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Abstract 

Ovarian cancer is a highly heterogeneous gynecological malignancy that seriously affects the survival and prognosis 
of female patients. Single-cell sequencing and transcriptome analysis can effectively characterize tumor heterogene-
ity to better study the mechanism of occurrence and development. In this study, we identified differentially expressed 
genes with different differentiation outcomes of tumor cells by analyzing a single-cell dataset. Based on the differ-
entially expressed genes, we explored the differences in function and tumor microenvironment among clusters via 
consensus clustering. Meanwhile, WGCNA was employed to obtain key genes related to ovarian cancer. On the basis 
of the TCGA and GEO datasets, we constructed a risk model consisting of 7 genes using the LASSO regression model, 
and successfully verified that the model was characterized as an independent prognostic factor, efficiently predicting 
the survival prognosis of patients. In addition, immune signature analysis showed that patients in the high-risk group 
exhibited lower anti-tumor immune cell infiltration and immunosuppressive status, and had poorer responsiveness to 
chemotherapeutic drugs and immunotherapy. In conclusion, our study provided a 7-gene prognostic model based 
on the heterogeneity of OC cells for ovarian cancer patients, which could effectively predict the prognosis of patients 
and identify the immune microenvironment status of patients.

Keywords Ovarian cancer, Single cell RNA-seq, Differentiation trajectory, Signature, Tumor immune 
microenvironment

Introduction
Ovarian cancer (OC) is the deadliest disease among 
gynecological malignancies. Due to the lack of represent-
ative symptoms, sensitive screening and diagnostic meth-
ods in the early stage, more than 70% of patients with 
OC are diagnosed at a late stage. Surgery, radiotherapy 
and chemotherapy are currently the main clinical treat-
ments for OC. Although this combination therapy has 
improved patients’ outcomes, the 5-year survival rate of 
patients with late stage is still less than 30% owing to fre-
quent recurrence and poor prognosis [1]. Besides, OC is 
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a heterogeneous disease with major genetic events whose 
biological behavior is influenced by complex gene regu-
latory networks. There are several histological subtypes 
of aggressive OC, and each subtype is associated with 
distinct genetic and epidemiological risk factors, clini-
cal features, and possible cellular origin. Therefore, tra-
ditional pathological classification and clinically relevant 
genomic stratification are no longer sufficient to explain 
the heterogeneity of OC. Instead, in-depth exploration at 
the molecular level is needed to make accurate diagnosis, 
treatment, and prognosis. Hence, analysis of key genes 
based on cellular heterogeneity can provide potential 
immunotherapeutic targets and meaningful risk predic-
tion for OC.

Single-cell RNA sequencing (scRNA-seq), which uses 
optimized next-generation sequencing technologies to 
define the global gene expression profile of a single cell, 
helps dissect previously hidden heterogeneity in cell 
populations, providing an efficient way to explore tumor 
heterogeneity and evolutionary mechanisms, and a better 
understanding of the underlying mechanisms of the dis-
ease and individualized treatment and an opportunity to 
comprehensively characterize genetic complexity at the 
cellular level, including differences in single nucleotide 
polymorphisms, copy number variation, gene expres-
sion levels, genomic structural variation, gene fusions, 
alternative splicing, and DNA methylation, further con-
tributing to our understanding of cellular heterogeneity 
[2–4]. Recently, scRNA-seq of 13,571 cells from two OC 
patients reported the identification of cell populations 
and key pathways and genes that played important roles 
in the development of ovarian cancer cells [5]. Another 
study describing single-cell RNA profiles of six tumors 
also revealed extensive heterogeneity in OC [6]. Charac-
terization of heterogeneous signatures within OC could 
surely lead to a better understanding of the mechanisms 
of ovarian carcinogenesis, metastasis and drug resistance.

Therefore, in this study, we performed a detailed bio-
logical analysis based on single-cell RNA-seq data from 
the GEO database and expression profiling data from 
bulk RNA-seq in The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) to identify differences 
between different cell clusters in OC. Based on the iden-
tified heterogeneity of OC cells, a prognostic risk model 
consisting of seven characteristic genes was constructed 
and validated, providing new biomarkers and potential 
therapeutic targets for the identification of heterogeneity 
and future targeted therapy.

Materials and methods
Data acquisition and processing
The scRNA-seq data in GSE118828 and bulk-seq data in 
GSE138876 and the corresponding clinical information 

were obtained from the GEO database, and the TCGA-
OV RNA-seq data and the corresponding clinical data 
were obtained from TCGA, in which the TCGA data-
set was used as the training set, and the GSE138876 was 
used as external validation dataset. The SVA package was 
used to normalize TCGA and GEO data to remove batch 
effects.

Acquisition and processing of scRNA‑seq and bulk RNA‑seq
scRNA-seq data for 17 ovarian cancer samples and 1 nor-
mal tissue sample were obtained from the GSE118828 
dataset in the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) 
database. The scRNA-seq data were first processed by 
the Seurat package, the percentage of mitochondrial 
genes was calculated by the PercentageFeatureSet func-
tion, and the relationship between sequencing depth 
and mitochondrial gene sequence and/or total intracel-
lular sequence was elucidated by correlation analysis. 
Cells with gene count < 100, sequence count < 50, and 
mitochondrial gene content > 5% were excluded. After 
data filtering, the scRNA-seq data were normalized by 
the LogNormalize method. t-SNE principal component 
analysis (PCA) was used to perform unsupervised clus-
tering and unbiased visualization of cell populations on 
2D maps. Subsequently, marker genes for each cluster 
were identified using the “FindAllMarkers” function. 
The SingleR package was used for marker-based cell type 
annotation. Finally, the “Monocle” package was utilized 
to perform pseudo-time and trajectory analysis of cells, 
and the differentially expressed genes between different 
trajectories were screened with the criteria of FC = 1, 
adj P value = 0.05, in which “fdr” functioned as P value 
adjustment method. The “clusterProfiler”, “org.Hs.eg.db”, 
“enrichplot” and “ggplot2” packages were used for Gene 
Ontology (GO) annotation and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis.

