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A signature based on glycosyltransferase sl

genes provides a promising tool

for the prediction of prognosis

and immunotherapy responsiveness in ovarian
cancer

Xuyao Xu'T, Yue Wu'", Genmei Jia?!, Qiaoying Zhu', Dake Li'" and Kaipeng Xie**"

Abstract

Background Ovarian cancer (OC) is the most fatal gynaecological malignancy and has a poor prognosis. Glycosyla-
tion, the biosynthetic process that depends on specific glycosyltransferases (GTs), has recently attracted increasing
importance due to the vital role it plays in cancer. In this study, we aimed to determine whether OC patients could be
stratified by glycosyltransferase gene profiles to better predict the prognosis and efficiency of immune checkpoint
blockade therapies (ICBs).

Methods We retrieved transcriptome data across 420 OC and 88 normal tissue samples using The Cancer Genome
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively. An external validation dataset contain-
ing 185 OC samples was downloaded from the Gene Expression Omnibus (GEO) database. Knockdown and pathway
prediction of B4GALT5 were conducted to investigate the function and mechanism of B4GALT5 in OC proliferation,
migration and invasion.

Results A total of 50 differentially expressed GT genes were identified between OC and normal ovarian tissues.

Two clusters were stratified by operating consensus clustering, but no significant prognostic value was observed.

By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 6-gene signature
was built that classified OC patients in the TCGA cohort into a low- or high-risk group. Patients with high scores had a
worse prognosis than those with low scores. This risk signature was further validated in an external GEO dataset. Fur-
thermore, the risk score was an independent risk predictor, and a nomogram was created to improve the accuracy
of prognostic classification. Notably, the low-risk OC patients exhibited a higher degree of antitumor immune cell
infiltration and a superior response to ICBs. BAGALT5, one of six hub genes, was identified as a regulator of prolifera-
tion, migration and invasion in OC.
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Conclusion Taken together, we established a reliable GT-gene-based signature to predict prognosis, immune status
and identify OC patients who would benefit from ICBs. GT genes might be a promising biomarker for OC progression

and a potential therapeutic target for OC.

Keywords Ovarian cancer, Glycosyltransferase, Prognosis, Immunotherapy

Introduction

Ovarian cancer (OC) is the most lethal malignancy of
the female reproductive system, the incidence of which
is only secondary to cervical cancer and uterine corpus
cancer. According to the latest global cancer statistics of
2020, ovarian cancer accounts for approximately 3.4%
of 9.2 million new cancer cases in females and 4.7% of
mortality [1]. Due to the insidious onset of ovarian can-
cer and lack of effective screening tools, nearly 70% of
patients are not diagnosed until the advanced stage (stage
III or IV) [2, 3]. The 5-year survival rate of advanced
patients is lower than that of patients who are diagnosed
at an early stage [4]. Although much progress has been
achieved in non-traditional treatment, such as immu-
notherapy and targeted therapy, the reduction in mor-
tality and recurrence still remains limited [5, 6]. Similar
to other malignant tumours, heterogeneity exists widely
across subtypes or even within a single tumour, which
may result in no response to corresponding treatments
[7-9]. Therefore, there is an urgent need to identify novel
molecular signatures to predict prognosis and evaluate
the sensitive subpopulations of immunotherapy, which
contribute to the improvement of treatment success and
the development of precision medicine.

Posttranslational modifications (PTMs) of proteins are
often dysregulated in cancer. The specific function of a
protein is dynamically achieved by the catalytic action of
many enzymes involved in PTMs, suggesting that these
enzymes may provide clues for cancer research [10, 11].
Glycosylation is one of the most common PTMs of pro-
teins and plays a vital role in many critical biological
processes, including cell adhesion, growth, signal trans-
duction and immune response, by affecting the function
of modified proteins [12, 13]. The biosynthesis of gly-
cosylation is a complex process orchestrated by several
glycosyltransferases and glycosidases. It has been widely
recognized that abnormal glycan changes in proteins are
involved in many pathological states, such as viral infec-
tion, cancer progression and the inflammatory process
[14]. Aberrant glycosylation is considered a marker of
cancer, the main factor of which is the abnormal expres-
sion of glycosyltransferases (GTs) translated from corre-
sponding GT genes [15, 16].

