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Abstract 

Background Ovarian cancer (OC) is the most fatal gynaecological malignancy and has a poor prognosis. Glycosyla-
tion, the biosynthetic process that depends on specific glycosyltransferases (GTs), has recently attracted increasing 
importance due to the vital role it plays in cancer. In this study, we aimed to determine whether OC patients could be 
stratified by glycosyltransferase gene profiles to better predict the prognosis and efficiency of immune checkpoint 
blockade therapies (ICBs).

Methods We retrieved transcriptome data across 420 OC and 88 normal tissue samples using The Cancer Genome 
Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, respectively. An external validation dataset contain-
ing 185 OC samples was downloaded from the Gene Expression Omnibus (GEO) database. Knockdown and pathway 
prediction of B4GALT5 were conducted to investigate the function and mechanism of B4GALT5 in OC proliferation, 
migration and invasion.

Results A total of 50 differentially expressed GT genes were identified between OC and normal ovarian tissues. 
Two clusters were stratified by operating consensus clustering, but no significant prognostic value was observed. 
By applying the least absolute shrinkage and selection operator (LASSO) Cox regression method, a 6-gene signature 
was built that classified OC patients in the TCGA cohort into a low- or high-risk group. Patients with high scores had a 
worse prognosis than those with low scores. This risk signature was further validated in an external GEO dataset. Fur-
thermore, the risk score was an independent risk predictor, and a nomogram was created to improve the accuracy 
of prognostic classification. Notably, the low-risk OC patients exhibited a higher degree of antitumor immune cell 
infiltration and a superior response to ICBs. B4GALT5, one of six hub genes, was identified as a regulator of prolifera-
tion, migration and invasion in OC.
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Conclusion Taken together, we established a reliable GT-gene-based signature to predict prognosis, immune status 
and identify OC patients who would benefit from ICBs. GT genes might be a promising biomarker for OC progression 
and a potential therapeutic target for OC.

Keywords Ovarian cancer, Glycosyltransferase, Prognosis, Immunotherapy

Introduction
Ovarian cancer (OC) is the most lethal malignancy of 
the female reproductive system, the incidence of which 
is only secondary to cervical cancer and uterine corpus 
cancer. According to the latest global cancer statistics of 
2020, ovarian cancer accounts for approximately 3.4% 
of 9.2 million new cancer cases in females and 4.7% of 
mortality [1]. Due to the insidious onset of ovarian can-
cer and lack of effective screening tools, nearly 70% of 
patients are not diagnosed until the advanced stage (stage 
III or IV) [2, 3]. The 5-year survival rate of advanced 
patients is lower than that of patients who are diagnosed 
at an early stage [4]. Although much progress has been 
achieved in non-traditional treatment, such as immu-
notherapy and targeted therapy, the reduction in mor-
tality and recurrence still remains limited [5, 6]. Similar 
to other malignant tumours, heterogeneity exists widely 
across subtypes or even within a single tumour, which 
may result in no response to corresponding treatments 
[7–9]. Therefore, there is an urgent need to identify novel 
molecular signatures to predict prognosis and evaluate 
the sensitive subpopulations of immunotherapy, which 
contribute to the improvement of treatment success and 
the development of precision medicine.

Posttranslational modifications (PTMs) of proteins are 
often dysregulated in cancer. The specific function of a 
protein is dynamically achieved by the catalytic action of 
many enzymes involved in PTMs, suggesting that these 
enzymes may provide clues for cancer research [10, 11]. 
Glycosylation is one of the most common PTMs of pro-
teins and plays a vital role in many critical biological 
processes, including cell adhesion, growth, signal trans-
duction and immune response, by affecting the function 
of modified proteins [12, 13]. The biosynthesis of gly-
cosylation is a complex process orchestrated by several 
glycosyltransferases and glycosidases. It has been widely 
recognized that abnormal glycan changes in proteins are 
involved in many pathological states, such as viral infec-
tion, cancer progression and the inflammatory process 
[14]. Aberrant glycosylation is considered a marker of 
cancer, the main factor of which is the abnormal expres-
sion of glycosyltransferases (GTs) translated from corre-
sponding GT genes [15, 16].