Consensus clustering based on differentially expressed 
genes (DEGs)
The “ConsensusClusterPlus” package provided quanti-
tative and visual evidence of stability for measuring the 
number of unsupervised subtypes for consensus cluster-
ing of OCs. The optimal number of subtypes was deter-
mined using the K-means algorithm and cumulative 
distribution function curves, with 50 iterations for stable 
subtypes, in which max K = 9. Kaplan-Meier analysis was 
completed to assess survival outcomes and the propor-
tion of clinicopathological features in each molecular 
subtype was displayed using the “ggplot2” package.

Tumor immune microenvironment
To investigate the immune microenvironment composi-
tion of each patient, the “ESTIMATE” package calculated 
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the immune, stromal score and tumor purity for each 
sample. The content of 22 immune cells in each sample 
was identified by CIBERSORT software, and the relative 
immune cell infiltration levels of individual samples were 
quantified by single-sample gene set enrichment analysis 
(ssGSEA) in the R package gsva. Meanwhile, the immune 
cell infiltration content of different subtypes was com-
pared through the “limma” package, showing a significant 
difference in immune cell histograms.

WGCNA
Based on the DEGs identified in single-cell sequenc-
ing, the R package “WGCNA” was used to construct a 
co-expression network of DEGs. In addition, the Pear-
son correlation coefficient of the genes was calculated to 
obtain a similarity matrix. In order to make the network 
conform to the scale-free network distribution, appro-
priate weight values and soft threshold were chosen and 
calculated to measure the connectivity between genes 
and the adjacency matrix was converted to a topologi-
cal overlap matrix. Besides, the matrix was hierarchically 
clustered using the WGCNA package. In terms of the 
generated clustering tree, the Dynamic Tree Cut method 
was used to cut the gene clustering tree. Genes with simi-
lar expression patterns were assigned to a branch, each 
branch representing a co-expression module. Correla-
tions between genes in each module and clinical features 
were determined by gene significance and module mem-
bership. The identified genes were differentially analyzed 
using the limma package with the criteria of FC = 1, adj 
P = 0.05, and the “ggplot2” and “pheatmap” packages 
were used to visualize the DEGs.

Construction and validation of the risk model
To evaluate the prognostic value of the key genes, we 
first performed univariate COX analysis on the iden-
tified DEGs to explore their correlation with survival 
status, and identified 11 prognostic-related genes for 
further analysis. LASSO Cox regression model (R pack-
age “glmnet”) was then used to narrow down the can-
didate genes and develop a prognostic model. Finally, 
7 genes and their coefficients were retained, and the 
penalty parameter (λ) was determined by the mini-
mum criterion. The risk score was calculated after nor-
malizing the TCGA expression dataset (applying the 
“scale” function in R), and the risk score formula was as 
follows: risk score = ∑7iXi × Yi (X: coefficient, Y: gene 
expression grade). OC patients in TCGA were divided 
into low-risk and high-risk subgroups according to the 
median risk score, and the OS time between the two sub-
groups was compared by Kaplan-Meier analysis. PCA 
and tSNE based on the 7-gene signature was performed 

by the “prcomp” function in the “stats” R package. The 
“survival”, “survminer” and “timeROC” R packages were 
employed to perform 3-year ROC curve analysis. For the 
validation study, the OC cohort from the GEO database 
(GSE138876) was performed.

Independent prognostic analysis
To investigate the relationship between risk score and 
clinical characteristics, risk score was integrated with 
clinical information and analyzed via univariate and mul-
tivariate COX regression models.

Construction of the nomogram
Integrating risk score and clinical parameters together, 
the rms package was used to construct a nomogram 
to predict the survival prognosis of patients at 1, 3 and 
5 years, and calibration curves were generated to verify 
the performance of the nomogram.

Chemotherapeutic drug sensitivity and immunotherapy 
responsiveness
To predict chemosensitivity between high and low risk 
groups, we employed the pRRophetic R package to infer 
common chemotherapeutic maximal inhibitory concen-
tration (IC50) values by building a ridge regression model 
with 10-fold cross-validation. Using immune checkpoint 
molecules to assess patients’ potential response to immu-
notherapy. At the same time, TIDE was a computational 
method that simulated two major mechanisms of tumor 
immune escape T-cell dysfunction and T-cell rejection, 
which could be employed to predict the prognosis of 
the patients to immune checkpoint inhibitor response. 
Eventually, TIDE scores were calculated and compared 
between high and low risk groups to assess patient 
responsiveness to immunotherapy.

Mutation analysis
Mutation data for OC patients were also obtained from 
the TCGA data portal (https:// portal. gdc. cancer. gov/). 
The data were further analyzed using the “maftools” 
package. We calculated the tumor mutational burden 
(TMB) score for each patient as follows: (total muta-
tions ÷ total bases covered) × 10^6. Meanwhile, gene 
mutation profiles of model genes were searched on the 
cBioportal website (www. cBiop ortal. org/).

qRT‑PCR validation of the expression of the model genes
Three pairs of matched OC and para-carcinoma tissue 
were obtained from the Gynecology and Obstetrics in 
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Renmin Hospital of Wuhan University. All the patients 
provided informed consent and were approved by the 
Ethics Committee of Renmin Hospital of Wuhan Univer-
sity. Total RNA from OC and para-carcinoma tissue sam-
ples were extracted and quantitated by qRT-PCR, where 
GAPDH was used as an internal control.

Results
Quality control and normalization of scRNA‑seq data
In this study, 16 tumor samples and 1 normal tissue sam-
ple were obtained from GSE118828 (An ineligible tumor 

sample was excluded). A total of 16,383 transcripts in 
355 single cells were preprocessed for scRNA sequenc-
ing analysis. After filtering for the total number of genes 
expressed in individual cells and the percentage of mito-
chondrial reads, no correlation between sequencing 
depth and mitochondrial gene sequence was detected 
(Fig.  1A). Sequencing depth was significantly positively 
correlated with total intracellular sequences (R = 0.82, 
Fig. 1B). A total of 11,739 genes were analyzed, of which 
10,239 had low cell-to-cell variation and 1500 had high 
variation (Fig. 1C).

