue 
inhibitors of metalloproteinase 3) was shown to be asso-
ciated with metastasis and poor survival in serous ovar-
ian cancer by regulating TGF-beta signaling [35]. Our 
results also found that TIMP3 was positively correlated 
with TGF beta; in addition, TIMP3 was positively related 
to EMT, extracellular matrix (ECM), angiogenesis, apop-
tosis, the P53 pathway, ECM degradation, and collagen 
formation, which are the potential mechanisms of its 
tumor-promoting effect. TIMP3 had a diverse expression 
level among 45 human ovarian cancer cell lines, which 
might be due to their different characteristics. In single-
cell samples, TIMP3 had a significantly high expression 
in mesenchymal cells, and studies demonstrated that 
TIMP3 can promote tumor progression through EMT 
[36, 37], which also verifies our conclusion.

FBN1 (fibrillin-1) has been reported to enhance the 
cisplatin resistance of ovarian cancer by being involved 
in angiogenesis and glycolysis [38]. Our study also 
found a strong correlation between the expression 
of FBN1 and angiogenesis with a ρSpearman of 0.76. 
Our results inferred that it is related to EMT with a 
ρSpearman of 0.75, which might be the reason why it 
is highly expressed in cells annotated as mesenchymal. 
In addition, we also found a considerable correlation 
of its expression with ECM, apoptosis, inflammatory 
response, PI3K/AKT/mTOR pathway, P53 pathway, 

TGFβ, IL-10 anti-inflammatory signaling pathway, col-
lagen formation and ferroptosis. It also had a diverse 
expression level in different cell lines, and its complex 
mechanism in cancer progression remains to be further 
elucidated.

IGKC (immunoglobulin kappa C), expressed in plasma 
cells, has been identified as one of the top genes of a 
prognostic B cell metagene in breast cancer, correlated 
with favorable prognosis and response to chemotherapy 
[39]. A study showed that plasma cell infiltration in epi-
thelial ovarian cancer has a significant impact on tumor 
progression and prognosis [40], and high expression of 
IGKC is associated with good outcome [41]. In our study, 
although it was widely expressed in a variety of cell types, 
it was only significantly overexpressed in B cells: plasma 
cells. Our pathway correlation analysis also did not find 
a significant positive correlation between IGKC and 20 
tumor-related pathways, and its expression level in ovar-
ian cancer cell lines was generally low, indicating that its 
high expression in ovarian cancer may be detrimental to 
the proliferation of ovarian cancer cells.

Ribosomal proteins (RPs) are involved in the cellular 
process of translation, and in recent years, RP dysfunc-
tion has been found in tumors, such as mutation, expres-
sion level changes and correlation with differentiation 
[42–44]. RPL21 (ribosomal protein gene 21) has been 
found to be associated with the proliferation of pan-
creatic cancer cells [45] and may be used as a potential 
marker for cervical intraepithelial neoplasia [46], but 
there are few reports in ovarian cancer. As a cellular 
translation process-related gene, it is not surprising that 
RPL21 is widely and highly expressed in various cell clus-
ters and 45 ovarian cancer cell lines; however, our study 
revealed significantly low expression in the cluster of 
epithelial cells (CSCs), suggesting that the change in its 
expression may be related to the increased stemness of 
ovarian cancer cells.

UCHL1 (ubiquitin carboxyl-terminal esterase L1) is 
an oncogene encoding a deubiquitinating enzyme that 
adjusts the balance between mTOR complexes [47] and 
plays a significant role in the ubiquitin system as well 
as different cellular processes [48]. It has been widely 
studied and confirmed to be related to tumor progres-
sion, such as prostate cancer, lymphoma, lung cancer, 
breast cancer, neuroblastoma, etc. [48–51]. In ovarian 
cancer, UCHL1 may be one of the markers related to 
early stages of high-grade serous carcinoma, immuno-
genicity [52, 53], and cisplatin resistance [54, 55]. Our 
results showed that it was specifically overexpressed in 
epithelial cells (CSCs), while the expression levels var-
ied significantly in different ovarian cancer cell lines. 
Interestingly, no significant correlation was found 
between UCHL1 and tumor-related functions. This 
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suggests that UCHL1 is related to the stemness of ovar-
ian cancer cells, but its specific mechanism requires 
further investigation.

RARRES1 (retinoic acid receptor responder 1) is one 
of the common methylated loci in several cancers and 
is believed to be a putative tumor suppressor gene [56, 
57]. Promoter hypermethylation and loss of RARRES1 
seem to facilitate cancer progression [58]. In this study, 
RARRES1 was found to be highly expressed in epi-
thelial cells (CSCs) and fibroblasts, and studies have 
revealed the possibility that RARRES1 can be used as 
a carcinoma-associated fibroblast (CAF) marker gene 
in breast cancer and may lead to chemotherapy resist-
ance [59, 60]. It could be speculated that fibroblast cells 
with high RARRES1 expression might be transformed 
into CAFs after remodeling by tumor cells, making the 
omental microenvironment easier for tumor cell migra-
tion/invasion. Compared with the other five OMAGs, 
the overall expression level of RARRES1 in ovarian can-
cer cell lines was not high. Moreover, although it has a 
significant correlation in multiple cancer-related path-
ways, the correlation coefficients are between 0.3 and 
0.5, which does not show a strong correlation. This may 
be related to the stemness of tumor cells, which still 
needs further research.

Although there are various models related to the 
prognosis of ovarian cancer, few focus on omentum 
metastasis. Our study has proven to a certain extent 
that there is a correlation between the cell states of 
omental metastasis sites and the prognosis of ovarian 
cancer. For ovarian cancer patients who have not yet 
metastasized, the marker genes of cell states also have 
prognostic value. This may be because the omentum 
microenvironment with these characteristics is more 
likely to form PMN during the interaction with residual 
tumor cells, making it for proliferation and coloniza-
tion. There are still many deficiencies and limitations in 
our research. Although GSE132342 contains consider-
able samples for analysis, one of its nonnegligible short-
comings is that it only has the expression information 
of 513 genes, and many valuable characteristic genes 
of cell states are excluded. The number of state marker 
genes decreased from 781 to 74. On the other hand, 
these 513 genes are also supported by high-level evi-
dence that they are related to the prognosis of ovarian 
cancer. When we intersected these 513 genes with the 
characteristic genes of cell states, the 74 genes obtained 
were more likely to be related to both the state of ovar-
ian cancer omental tumor cells and the prognosis of 
ovarian cancer. Apart from this, the study lacks first-
hand data, and the potential mechanism has not been 
verified by experiments, so more clinical trials and lab-
oratory experiments are needed in follow-up research.
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