Numerous studies have proven that altered expression 
levels of GTs can directly affect the malignant pheno-
types of cancer, such as proliferation [17], metastasis [18] 

and drug resistance [16], indicating that targeting GTs 
may help us understand the role of aberrant glycosylation 
in cancer pathogenesis [19]. In ovarian cancer, mounting 
evidence has suggested that GTs played a critical role in 
its malignant progression. For example, overexpression of 
sialyltransferase ST3GAL1 was proven to promote pro-
gression and paclitaxel resistance in OC [20]. Elevated 
α1,3-mannosyltransferase 3 (ALG3) was reported to 
promote peritoneal metastasis of OC through increas-
ing interaction of α1,3-mannosylated uPAR and ADAM8 
[21]. Huang et  al. demonstrated that glycosyltransferase 
8 domain containing 2 confers CDDP (cis-dichlorodiam-
mine-platinum) resistance through the FGFR/PI3K sig-
nalling axis [22]. What’s more, a recent study has proved 
that GALNT14 was significantly upregulated in OC and 
regulated ferroptosis through the EGFR/mTOR pathway 
[23]. However, to our knowledge, a systematic analysis 
of GT genes in OC is still blank. Since GTs could affect 
the prognosis of OC through induction of malignancy 
phenotypes, discovering the GT-gene signature for risk 
stratification is in demand. In addition, it is worth men-
tioning that glycosylation is not only under the control of 
epigenetic regulation (DNA methylation, histone acety-
lation and noncoding RNAs) but also itself is an epige-
netic modifier  of   histones  that participates in cancer 
progression [24, 25]. Given that cancer cells can hijack 
various existing epigenetic modifications, including gly-
cosylation, to modulate antitumour immunity and lead to 
tumour escape, epigenetic signatures appear to be prom-
ising candidates for predicting the outcomes of immu-
notherapy [26]. For example, sialic acid sugars on the 
surface of cancer cells are recognized as potent immune 
modulators that contribute to the immunosuppressive 
microenvironment and tumour immune evasion [27]. 
Therefore, these studies provide a rationale for the poten-
tial ability of GT-signature to predict immunotherapy 
success, contributing to personalized medicine.

In this study, we performed a systematic analysis to 
determine the expression pattern of glycosyltransferase 
genes between normal ovarian and OC tissues and deter-
mine whether OC could be stratified by these GT gene 
expression profiles. The flow chart of this study is shown 
in Fig. 1. By using bioinformatic analysis of the samples 
from The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx) projects, we established a risk 
signature of six GT genes that was able to predict the 
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prognosis of OC and was further validated in the GEO 
database. We then studied the correlation between this 
risk signature and the tumour microenvironment and 
immunotherapy. Moreover, we performed a knock-
down assay at the cellular level to verify the function of 
B4GALT5 in ovarian cancer, which was upregulated in 
ovarian tissues and associated with poor prognosis. The 
pathways involved were predicted by corresponding bio-
informatic analyses.

Methods
Datasets collection
A total of 188 GT genes were recognized from the Glyco-
Gene DataBase (GGDB, https:// acgg. asia/ ggdb2/). The 
RNA sequencing (RNA-seq) count data of these genes for 
OC (N = 420) and normal ovarian (N = 88) samples from 
the TCGA and GTEx were downloaded from UCSC Xena 
(https:// toil. xenah ubs. net). Relevant clinical information of 
388 OC patients was obtained from TCGA (https:// por-
tal. gdc. cancer. gov/) database, including age, stage, grade, 

survival status and survival time. R software (version 4.1.3, 
https:// www.r- proje ct. org/) was used for further analysis.

An independent cohort (GSE26712) was downloaded 
from the GEO (http:// www. ncbi. nlm. nih. gov/ geo) data-
base for validation, which contained 185 OC samples 
with expression profile and survival data. The clinico-
pathological features of OC patients from the TCGA and 
GEO databases are shown in Table 1.

Determination and annotation of differentially expressed 
GTs in OC
The overall differentially expressed genes (DEGs) were 
identified by comparing the transcription data from 
the TCGA and GTEx databases using the R package 
“DEseq2”. The criteria of significance were Padj < 0.05 
and absolute log2FC > 1.5. Next, we converged the over-
all DEGs and GT genes as differentially expressed GT 
genes in OC. The functions of these genes were then 
determined by Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis using 

Fig. 1 Workflow diagram. The specific workflow graph of our study

https://acgg.asia/ggdb2/
https://toil.xenahubs.net
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.r-project.org/
http://www.ncbi.nlm.nih.gov/geo
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the R package “clusterProfiler”. The correlation between 
these GTs was analysed using the “corrplot” package. A 
protein‒protein interaction (PPI) network was estab-
lished by Search Tool for the Retrieval of Interacting 
Genes (STRING), version 11.5 (http:// string- db. org/) 
with default minimum required interaction score of 0.4 
(medium confidence) to explore physical and functional 
associations between DEGs. The network was clustered 
to a specified number of 3 using K-means clustering 
method. The ctyoHubba plugin in Cytoscape software 
(version 3.9.0) was used to find hub genes in PPI network.