Fig. 1 Analysis of single-cell RNA sequencing. A Post quality control filtering of each sequenced cell, which was plotted in violin plots to display 
their number of RNA features (nFeature_RNA) and absolute UMI counts (nCount_RNA). B Correlation analysis between sequencing depth and 
mitochondrial gene sequences and total intracellular sequences. C 10239 non-variable genes and 1500 variable genes were analyzed. D PCA 
based on scRNA-seq data. E 15 PCs were identified as the criteria of P < 0.5. F Heatmap illustrated the expression patterns of the top ten markers in 
individual cells of each cluster by Seurat analysis. G Cells were clustered into 12 types via tSNE analysis. H Pseudotime and trajectory analysis
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Single‑cell RNA‑seq analysis, clustering, cell trajectory 
analysis
PCA was used for preliminary dimensionality reduction 
of scRNA-seq data. Unbiased PCA was performed on 
355 cells using highly variable genes to examine global 
transcriptome patterns in scRNA-seq data. The results 
showed that there was no obvious separation between 
cells (Fig. 1D), then the top 15 principal components with 
significant differences were selected for further analysis 
(Fig.  1E). According to tSNE algorithm, 355 cells were 
aggregated into 12 clusters, and a total of 1738 marker 
genes were identified by differential analysis. The top 10% 
marker genes in each cluster are shown in the heatmap 
(Fig.  1F). Twelve clusters were annotated according to 
marker genes: cluster 0 was closely related to T cells, 1 
2 6 7 8 11 was closely related to epithelial cells, cluster 
3 was closely related to monocytes, cluster 9 was closely 
related to endothelial cells, and clusters 4 5 were closely 
related to Smooth muscle cells, cluster 10 are closely 
related to tissue stem cells (Fig.  1G). To determine the 
relationship between these cell clusters and states, dif-
ferentiation trajectories and pseudo-temporal analyses 
were studied using the Monocle2 R package based on the 
identified marker genes from each cluster. According to 
the pseudo-time order, the cells seem to start with clus-
ter 2 and 9, transition to cluster 3, 6 and 7, and finally to 
cluster 0, 4 and 8 (Fig. 1H). Not only that, we could find 
that cluster 2, 6, 9 and 11 were distributed in state 1, clus-
ter 0 and 4 were distributed in state 2, while cluster 3, 5 
and 10 were distributed in state 3, indicating different dif-
ferentiation progression outcomes (Fig.  1H). Except for 
above analysis results, we also integrated a GEO cohort 
(GSE154600) for validation, which indicated that there 
were different cell clusters in all cells, such as T cells, 
Fibroblasts, Tissue stem cells, etc. (Fig. S1).

Functional enrichment analysis
In order to understand the differences in different differ-
entiation outcomes of cells, we used Limma to perform 
differential analysis to identify DEGs (logFC = 1, adj P 
value = 0.05). There were 371 DEGs in state 2, 491 DEGs 
in state 2 and 332 DEGs in state 3. To further identify the 
enrichment functions of DEGs, we performed GO and 
KEGG enrichment analyses. GO analysis showed that 
state 1 and state 2 were enriched in negative regulation of 
cell adhesion, cell adhesion mediator activity, regulation 
of cell-cell adhesion; State 3 was enriched in extracellu-
lar matrix organization, collagen-containing extracellular 
matrix, and extracellular matrix structural constituent 
(Fig. S2A). KEGG enrichment analysis found that state1, 
2 and 3 were enriched in PI3K-Akt signaling pathway, 
ECM-receptor interaction, and Focal adhesion (Fig. S2B).

Consensus cluster analysis
To better investigate the mechanism of occurrence and 
development of OC, consensus clustering analysis was 
performed to classify all patients in TCGA into clusters. 
Based on gene expression profiles and survival time, we 
found that when the clustering was 2, patients could be 
well classified (Fig.  2A). Further Kaplan-Meier (KM) 
analysis found that C1 patients had better survival prog-
nosis than C2 patients (Fig. 2B). Then we combined the 
clinical characteristics of the patients, such as age, grade 
and grouping, and correlation analysis found that there 
was no significant difference in age distribution and path-
ological grade between the C1 and C2 groups (Fig. 2C).

The immune microenvironment among different clusters
CIBERSORT was utilized to calculate tumor microen-
vironment immune score of each patient and we there-
fore calculated and compared immune scores in different 
clusters of patients. The violin plot clearly showed that 
the Estimate score, Immune score, and Stromal score 
in the C1 group were significantly lower than those in 
the C2 group, while the Tumor purity was significantly 
higher than that in the C2 cluster (Fig.  3A). The con-
tent of 22 immune cells in each sample was calculated 
according to the CIBERSORT algorithm and displayed 
visually with different colors representing different cell 
types (Fig.  3B). Difference analysis showed that T cells 
CD4 memory resting, Monocytes, Eosinophil and Neu-
trophils were significantly higher in C2 cluster than C1 
cluster, which were closely associated with poor prog-
nosis, while T cells follicular helper, NK cells activated 
were significantly increased in C1 cluster (Fig.  3C). We 
then investigated immune cells closely related to sur-
vival prognosis. The results showed that the prognosis 
of patients with high expression of T cell gamma delta 
(P = 0.006) and M1 macrophages (P = 0.002) was sig-
nificantly better than that of patients with low expres-
sion, while the prognosis of patients with low expression 
of Mast cells activated was better than that of patients 
with high expression (P = 0.025). (Fig.  3D). Immune 
checkpoint molecules referred to key target molecules 
that inhibited the function of immune cells. Inhibiting 
these targets molecules could activate immune func-
tion, that was, immune checkpoint inhibitors. To assess 
the responsiveness of the clusters to immune check-
point therapy, we calculated and compared the expres-
sion of immune checkpoint molecules between the two 
groups, and the results showed that the expression of 
LDHB, TNFSF9, PDCD1LG2, LGALS9, PDCD1, LAG3 
was significantly decreased in the C1 cluster, CD28, 
CD80, IL12A, CD274, TNFRSF9, B2M, PTPRC, ICOSLG, 
HAVCR2, TNFRSF18, FGL1, IL12B, PVR, LDHA, 
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TNFSF18, CTLA4, CD86, TNFSF4, JAK2, JAK1, VTCN1, 
CD8A, TNFRSF4, CD40LG, ICOS, IFNG expression was 
significantly increased in the C2 cluster (Fig.  3E). More 
importantly, survival analysis found that CD40LG, CD80, 
ICOS, IFNG predicted better prognosis, while JAK1 pre-
dicted poor prognosis (Fig. 3F).