Numerous studies have proven that altered expression
levels of GTs can directly affect the malignant pheno-
types of cancer, such as proliferation [17], metastasis [18]

and drug resistance [16], indicating that targeting GTs
may help us understand the role of aberrant glycosylation
in cancer pathogenesis [19]. In ovarian cancer, mounting
evidence has suggested that GTs played a critical role in
its malignant progression. For example, overexpression of
sialyltransferase ST3GAL1 was proven to promote pro-
gression and paclitaxel resistance in OC [20]. Elevated
al,3-mannosyltransferase 3 (ALG3) was reported to
promote peritoneal metastasis of OC through increas-
ing interaction of a1,3-mannosylated uPAR and ADAMS
[21]. Huang et al. demonstrated that glycosyltransferase
8 domain containing 2 confers CDDP (cis-dichlorodiam-
mine-platinum) resistance through the FGFR/PI3K sig-
nalling axis [22]. What’s more, a recent study has proved
that GALNT14 was significantly upregulated in OC and
regulated ferroptosis through the EGFR/mTOR pathway
[23]. However, to our knowledge, a systematic analysis
of GT genes in OC is still blank. Since GTs could affect
the prognosis of OC through induction of malignancy
phenotypes, discovering the GT-gene signature for risk
stratification is in demand. In addition, it is worth men-
tioning that glycosylation is not only under the control of
epigenetic regulation (DNA methylation, histone acety-
lation and noncoding RNAs) but also itself is an epige-
netic modifier of histones that participates in cancer
progression [24, 25]. Given that cancer cells can hijack
various existing epigenetic modifications, including gly-
cosylation, to modulate antitumour immunity and lead to
tumour escape, epigenetic signatures appear to be prom-
ising candidates for predicting the outcomes of immu-
notherapy [26]. For example, sialic acid sugars on the
surface of cancer cells are recognized as potent immune
modulators that contribute to the immunosuppressive
microenvironment and tumour immune evasion [27].
Therefore, these studies provide a rationale for the poten-
tial ability of GT-signature to predict immunotherapy
success, contributing to personalized medicine.

In this study, we performed a systematic analysis to
determine the expression pattern of glycosyltransferase
genes between normal ovarian and OC tissues and deter-
mine whether OC could be stratified by these GT gene
expression profiles. The flow chart of this study is shown
in Fig. 1. By using bioinformatic analysis of the samples
from The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEX) projects, we established a risk
signature of six GT genes that was able to predict the
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Fig. 1 Workflow diagram. The specific workflow graph of our study

prognosis of OC and was further validated in the GEO
database. We then studied the correlation between this
risk signature and the tumour microenvironment and
immunotherapy. Moreover, we performed a knock-
down assay at the cellular level to verify the function of
B4GALTS5 in ovarian cancer, which was upregulated in
ovarian tissues and associated with poor prognosis. The
pathways involved were predicted by corresponding bio-
informatic analyses.

Methods

Datasets collection

A total of 188 GT genes were recognized from the Glyco-
Gene DataBase (GGDB, https://acgg.asia/ggdb2/). The
RNA sequencing (RNA-seq) count data of these genes for
OC (N=420) and normal ovarian (N=88) samples from
the TCGA and GTEx were downloaded from UCSC Xena
(https://toil.xenahubs.net). Relevant clinical information of
388 OC patients was obtained from TCGA (https://por-
tal.gdc.cancer.gov/) database, including age, stage, grade,

survival status and survival time. R software (version 4.1.3,
https://www.r-project.org/) was used for further analysis.

An independent cohort (GSE26712) was downloaded
from the GEO (http://www.ncbi.nlm.nih.gov/geo) data-
base for validation, which contained 185 OC samples
with expression profile and survival data. The clinico-
pathological features of OC patients from the TCGA and
GEO databases are shown in Table 1.