Construction and validation of the GT risk signature
Univariate Cox regression analyses were performed 
to assess the relationship between the differentially 
expressed GTs and overall survival (OS). Afterwards, 
LASSO Cox regression was employed to exclude colin-
ear genes for fear of overfitting. Finally, a risk signature 
based on six GT genes (ALG8, B4GALT5, FUT8, ABO, 
ST6GAL1 and ST8SIA3) was identified. The coefficients 
of six hub genes obtained from the LASSO Cox were uti-
lized to calculate the risk score according to the formula 
as follows:

Where Coefi and xi represent the coefficients and 
expression level of each hub gene, respectively. Taking 
the median risk score as the cut-off value, OC patients 
were stratified into either a high-risk or a low-risk group. 
Furthermore, Kaplan‒Meier survival analysis was carried 
out to estimate the prognostic value by the R package 

Riskscore =

n

i=1

Coef i ∗ xi

“survival”. Receiver operating characteristic (ROC) curves 
were then used to check the performance of this prog-
nostic prediction model in the “survival”, “survminer” and 
“timeROC” R packages.

The GSE26712 datasets served as the validation cohort 
to verify the prognostic value of this six-GT risk signa-
ture. The formula to determine the risk score and the 
cut-off criteria to classify the patients into a high-risk or a 
low-risk group were the same as the training cohort men-
tioned above.

Correlations between the GT signature and clinical factors
Univariate and multivariate Cox regression analyses 
were used to determine whether the risk score played an 
independent prognostic role. Then, ROC curve analyses 
of the risk score and clinical parameters, including age, 
stage and grade, were performed to assess the prognostic 
value of this GT signature. A nomogram was established 
by the “rms” R package to predict the OS of individuals.

Functional enrichment analysis of DEGs between the two 
subgroups
A total of 377 OC patients were stratified into high-risk 
and low-risk groups based on the median risk score. The 
DEGs between the two subgroups were singled out using 
the “DEseq2” R package with the screening threshold 
of  log2FC > 1 and Padj < 0.05. GO and KEGG analyses of 
these DEGs were performed by loading the R packages 
“clusterProfiler” and “GOplot”.

Assessment of immune infiltration and immunotherapy 
efficiency
We used four algorithms to compare the immune infil-
tration status of two subgroups from the TCGA database 
in light of the expression profile of related genes. The 
Estimation of Stromal and Immune cells in Malignant 
Tumour tissues using Expression data (ESTIMATE) algo-
rithm was utilized to count the Stromal Score, Immune 
Score and corresponding Estimate Score via the “esti-
mate” R package. Then, CIBERSORT and TIMER R 
scripts were applied to calculate the proportions of TIICs 
(tumour immune infiltrating cells) in each sample. In 
the CIBERSORT algorithm, significant results (P < 0.05) 
were included for subsequent analysis. To quantify the 
28 TIICs, we conducted a single-sample gene set enrich-
ment analysis  (ssGSEA) algorithm by inputting the 
expression matrix and immune cell marker gene set using 
the “GSVA” R package. The Wilcoxon rank-sum test was 
used to compare the content of infiltrating immune cells 
in OC between the low- and high-risk groups.

The Mutation Annotation Format (MAF) was down-
loaded from the TCGA database and analysed by the R 
package “maftools” to show the mutation landscape of 

Table 1 Clinicopathological features of OC patients enrolled in 
this study

Abbreviation: HGSOC High-Grade Serous Ovarian Cancer, FIGO International 
Federation of Gynecology and Obstetrics