Establishment, evaluation and verification of predictive 
risk model
To construct a prognostic model for predicting the 
occurrence and development of OC, we newly incorpo-
rated the GEO dataset and performed WGCNA anal-
ysis based on the 719 DEGs by integrating the TCGA 
and GEO expression profiles (Fig.  4A, B). Clustering 
identified 4 modules such as blue, brown, cyan and grey 
modules (Fig.  4C). Then, differential expression analy-
sis was performed according to the identified charac-
teristic genes, and a total of 156 DEG were identified 
(FDR = 0.05 FC = 2), and the results were presented in 
the form of heatmap and volcano map (Fig. 4D, E). Sub-
sequently, univariate COX analysis was used to identify 
key genes associated with prognosis, and the forest plot 
showed a total of 11 genes associated with prognosis, 
among which LTBP3, COL16A1, SPOCK2, JUP, GRB7, 
RIPK4 were risk genes, ENOSF1, EPCAM, AP1M2, 

CXCR4, SRP9 were protective genes (Fig. 5A). Multivar-
iate COX analysis was employed to build the risk model 
based on prognostic genes. The risk model consisted 
of 7 core genes, and the formula was as follows: Risk 
score = (0.21319 * expression of COL16A1) + (− 0.42364 
* expression of ENOSF1) + (0.30670 * expres-
sion of SPOCK2) + (− 1.24260 * expression of 
AP1M2) + (0.00013 * expression of GRB7) + (0.41622 
* expression of RIPK4) + (− 0.56201 * expression of 
CXCR4). According to the risk score of the prognos-
tic model, patients in TCGA and GEO were divided 
into two groups of high and low risk. PCA and tSNE 
analysis showed that the patients could be well differ-
entiated (Fig. 5B). As the risk score gradually increased, 
the survival time of patients became shorter and the 
number of deaths increased (Fig. 5C). Survival analysis 
showed that the survival prognosis of patients in the 
low-risk group was significantly better than that of the 
high-risk patients (Fig.  5D). In addition, in the TCGA 
cohort, the areas under the receiver operating charac-
teristic (ROC) curve for predicting 1-, 3-, and 5-year 
OS were 0.586, 0.644, and 0.665, respectively (Fig. 5E). 
Patients in the GEO dataset were classified into high- 
and low-risk groups based on the median risk score, 
and PCA and tSNE analyses confirmed the validity of 

Fig. 2 Consensus cluster analysis based on the hub genes. A Two clusters were identified at a clustering threshold of K = 9. B Kaplan-Meier analysis 
between the two clusters. C Correlation analysis between clusters and clinicopathologic features
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Fig. 3 The immune microenvironment among different clusters. A Tumor microenvironment scores between clusters. B Heatmap illustrated 
the contents of 22 immune cells in each sample. C Comparison of 22 immune cells between clusters. D Kaplan-Meier analysis of immune cells. E 
Comparison of immune checkpoint molecules between clusters. F Kaplan-Meier analysis of immune checkpoint molecules
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their classification (Fig. 5F). The distribution of survival 
status also showed that an increase in the risk score was 
accompanied by a worsening of the patient’s survival 
status (Fig.  5G). Survival analysis further confirmed 
the better survival prognosis of patients in the low-
risk group (Fig. 5H). The 1-year, 3-year, and 5-year val-
ues of AUC were 0.651, 0.639, and 0.660, respectively, 
verifying the high predictive ability of the risk model 
(Fig.  5I). In addition, the expression levels of 7 core 
genes in the 12 clusters are shown in Fig. 5J. COL16A1 
was increased in group 4; ENOSF1, GRB7, RIPK4 were 
increased in cluster 11, SPOCK2 was increased in clus-
ter 6, AP1M2 was increased in cluster 8, and CXCR4 
was significantly increased in cluster 0 (Fig. 5J). Subse-
quently, in order to better verify the predictive ability 
of the risk model, we included three data sets, includ-
ing GSE23554, GSE26712 and GSE51088. The results 
clearly found that in the datasets, the survival progno-
sis of low-risk patients was significantly better than that 
of high-risk patients, and the AUC curves also clearly 
proved that the model had better prediction perfor-
mance (Figs. S3, 4 and 5).

Construction of the nomogram
We then integrated patient risk scores with clinical 
characteristics, and univariate and multivariate COX 
analyses in the TCGA dataset indicated that risk scores 
were independent risk factors in OC (Fig. S6A, B). 
Finally, we constructed a nomogram to predict the sur-
vival prognosis of patients, and the calibration curves 
illustrated the better performance of the nomogram 
(Fig. S6C).

Comparison between the risk model and other established 
models
In order to evaluate the predictive ability of our model, 
we compared the C-index value of the model with 
other established models. We found that the C-index 
value of our model was 0.6, while the C-index of other 
models were 0.571, 0.591, and 0.56 respectively (Fig. 
S7A). At the same time, we compared the prediction 
performance of the nomogram. The DCA and AUC 
results also showed that the nomogram also had certain 
advantages compared with other clinical features (Fig. 
S7B, C).