Determination and annotation of differentially expressed
GTsin OC

The overall differentially expressed genes (DEGs) were
identified by comparing the transcription data from
the TCGA and GTEx databases using the R package
“DEseq2” The criteria of significance were P,4<0.05
and absolute log2FC > 1.5. Next, we converged the over-
all DEGs and GT genes as differentially expressed GT
genes in OC. The functions of these genes were then
determined by Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis using
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Table 1 Clinicopathological features of OC patients enrolled in
this study

Characteristics TCGA database GSE 26712
Total 388 185
Histological subtype HGSOC HGSOC
Age years <65 252 -

>65 137
Grade G2 47 -

G3 341
FIGO Stage Il 21 -

Il 310 146

v 57 36
Follow-up months <1 8 1

1-120 377 173

>120 3 11
Survival state Deceased 218 56

Living 170 129

Abbreviation: HGSOC High-Grade Serous Ovarian Cancer, FIGO International
Federation of Gynecology and Obstetrics

the R package “clusterProfiler”. The correlation between
these GTs was analysed using the “corrplot” package. A
protein—protein interaction (PPI) network was estab-
lished by Search Tool for the Retrieval of Interacting
Genes (STRING), version 11.5 (http://string-db.org/)
with default minimum required interaction score of 0.4
(medium confidence) to explore physical and functional
associations between DEGs. The network was clustered
to a specified number of 3 using K-means clustering
method. The ctyoHubba plugin in Cytoscape software
(version 3.9.0) was used to find hub genes in PPI network.

Construction and validation of the GT risk signature
Univariate Cox regression analyses were performed
to assess the relationship between the differentially
expressed GTs and overall survival (OS). Afterwards,
LASSO Cox regression was employed to exclude colin-
ear genes for fear of overfitting. Finally, a risk signature
based on six GT genes (ALGS8, BAGALT5, FUTS, ABO,
ST6GALI1 and ST8SIA3) was identified. The coefficients
of six hub genes obtained from the LASSO Cox were uti-
lized to calculate the risk score according to the formula
as follows:

H
Riskscore = Z Coef; * x;

i=1

Where Coef; and x; represent the coefficients and
expression level of each hub gene, respectively. Taking
the median risk score as the cut-off value, OC patients
were stratified into either a high-risk or a low-risk group.
Furthermore, Kaplan—Meier survival analysis was carried
out to estimate the prognostic value by the R package
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“survival”. Receiver operating characteristic (ROC) curves
were then used to check the performance of this prog-
nostic prediction model in the “survival’, “survminer” and
“timeROC” R packages.

The GSE26712 datasets served as the validation cohort
to verify the prognostic value of this six-GT risk signa-
ture. The formula to determine the risk score and the
cut-off criteria to classify the patients into a high-risk or a
low-risk group were the same as the training cohort men-
tioned above.

Correlations between the GT signature and clinical factors

Univariate and multivariate Cox regression analyses
were used to determine whether the risk score played an
independent prognostic role. Then, ROC curve analyses
of the risk score and clinical parameters, including age,
stage and grade, were performed to assess the prognostic
value of this GT signature. A nomogram was established
by the “rms” R package to predict the OS of individuals.

Functional enrichment analysis of DEGs between the two
subgroups

A total of 377 OC patients were stratified into high-risk
and low-risk groups based on the median risk score. The
DEGs between the two subgroups were singled out using
the “DEseq2” R package with the screening threshold
of log,FC>1 and P,4;<0.05. GO and KEGG analyses of
these DEGs were performed by loading the R packages
“clusterProfiler” and “GOplot”.

Assessment of immune infiltration and immunotherapy
efficiency
We used four algorithms to compare the immune infil-
tration status of two subgroups from the TCGA database
in light of the expression profile of related genes. The
Estimation of Stromal and Immune cells in Malignant
Tumour tissues using Expression data (ESTIMATE) algo-
rithm was utilized to count the Stromal Score, Immune
Score and corresponding Estimate Score via the “esti-
mate” R package. Then, CIBERSORT and TIMER R
scripts were applied to calculate the proportions of TIICs
(tumour immune infiltrating cells) in each sample. In
the CIBERSORT algorithm, significant results (P<0.05)
were included for subsequent analysis. To quantify the
28 TIICs, we conducted a single-sample gene set enrich-
ment analysis (ssGSEA) algorithm by inputting the
expression matrix and immune cell marker gene set using
the “GSVA” R package. The Wilcoxon rank-sum test was
used to compare the content of infiltrating immune cells
in OC between the low- and high-risk groups.