Characteristics TCGA database GSE 26712

Total 388 185

Histological subtype HGSOC HGSOC

Age years  < 65
 ≥ 65

252
137

-

Grade G2
G3

47
341

-

FIGO Stage II
III
IV

21
310
57

-
146
36

Follow-up months  < 1
1–120
 > 120

8
377
3

1
173
11

Survival state Deceased
Living

218
170

56
129

http://string-db.org/
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the high- and low-risk groups. The number of somatic 
mutations and neoantigens were obtained from The 
Cancer Immunome Atlas (TCIA) (https:// tcia. at). 
Immunophenoscore (IPS) analysis was performed to 
determine immunogenicity. IPS was calculated from 
the gene expression of typical cell types, the results of 
which were also obtained from TCIA. Furthermore, we 
took advantage of the Tumour Immune Dysfunction and 
Exclusion (TIDE) portal (http:// tide. dfci. harva rd. edu/) to 
predict the responsiveness to immune checkpoint block-
ade (ICB) therapy in both groups by retrieving the TIDE 
score, T-cell dysfunction score, and the infiltration level 
of myeloid-derived suppressor cells (MDSCs), tumour-
associated fibroblasts (CAFs) and M2 tumour-associated 
macrophages (TAMs).

Real‑time quantitative PCR
Total RNA was purified by an RNA extraction kit 
(Thermo Scientific, USA) according to the manufac-
turer’s instructions. SYBR Green Mix (Vazyme, China) 
was then used by the ABI StepOnePlus Real-Time PCR 
machine (Applied Biosystems, USA) to perform Real-time 
quantitative PCR (RT‒qPCR). The primer sequences were 
as follows: B4GALT5, forward 5’-TAC CGA GTT CTT 
TGG CGG AG-3’ and reverse 5’-AGC CTG CAT TCT GTA 
CTC TGTT-3’; GAPDH, forward 5’-GTC TCC TCT GAC 
TTC AAC AGCG-3’ and reverse 5’- AAT GCC TTG GGC 
TTG CAT CA -3’.

Western blotting (WB) assay
Transfection efficiency was verified by WB assay. Briefly, 
the harvested cells were lysed using radioimmunopre-
cipitation assay (RIPA) lysis buffer (Beyotime, China) 
and a protein phosphatase inhibitor (Beyotime, China). 
The intact protein was separated by SDS‒PAGE and 
transferred onto a PVDF membrane using a wet transfer 
method. The membrane was blocked with 5% skim milk 
powder for 2 h at room temperature and then incubated 
at 4  °C overnight with primary antibodies specific for 
B4GALT5 (ab110398, Abcam, 1:1000 dilution, 45 KD) 
or alpha tubulin (1:1000, 55 KD); alpha tubulin served as 
the internal reference. Horseradish peroxidase (HRP)-
labelled goat anti-rabbit IgG (Biosharp, 1:5000 dilution) 
was used as the secondary antibody. After incubating 
with the secondary antibody for 2 h at room temperature, 
the membrane was developed with an enhanced chemi-
luminescence (ECL) solution.

Cell culture and transfection
A2780 human OC cells were cultured in high glucose 
DMEM (KeyGEN, China) supplemented with 10% foetal 
bovine serum (Gibco, USA) at 37 °C containing 5%  CO2. 
Three siRNAs targeting the B4GALT5 mRNA region and 

Nc control siRNA were used for B4GALT5 silencing via 
transient transfection (RIBOBIO, China). The sequences 
of siRNAs against B4GALT5 were as follows: GTG GAA 
CAA TTT CGG AAA A (si-1); GAT CGC AAC TAT TAT 
GGA T (si-2); CAA CCA AAT TGG ATA AGT A (si-3). 
Briefly, cells were seeded in a six-well plate 24  h before 
transfection. When cells reached 60%-70% confluence, 
Lipofectamine 3000 Transfection Reagent (Invitrogen, 
USA) was utilized to transfect with siRNAs following the 
manufacturer’s instructions. For validation, 48  h after 
transfection, total RNA and proteins were extracted for 
RT‒qPCR and WB assays as described above.

Cell proliferation, invasion and migration assays
Cell proliferation assays were performed with a CCK-8 
kit (Dojindo, Japan). Cells were harvested 24  h after 
transfection and then seeded into 96-well plates (3000 
cells/well) with six replicates per sample. After 0, 24, 48 
and 72 h, 100 µl of 10% CCK-8 serum-free medium was 
added. After 3 h of incubation, cell proliferation was esti-
mated using a microplate reader (Bio-Tek, USA).

Cell migration and invasion were assessed using a 
24-well Transwell plate (Corning, USA). For the migra-
tion assay, the upper chamber was filled with 200  μl 
serum-free medium and 5 ×  104 cells; the lower cham-
ber was filled with 600 μl 20% FBS medium. After 24 h, 
the cells on the bottom surface were fixed with 4% para-
formaldehyde and stained with crystal violet for 20 min. 
The migration assay was performed in the same manner 
but with Matrigel (Corning, USA) coated on the upper 
chamber.