Fig. 4 Identified hub genes for weighted correlation network analysis. A‑B 4 modules were identified based on WGCNA analysis. C Correlation 
analysis between modules and clinicopathological parameters. D Differential expression analysis. E Heatmap illustrated the expression profiles of 
DEGs
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Independent prognostic analysis
To investigate the relationship between risk scores and 
clinical characteristics, we integrated patients’ clinical 

information with risk scores and presented them in the 
form of a heatmap (Fig. S8A). The correlation analy-
sis was presented as a histogram (Fig. S8B). Finally, we 

Fig. 5 Construction and validation of the risk model. A Univariate analysis of prognosis-related DEGs. B PCA and tSNE analyses of patients in the 
training set. C Distribution of the risk score and survival status of patients in the training set. D Kaplan-Meier analysis between the low-risk group 
and the high-risk group in the training set. E ROC curves for predicting 1-year, 3-year and 5-year OS in the training set. F PCA and tSNE analyses of 
patients in the testing set. G Distribution of the risk score and survival status of patients in the testing set. H Kaplan-Meier analysis between the 
low-risk group and the high-risk group in the testing set. I ROC curves for predicting 1-year, 3-year and 5-year OS in the testing set. J Expression 
levels of 7 DEGs in 12 clusters
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performed a survival analysis, and the results showed 
that low-risk patients in < 65-year-old group, > 65-year-
old group and the Stage 3-4 group were significantly bet-
ter than the high-risk group, while the survival prognosis 
of the Stage1-2 group was not significantly different (Fig. 
S8C).

Immune infiltration landscape in high and low risk groups
ssGSEA was used to calculate the level of immune infil-
tration in each patient. By calculating and comparing 
the levels of immune cells in patients with high and low 
risk groups in the TCGA and GEO datasets, we found 
that the levels of Macrophages, Neutrophils, T helper 
cells, and TIL cells in the high- risk group were signif-
icantly higher than those in the low- risk group, while 
NK cells were significantly lower than those in the low 
risk group. The CCR, T cell co-inhibition, Type II IFN 
Response in the high-risk group of immune function 
were also significantly higher than those in the low-risk 
group (Fig. 6A). In the GEO dataset, Mast cells were sig-
nificantly increased in the high-risk group, while Tfh, 
MHC class I, Type I IFN Response were significantly 
decreased (Fig.  6B). Not only that, we also used ESTI-
MATE to evaluate the relationship between risk mod-
els and immune cells. CIBERSORT results showed that 
T cells CD4 memory activated, T cells gamma delta, 
and Macrophages M1 expression were significantly 
increased in the low-risk group (Fig. 6C). Survival anal-
ysis showed that high M1 macrophages, Plasma cells, 
activated  CD4+ T cells, Folicular helper T cells, gamma 
delta T cells had a significantly better prognosis than 
those with low expression, while M2 macrophages, 
activated Mast cells, Monocytes, Neutrophils, resting 
 CD4+ T cells were opposite (Fig. S9). Correlation anal-
ysis also revealed a close relationship between various 
immune cells and risk scores (Fig.  6D). Immune func-
tion enrichment showed that APC co stimulation, iDCs, 
Neutrophils, T helper cell, Type II IFN Response were 
significantly enriched in the high-risk group, while NK 
cells were enriched in the low-risk group (Fig. 6E). Sur-
vival analysis also showed patients with high expression 
of aDCs, APC co inhibition prognosis had significantly 
better prognosis than those with low expression, 
and the prognosis of low expression of Type II IFN 
Response, iDCs, CCR, etc. was significantly better than 
that of high expression (Fig. S10). Not only that, we also 
identified the expression of specific markers in immune 
cells. The study found that the expression of BCL6, CD4, 

CD14, CD33, CD86, CD163, STAT3, STAT5B was sig-
nificantly increased in the high-risk group, which was 
significantly positively correlated with the risk score, 
(Fig. 6F), which was further confirmed by Pearson cor-
relation analysis (Fig.  6G). Eventually, the MCP-coun-
ter results demonstrated that patients with low risk 
had higher infiltration of endothelial cells, fibroblasts, 
monocytes, neutrophils and T cells (Fig. 6H).

Risk score and immunotherapy and chemotherapy 
responsiveness
Immunotherapy is a new promising option for the 
future treatment of OC. Therefore, we further evaluated 
the association of immunotherapy with risk score by 
analyzing the correlation between risk score and expres-
sion of immune checkpoint molecules. First, the expres-
sion of immune checkpoint molecules in high and low 
risk groups was compared. The results showed that the 
expressions of HAVCR2, PDCD1, and PDCD1LG2 were 
significantly higher in the high-risk group than in the 
low-risk group, and their expression levels were also 
positively correlated with the risk score (Fig. 7A). Cor-
relation analysis revealed a close association between 
checkpoint molecules, and a clear positive correlation 
between HAVCR2 and risk score (Fig.  7B). Next, for a 
comprehensive assessment, we further included the 
TIDE score, T-cell dysfunction score, and T-cell rejec-
tion score, which were more accurate biomarkers in our 
analysis. As expected, low-risk patients were character-
ized by significantly lower TIDE scores, lower T-cell 
dysfunction scores, and higher MSI scores, with no sig-
nificant difference in T-cell exclusion scores, suggest-
ing that low-risk patients tended to be more sensitive 
to immunotherapy response (Fig.  7C). Chemotherapy 
drugs are still the main and most effective treatment 
for OC. We evaluated the responsiveness of high and 
low risk groups to different chemotherapy drugs, and 
found that the IC50 of Cisplatin, Dasatinib, Doxoru-
bicin, Etoposide, Imatinib, and Paclitaxel in the low risk 
group were significantly lower than the high-risk group, 
indicating that the low-risk group was more responsive 
to chemotherapy drugs, indicating a better prognosis 
(Fig. 7D). Eventually, ENRICHR was utilized to explore 
potential drugs based on the key genes in the model, 
and the results indicated that Hycroxychlor, Manumy-
cin, etodolac, letrozole, dapsone, mecamylamine, riba-
virin, budesonide, alclometasone and Tributyltin were 
favorable drugs (Fig. 7E).