The Mutation Annotation Format (MAF) was down-
loaded from the TCGA database and analysed by the R
package “maftools” to show the mutation landscape of
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the high- and low-risk groups. The number of somatic
mutations and neoantigens were obtained from The
Cancer Immunome Atlas (TCIA) (https://tcia.at).
Immunophenoscore (IPS) analysis was performed to
determine immunogenicity. IPS was calculated from
the gene expression of typical cell types, the results of
which were also obtained from TCIA. Furthermore, we
took advantage of the Tumour Immune Dysfunction and
Exclusion (TIDE) portal (http://tide.dfci.harvard.edu/) to
predict the responsiveness to immune checkpoint block-
ade (ICB) therapy in both groups by retrieving the TIDE
score, T-cell dysfunction score, and the infiltration level
of myeloid-derived suppressor cells (MDSCs), tumour-
associated fibroblasts (CAFs) and M2 tumour-associated
macrophages (TAMs).

Real-time quantitative PCR

Total RNA was purified by an RNA extraction kit
(Thermo Scientific, USA) according to the manufac-
turer’s instructions. SYBR Green Mix (Vazyme, China)
was then used by the ABI StepOnePlus Real-Time PCR
machine (Applied Biosystems, USA) to perform Real-time
quantitative PCR (RT—qPCR). The primer sequences were
as follows: B4GALT5, forward 5-TACCGAGTTCTT
TGGCGGAG-3" and reverse 5-AGCCTGCATTCTGTA
CTCTGTT-3; GAPDH, forward 5-GTCTCCTCTGAC
TTCAACAGCG-3 and reverse 5- AATGCCTTGGGC
TTGCATCA -3.

Western blotting (WB) assay

Transfection efficiency was verified by WB assay. Briefly,
the harvested cells were lysed using radioimmunopre-
cipitation assay (RIPA) lysis buffer (Beyotime, China)
and a protein phosphatase inhibitor (Beyotime, China).
The intact protein was separated by SDS-PAGE and
transferred onto a PVDF membrane using a wet transfer
method. The membrane was blocked with 5% skim milk
powder for 2 h at room temperature and then incubated
at 4 °C overnight with primary antibodies specific for
B4GALT5 (ab110398, Abcam, 1:1000 dilution, 45 KD)
or alpha tubulin (1:1000, 55 KD); alpha tubulin served as
the internal reference. Horseradish peroxidase (HRP)-
labelled goat anti-rabbit IgG (Biosharp, 1:5000 dilution)
was used as the secondary antibody. After incubating
with the secondary antibody for 2 h at room temperature,
the membrane was developed with an enhanced chemi-
luminescence (ECL) solution.

Cell culture and transfection

A2780 human OC cells were cultured in high glucose
DMEM (KeyGEN, China) supplemented with 10% foetal
bovine serum (Gibco, USA) at 37 °C containing 5% CO,.
Three siRNAs targeting the BAGALT5 mRNA region and
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Nc control siRNA were used for BAGALTS5 silencing via
transient transfection (RIBOBIO, China). The sequences
of siRNAs against BAGALT5 were as follows: GTGGAA
CAATTTCGGAAAA (si-1); GATCGCAACTATTAT
GGAT (si-2); CAACCAAATTGGATAAGTA (si-3).
Briefly, cells were seeded in a six-well plate 24 h before
transfection. When cells reached 60%-70% confluence,
Lipofectamine 3000 Transfection Reagent (Invitrogen,
USA) was utilized to transfect with siRNAs following the
manufacturer’s instructions. For validation, 48 h after
transfection, total RNA and proteins were extracted for
RT-qPCR and WB assays as described above.

Cell proliferation, invasion and migration assays

Cell proliferation assays were performed with a CCK-8
kit (Dojindo, Japan). Cells were harvested 24 h after
transfection and then seeded into 96-well plates (3000
cells/well) with six replicates per sample. After 0, 24, 48
and 72 h, 100 pl of 10% CCK-8 serum-free medium was
added. After 3 h of incubation, cell proliferation was esti-
mated using a microplate reader (Bio-Tek, USA).