Fig. 6 Immune infiltration landscape in high and low risk groups. A B Comparison of the immune cells and functions between the two groups in 
TCGA and GEO datasets. C Heatmap and infiltration of the immune cells between the two groups. D Correlation analysis between the risk score 
and immune cells. E Comparison of the Immune function between the two groups. F Comparison of the expression of the markers of immune 
cells between the two groups. G Correlation analysis between the risk score and immune cells markers. H Comparison of the immune cells and 
functions between the two groups in TCGA and GEO datasets via MCP-counter

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Tumor mutation analysis
Tumor gene mutation was closely related to tumor devel-
opment and poor prognosis, so we calculated the gene 
mutation frequency of patients. It was found that 420 
of the 436 clinical samples had gene mutations. The top 
three genes with the highest mutation frequency were 
TP53, TTN and MUC16, and the most common type of 
mutation was missense mutation (Fig. S11A). In order to 
analyze the mutation spectrum between high- and low-
risk groups, we performed mutation analysis on high-risk 

and low-risk patients, respectively, and found that 125 
of the 134 patients in the low-risk group had gene muta-
tions, and the genes with the top three mutation frequen-
cies were TP53, TTN and MUC16 (Fig. S11B), 127 of 
138 patients in the high-risk group had gene mutations, 
and the top three genes with mutation frequencies were 
TP53, TTN and CSMD3 (Fig. S11C). At the same time, 
we studied the mutation status of risk model genes in 
cBioportal. First, the most common type of mutation in 
OC was amplification. The highest mutation frequency in 

Fig. 7 Evaluation of the immunotherapy and chemotherapy between the two groups. A Comparison of the expression of immune checkpoint 
molecules between the two groups. B Correlation analysis between the risk score and immune checkpoint molecules. C Evaluation of the 
immunotherapy between the two groups. D Evaluation of the chemotherapy between the two groups. E Evaluation of the chemotherapy drugs 
based on the key genes in the model
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model genes was AP1M2, followed by COL16A1, and the 
third was SPOCK2. The specific mutation types for each 
gene were placed in the histogram (Fig. S11D). At the 
same time, the mutation positions and types of key genes 
are shown in Fig. S11E. Copy number variation (CNV) is 
the deletion or duplication of genomic fragments of more 
than 1 kb caused by genome rearrangement. Genomic 
alterations and CNVs are hallmarks of cancer, and differ-
ent kinds of cancers are characterized as unique aberra-
tions, providing clues to the cause and prognosis of the 
disease. Therefore, the CNV spectrum of the key genes 
was also explored and the results illustrated that AP1M2, 
SPOCK2, ENOSF1, GRB7 were enriched in higher gain 
of copies of a genomic DNA region, while COL16A1, 
RIPK4 and CXCR4 were opposite. Eventually, an over-
view of the occurrence of CNVs in different chromo-
somes of these core genes was also described (Fig. S11F). 
TMB is the total number of gene mutations in tumor tis-
sue, and high TMB may indicate better immunotherapy 
effect. We therefore compared the TMB values in the 
high and low risk groups, but there was no significant dif-
ference between the two groups (Fig. S11G). Finally, we 
integrated risk scores with TMB and immune cell corre-
lations in a circle plot, illustrating the close connection 
between TMB and immune cells (Fig. S11H).

Validation of model gene expression and survival
To investigate the role of model genes in OC, we per-
formed differential expression analysis to identify their 
expression, and found that AP1M2, CXCR4, GRB7, 
RIPK4, and SPOCK2 were significantly increased in 
OC, while COL16A1 and ENOSF1 were significantly 
decreased (Fig.  8A). Meanwhile, the protein expression 
profiles of the key genes were also studied, which were 
similar with precious results (Fig.  8B). Further survival 
analysis also showed that high expression of CXCR4 and 
ENOSF1 predicted better prognosis, while patients with 
low expression of GRB7, RIPK4, SPOCK2, and COL16A1 
had better prognosis (Fig.  8C). Besides, we also investi-
gated and verified the mRNA expression of the key genes 
via qRT-PCR, and the results indicated that the expres-
sion of AP1M2, CXCR4, GRB7, RIPK4, and SPOCK2 
were upregulated in OC, while COL16A1 and ENOSF1 
were downregulated, which was similar with the previous 
results (Fig. 8D).

Discussion
OC is one of the most common malignant tumors in the 
female reproductive system, and its mortality rate ranks 
first among gynecological malignant tumors. In 2020, the 
U.S. is expected to have 21,750 new cases of ovarian can-
cer and 13,940 deaths [1]. Although the current diagnosis 
and treatment methods have gradually improved and the 

survival and prognosis of patients have been improved 
to a certain extent, the characteristics of OC are highly 
heterogeneous and the molecular mechanisms of the 
occurrence and development of different types of OC are 
different, thus the responsiveness of different treatment 
methods is also quite different. Accurate and individual-
ized predictive biomarkers at the molecular level are of 
great significance for the clinical diagnosis, treatment 
and prognosis evaluation of OC.

In this study, we adopted a scRNA-seq dataset to char-
acterize OC heterogeneity. OC cells with different differ-
entiation states were predicted into three subpopulations 
based on cell trajectory analysis, and subpopulation-
dependent molecular phenotypes were identified. Based 
on the DEGs identified in the three subgroups, molecu-
lar function analysis showed that State1 and State2 were 
enriched in negative regulation of cell adhesion, cell 
adhesion mediator activity, regulation of cell-cell adhe-
sion; State2 was enriched in T cell activation, while State3 
was enriched in extracellular matrix organization, colla-
gen-containing extracellular matrix, extracellular matrix 
structural constituent. These results suggested that dif-
ferent cellular differentiation trajectories could reflect 
the heterogeneity of OC, which was closely related to cell 
adhesion and immune pathways.

Subsequently, based on the DEGs identified above, we 
performed consensus clustering analysis in the TCGA 
dataset, and the patients were well divided into two clus-
ters, C1 and C2. Survival analysis confirmed that patients 
in the C1 had better survival prognosis. Further study 
of the infiltration ratio of immune cells in the two clus-
ters found that T cells CD4 memory resting, Monocytes, 
Eosinophil and Neutrophils were significantly higher in 
the C2 than in the C1, which was closely related to poor 
prognosis. Besides, the expression of immune check-
points was significantly higher in the C2 than in the C1, 
and was significantly associated with immunotherapy 
responsiveness and survival prognosis.

We further investigated the potential roles of these sig-
nature genes in OC. Based on TCGA-OC data, we per-
formed WGCNA analysis to identify 574 key genes in the 
core module, and differential analysis further screened a 
total of 156 genes closely related to OC. Based on these 
hub genes, the expression profiles in the TCGA and GEO 
datasets were normalized to remove batch effects, and 
TCGA was set as the training set and GEO as the vali-
dation set. Therefore, we first identified 11 genes asso-
ciated with prognosis (LTBP3, COL16A1, ENOSF1, 
SPOCK2, EPCAM, JUP, AP1M2, GRB7, RIPK4, CXCR4, 
SRP9) by univariate COX analysis in the TCGA dataset. 
LASSO cox regression analysis constructed a prognos-
tic risk model consisting of 7 genes COL16A1, ENOSF1, 
SPOCK2, AP1M2, GRB7, RIPK4, CXCR4. Based on the 
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Fig. 8 Validation of model gene expression and survival. A Expression of the key genes between cancer and normal tissue. B The protein 
expression profiles of the key genes in human protein atlas. C Survival analysis for the key genes. D The mRNA expression level of the key genes in 
the clinical samples
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formula of risk score, patients in the training set were 
divided into high and low risk groups. Survival analysis 
indicated that patients in the low risk group had better 
prognosis, and subsequent independent prognostic anal-
ysis further illustrated that the risk score, similar to other 
clinical characteristics such as age, was independent 
prognostic risk factors in OC. Not only that, the ROC, 
DCA curves and the C-index comparison with other 
established models confirmed that our model had excel-
lent predictive performance, which was also well illus-
trated in the validation set.

Recently, there has been increasing evidence that the 
key genes in the model was a potential target of OC. 
COL16A1, secreted and synthesized by uterine stro-
mal cells, affected collagen breakdown and absorption 
[7]. COL16A1 was identified as a risk model in a prog-
nostic model of OC, and its expression was significantly 
increased in ovarian cancer tissue and predicted poor 
prognosis [8].
ENOSF1 encoded a mitochondrial enzyme to convert 

L-fuconate to 2-keto-3-deoxy-L-fuconate. The expression 
level of ENOSF1 in the serum of gastric cancer patients 
was significantly higher than that of healthy controls, 
which could be used as a potential gastric cancer serum 
biomarker [9]. However, there were few studies of this 
gene in cancer at present. In this study, the expression 
of ENOSF1 was significantly reduced in OC tissue, and 
low expression predicted a good prognosis, indicating 
that ENOSF1 acted as a tumor suppressor gene in OC. 
Therefore, the mechanism of this gene in the occurrence 
and development of OC could be further explored in 
the future, providing a new direction for future targeted 
therapy.
SPOCK2, a secreted protein acidic and cysteine-rich 

gene with osteonectin, cwcv and kazal-like domains Pro-
teoglycan 2 (SPOCK2), encoded a protein that binded to 
glycosaminoglycans to form the extracellular matrix and 
playd an important role in cell invasion and metastasis. 
A study on endometrial cancer (EC) showed that the 
expression level of SPOCK2 in EC was significantly lower 
than that in normal endometrial tissue, and the lack of 
SPOCK2 protein expression was associated with distant 
metastasis and myometrial invasion, which regulated the 
biological behavior of cancer cells, thus promoting the 
advance of EC [10]. In addition, the role of SPOCK2 in 
OC had also been studied. The expression of SPOCK2 in 
advanced OC was significantly higher than that in early 
OC and indicated poor prognosis of patients. In-depth 
study of its specific mechanism found that miR-363-3p-
SPOCK2 Axis ws involved in the regulation of the actin 
cytoskeleton and inhibits OC progression, which was 
consistent with our findings [11].

AP1M2, belongs to adnectin-associated adaptor pro-
tein complex 1 and functions in the anti-Golgi network 
and protein sorting in the endothelium. A pan-cancer 
analysis of AP1M2 showed that AP1M2 was abundantly 
expressed in various cancers, and its expression level 
was positively correlated with the prognosis of tumor 
patients. By studying the effect of AP1M2 on the clinical 
prognosis and immune infiltration of tumor patients, it 
was found that the expression of AP1M2 in breast inva-
sive cancer was associated with the overall survival of 
patients and the infiltration levels of macrophages, den-
dritic cells, and T cells  (CD4+ and  CD8+) and B cells. In 
addition, AP1M2 expression was positively correlated 
with tumor immune neoantigens and microsatellite 
instability in invasive breast carcinoma [12].

Growth factor receptor binding protein 7 (GRB7) was 
a member of the GRB7 signaling protein family, which 
was involved in the erythrocytic leukemia virus onco-
gene homolog receptor family, platelet-derived growth 
factor receptor, insulin receptor, and RAS-GTP enzymes 
and other important regulators of cell growth, suggest-
ing that GRB7 was involved in cell survival and growth 
[13]. GRB7 was involved in the occurrence and develop-
ment of various malignant tumors. A study on cervical 
cancer found that GRB7 protein expression was signifi-
cantly higher in cancer tissues than in non-cancer tis-
sues, and was associated with age, tumor size, serosal 
invasion, degree of differentiation, tumor stage, early or 
advanced stage, and lymph node metastasis. Step survival 
analysis showed that the overall survival rate of patients 
with positive expression of GRB7 protein was lower than 
that of patients with no expression of GRB7 [14]. In addi-
tion, GRB7 mRNA was upregulated in bladder cancer 
samples and Overexpression of GRB7 significantly pro-
moted bladder cancer proliferation and tumorigenesis 
[15]. Next, GRB7 has also been studied in OC. Knock-
out of GRB7 also significantly inhibited about 40% of cell 
proliferation (P = 0.0024), 95% of cell migration ability 
(P < 0.0001), and 45% of cell invasion ability, suggesting 
that oncogenesis of GRB7 [16]. This was also consistent 
with the results of this study, the expression of GRB7 was 
significantly increased in ovarian cancer tissues and high 
expression predicted poor prognosis.
RIPK4, receptor-interacting protein serine/threo-