Cell migration and invasion were assessed using a
24-well Transwell plate (Corning, USA). For the migra-
tion assay, the upper chamber was filled with 200 pl
serum-free medium and 5 x 10* cells; the lower cham-
ber was filled with 600 ul 20% FBS medium. After 24 h,
the cells on the bottom surface were fixed with 4% para-
formaldehyde and stained with crystal violet for 20 min.
The migration assay was performed in the same manner
but with Matrigel (Corning, USA) coated on the upper
chamber.

Gene set enrichment analysis of B4GALT5

A single-gene gene set enrichment analysis (GSEA)
analysis was adopted to determine the molecular path-
ways associated with B4AGALT5. The GSEA software
(version 3.0) was downloaded from the official GSEA
website (DOI:10.1073/pnas.0506580102, https://softw
are.broadinstitute.org/gsea/index.gsp). The OC gene set
from TCGA database was used for analysis and samples
were divided into high expression group (>50%) and low
expression group (<50%) based on the expression level
of BAGALT5. The sub gene set “c2. cp. kegg.v.7.4. sym-
bols. glmnt” was selected as the reference gene set. A
pathway with P<0.05 and FDR<0.25 was considered as
significant.

Statistical analysis

R software (version 4.1.3) with the necessary pack-
ages, GraphPad Prism 9 and SangerBox platform were
employed for all statistical analyses. The two-sample Wil-
coxon rank-sum test and Kruskal-Wallis test were per-
formed for continuous data, and Pearson’s chi-square
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test and Fisher’s exact test were performed for categorical
data. For survival analysis, the log-rank test was used for
KM analysis, and LASSO Cox proportional hazard regres-
sion was used to estimate the hazard ratios (HRs) and 95%
confidence intervals (ClIs). Unless otherwise specified, a
2-tailed P value less than 0.05 was considered statistically
significant.

Results

Identification of differentially expressed GTs

between normal and tumour tissues

A total of 7938 DEGs were identified by comparing data
from 420 tumour and 88 normal tissues in the pooled
TCGA OC and GTEx normal ovary datasets (Fig. 2A).
By taking the intersection of OC DEGs and 188 GTs, we
distinguished 50 differentially expressed GTs (Fig. 2B).
Among them, 37 genes were upregulated, while 13 genes
were downregulated in tumour tissues. The RNA levels
of these genes are clearly shown in the heatmap (Fig. 2C).
Subsequently, correlation analysis was conducted to fur-
ther explore the associations between 50 GT genes. We
found that CHST7 and ST3GAL4 were most positively
relevant, while CHST7 and GALNT12 were most nega-
tively relevant (Fig. 2D). To further explore the interaction
between 50 GT genes, a PPI network was established and
the colours of edges connecting two proteins represented
different types of interactions including known, predicted
or others (Fig. 2E). Among them, we determined that
FUTS, B3GALT1, ST6GAL1, GCNT1, FUT3, ST3GAL4,
MGAT4A, MGAT4B, BAGALTS5, and ST3GAL6 were hub
genes of the network. The functional analyses of 50 GTs are
shown in Supplementary Fig. 1. These genes are involved
in various types of protein glycosylation with the activity of
glycosyltransferase.

OC subgroups stratified by consensus clustering analysis
of differentially expressed GTs

To investigate whether the expression of these 50 GTs plays
a role in OC subtypes, we performed unsupervised con-
sensus clustering of all 420 OC patients using the “Con-
sensusClusterPlus” R package. The optimum clustering
variable (k=2) was determined based on the comprehen-
sive evaluation of several criteria (Supplementary Fig. 2A-B
and Supplementary Fig. 3), indicating that the 420 OC
patients were able to be divided into two clusters (Cluster
1 and Cluster 2). However, no significant difference in clini-
cal features between Cluster 1 and Cluster 2 was observed.
The OS time between the two clusters did not reach sig-
nificance (P=0.828, Supplementary Fig. 2C). To further
clarify the relationship between clinical parameters, includ-
ing grade, stage, age (<65 or>65) and survival status, and
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two clusters, a heatmap with 50 GT expression levels of 388
patients who were equipped with complete clinical data
was constructed (Supplementary Fig. 2D).