nine kinase 4, is aberrantly expressed in multiple cancer 
types and is a key member of the receptor-interacting 
protein group, which has been studied in detail in OC 
[17]. The expression level of RIPK4 in OC tissues and 
cells is higher than that in normal ovarian tissues and 
cells. Down-regulation of RIPK4 expression could inhibit 
EMT in OC by inhibiting IL-6, which was characterized 
was a prognostic marker for OC [18]. Meanwhile, Liu 
et al. demonstrated that RIPK4 could serve as a potential 
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prognostic molecular marker for poor survival in OC 
patients. Furthermore, RIPK4 was also associated with 
tumor metastasis and is involved in the regulation of the 
Wnt signaling pathway [19].
CXCR4, a member of the C-X-C chemokine receptor 

family, is associated with a variety of cancers, and high 
CXCR4 expression in esophageal, gastric, and colorec-
tal cancers predicts poor prognosis [20]. Higher CXCR4 
expression in OC was associated with worse progression-
free survival (HR, 8.48; 95% CI: 2.13-33.70; P = 0.002) and 
lower OS [21]. The CXCL12/CXCR4 axis, together with 
a variety of other factors, regulated tumor growth and 
metastasis in OC [22] and the concomitant expression 
of CD40 and CXCR4 in OC was strongly associated with 
pelvic metastasis [23]. Knockdown of CXCR4 in  vitro 
reduced cell proliferation while increasing apoptosis and 
chemosensitivity in EOC cell lines [24].

In terms of the role of key genes in the differentia-
tion of OC, COL16A1 increased in cluster 4 and played 
an important role in state2; ENOSF1, GRB7, RIPK4 
increased in cluster 11 and played an important role 
in state1, SPOCK2 increased in cluster 6 and played an 
important role in state1, AP1M2 was increased in cluster 
8 and played an important role in state1, and CXCR4 was 
significantly increased in cluster 0 and played an impor-
tant role in state2, mediating different differentiation 
progression outcomes.

Previous studies have shown that the heterogene-
ity of OC also affects the tumor microenvironment and 
the level of immune cell infiltration, thus influencing the 
responsiveness of immunotherapy. Therefore, we next 
analyzed the composition of the tumor microenviron-
ment between the high and low risk groups, and found 
that the levels of Macrophages, Neutrophils, T helper 
cells, and TIL cells in the high- risk group were signifi-
cantly higher than those in the low risk group, while NK 
cells were opposite. The results showed that the anti-
tumor immunity of patients in the high-risk group was 
low, while the infiltration level of anti-tumor immune 
cells in the low-risk group was high, which to a certain 
extent also revealed that the patients in the low-risk 
group had a better prognosis. Based on the above obser-
vations, we further explored differences in sensitivity to 
chemotherapeutic drugs and immunotherapy in high- 
and low-risk groups. Amazing discovery,

The IC50s of Cisplatin, Dasatinib, Doxorubicin, Etopo-
side, Imatinib, and Paclitaxel in the low-risk group were 
significantly lower than those in the high-risk group, 
indicating that the low-risk group was more sensitive 
to chemotherapeutic drugs, which also suggested a bet-
ter prognosis. As for immunotherapy, the expression of 
immune checkpoint molecules in the high-risk group 
was significantly higher than that in the low-risk group. 

Immune checkpoint molecules were regulatory mole-
cules that inhibited the function of immune cells and the 
anti-tumor immune response in the immune system, and 
ultimately led to immune escape. Previous studies have 
also described that the expression of immune check-
point molecules was abnormally expressed in OC. Cur-
rent immunotherapy for OC was also mainly based on 
immune checkpoint blockade strategies. The TIDE score 
was applied to assess potential responsiveness to immu-
notherapy in high- and low-risk groups. The results were 
consistent with the previous results, and the TIDE score 
of patients in the low-risk group was significantly lower 
than that in the high-risk group, and a low TIDE score 
also predicted a more sensitive immunotherapy effect 
and a better survival prognosis.

In conclusion, in this study, we characterized OC 
heterogeneity using single-cell sequencing data, iden-
tified DEGs in different differentiation clusters, and 
constructed a 7-gene risk model based on the DEGs, 
eventually validating the high-efficiency and sensitive 
performance of the model. In addition, we also found that 
there were significant differences in the tumor micro-
environment and immunotherapy response of patients 
in the high- and low-risk groups, which also illustrated 
that the risk model constructed was closely associated 
with the tumor immune status. Therefore, our study pro-
vided a new risk model for predicting OC prognosis and 
elucidated OC heterogeneity and its relationship to the 
immune microenvironment to some extent.
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Monocle2 package. Fig. S2. Functional analysis of three subsets based 
on DEGs. A. GO analyses for three subsets. B. KEGG enrichment analyses 
for three subsets. Fig. S3. Validation of the risk signature in GSE23554. A. 
PCA and tSNE analyses of patients in the testing set. B. Distribution of the 
risk score and survival status of patients in the testing set. C. Kaplan-Meier 
analysis between the low-risk group and the high-risk group in the testing 
set. D. ROC curves for predicting 1-year, 3-year and 5-year OS in the testing 
set. Fig. S4. Validation of the risk signature in GSE26712. A. PCA and tSNE 
analyses of patients in the testing set. B. Distribution of the risk score 
and survival status of patients in the testing set. C. Kaplan-Meier analysis 
between the low-risk group and the high-risk group in the testing set. 
D. ROC curves for predicting 1-year, 3-year and 5-year OS in the testing 
set. Fig. S5. Validation of the risk signature in GSE51088. A. PCA and tSNE 
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Fig. S11. Tumor mutation spectrum. A. Overview of the tumor muta-
tion spectrum in TCGA dataset. B. Tumor mutation spectrum of patients 
in low- risk group. C. Tumor mutation spectrum of patients in high- risk 
group. D. Overview of the tumor mutation spectrum of the key genes. E. 
The overview of mutations types of the key genes. F. The frequency and 
distribution of the CNVs of the key genes visualized by circos plot. G. TMB 
between the low- and high- risk groups. H. Association between the TMB 
and risk score and immune cells.
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