Establishment of a prognostic risk model based on GTs

in the TCGA training cohort

A total of 377 samples (11 samples from patients whose
OS time was<one month and>10 years were excluded)
with intact clinical data were used for subsequent risk sig-
nature construction. The genes associated with prognosis
were preliminarily screened out by univariate Cox regres-
sion analysis. According to the threshold of P<0.1, seven
genes (ABO, ALGS8, BAGALTS5, FUT8, GCNT2, ST6GAL1
and ST8SIA3) were kept for further analysis, among which
2 genes (BAGALT5 and ST8SIA3) were considered risk
factor genes with hazard ratios (HRs)>1, and the other 5
genes (ABO, ALGS, FUT8, ST6GAL1 and GCNT2) were
considered protective genes with HRs<1 (Fig. 3A). The
HR of a total of 50 genes is represented in Supplementary
Fig. 3. Next, by performing LASSO Cox regression analy-
sis, six genes (ALGS8, BAGALTS5, FUT8, GCNT2, ST6GAL1
and ST8SIA3) were selected to construct the risk model
based on the minimum criteria (Fig. 3B-D). Accordingly,
the risk scores of 377 patients were calculated by the coef-
ficients of six genes, and patients were divided into high-
and low-risk groups (Fig. 3E). The death rate of the low-risk
group (50.3%) was lower than that of the high-risk group
(61.2%) (P<0.05, Fig. 3F-G).

Subsequently, we performed survival analysis of these
two groups to probe the prognostic value of this six-gene
risk model. The results showed that the OS of patients in
the high-risk group was shorter than that of patients in the
low-risk group (P=1.15x 10", Fig. 4A). We then drew
receiver operating characteristic (ROC) curves to check the
area under the curves (AUCs) at 1, 3, and 5 years of 0.640,
0.655, and 0.659, respectively, which demonstrated that the
risk signature was reliable for predicting survival outcomes
(Fig. 4B).

Validation of the GT-based risk signature using the GEO
database

To validate the six-gene-based risk model, a total of
185 OC patients with prognostic information from
the GEO database (GSE26712) were utilized as the
external dataset. Patients were classified into low-
risk (N=93) and high-risk (N=92) subgroups based
on six risk-related GTs used in the TCGA cohort
(Supplementary Fig. 5A). And the death rate of the
low-risk group (52.4%) was lower than that of the
high-risk group (74.8%) (Supplementary Fig. 5B-C).
Consistent with the conclusions in the TCGA training
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Fig. 3 Construction of a prognostic risk model on the basis of these differentially expressed GTs. A Univariate Cox regression analysis of GTs.

Factors with P<0.1 are shown. B-D The process of establishing a risk signature with six glycosyltransferase genes. Coefficients were calculated by
multivariate Cox regression by LASSO. E The distribution of risk scores in the prognostic model. F The distribution of survival status in the prognostic
model. Patients in the high-risk group had more deaths and a shorter survival time than those in the low-risk group (the right side of the dotted

line). G The proportion of deaths in two groups. *P<0.05

cohort, the Kaplan—-Meier survival analysis demon-
strated that the overall survival rate of the high-risk
group was notably lower than that of the low-risk
group (P=7.14x107° Fig. 4C). The AUCs at 1,
3, and 5 years were 0.737, 0.671, and 0.660, respec-
tively, indicating the superior efficiency of our model
(Fig. 4D).

Independent prognostic significance of this GT-based
signature

To explore whether this risk model was able to predict
the prognosis of OC independently from clinicopatho-
logical features, we conducted univariate and multivari-
ate Cox regression analyses to evaluate the associations
between risk scores as well as clinical features and OS
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Fig. 4 The Kaplan—Meier OS analysis of prognostic models and the ROC curves showing the predictive efficiency of the risk signature. The patients
in the two datasets were assigned to the high-risk and low-risk groups (separately represented by red and blue), taking the median risk score as
the threshold. A, B In the TCGA discovery set, the survival rate of the high-risk group was lower than that of the low-risk group (P <0.001). The areas
under the curves (AUCs) at 1, 3, and 5 years were 0.640, 0.655, and 0.659, respectively. C, D In the GEO validation cohort, the surv