Gene set enrichment analysis of B4GALT5
A single-gene gene set enrichment analysis (GSEA) 
analysis was adopted to determine the molecular path-
ways associated with  B4GALT5. The GSEA software 
(version 3.0) was downloaded from the official GSEA 
website (DOI:10.1073/pnas.0506580102, https:// softw 
are. broad insti tute. org/ gsea/ index. gsp). The OC gene set 
from TCGA database was used for analysis and samples 
were divided into high expression group (≥ 50%) and low 
expression group (< 50%) based on the expression level 
of B4GALT5. The sub gene set “c2. cp. kegg.v.7.4. sym-
bols. glmnt” was selected as the reference gene set. A 
pathway with P < 0.05 and FDR < 0.25 was considered as 
significant.

Statistical analysis
R software (version 4.1.3) with the necessary pack-
ages,  GraphPad Prism 9  and SangerBox platform were 
employed for all statistical analyses. The two-sample Wil-
coxon rank-sum test and Kruskal‒Wallis test were per-
formed for continuous data, and Pearson’s chi-square 

https://tcia.at
http://tide.dfci.harvard.edu/
https://www.software.broadinstitute.org/gsea/index.gsp
https://www.software.broadinstitute.org/gsea/index.gsp
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test and Fisher’s exact test were performed for categorical 
data. For survival analysis, the log-rank test was used for 
KM analysis, and LASSO Cox proportional hazard regres-
sion was used to estimate the hazard ratios (HRs) and 95% 
confidence intervals (CIs). Unless otherwise specified, a 
2-tailed P value less than 0.05 was considered statistically 
significant.

Results
Identification of differentially expressed GTs 
between normal and tumour tissues
A total of 7938 DEGs were identified by comparing data 
from 420 tumour and 88 normal tissues in the pooled 
TCGA OC  and GTEx normal ovary  datasets (Fig.  2A). 
By taking the intersection of OC DEGs and 188 GTs, we 
distinguished 50 differentially expressed GTs (Fig.  2B). 
Among them, 37 genes were upregulated, while 13 genes 
were downregulated in tumour tissues. The RNA levels 
of these genes are clearly shown in the heatmap (Fig. 2C). 
Subsequently, correlation analysis was conducted to fur-
ther explore the associations between 50 GT genes. We 
found that CHST7 and ST3GAL4 were most positively 
relevant, while CHST7 and GALNT12 were most nega-
tively relevant (Fig. 2D). To further explore the interaction 
between 50 GT genes, a PPI network was established and 
the colours of edges connecting two proteins represented 
different types of interactions including known, predicted 
or others (Fig.  2E). Among them, we determined that 
FUT8, B3GALT1, ST6GAL1, GCNT1, FUT3, ST3GAL4, 
MGAT4A, MGAT4B, B4GALT5, and ST3GAL6 were hub 
genes of the network. The functional analyses of 50 GTs are 
shown in Supplementary Fig. 1. These genes are involved 
in various types of protein glycosylation with the activity of 
glycosyltransferase.

OC subgroups stratified by consensus clustering analysis 
of differentially expressed GTs
To investigate whether the expression of these 50 GTs plays 
a role in OC subtypes, we performed unsupervised con-
sensus clustering of all 420 OC patients using the “Con-
sensusClusterPlus” R package. The optimum clustering 
variable (k = 2) was determined based on the comprehen-
sive evaluation of several criteria (Supplementary Fig. 2A-B 
and Supplementary Fig.  3), indicating that the 420 OC 
patients were able to be divided into two clusters (Cluster 
1 and Cluster 2). However, no significant difference in clini-
cal features between Cluster 1 and Cluster 2 was observed. 
The OS time between the two clusters did not reach sig-
nificance (P = 0.828, Supplementary Fig.  2C). To further 
clarify the relationship between clinical parameters, includ-
ing grade, stage, age (< 65 or ≥ 65) and survival status, and 

two clusters, a heatmap with 50 GT expression levels of 388 
patients who were equipped with complete clinical data 
was constructed (Supplementary Fig. 2D).

Establishment of a prognostic risk model based on GTs 
in the TCGA training cohort
A total of 377 samples (11 samples from patients whose 
OS time was < one month and > 10  years were excluded) 
with intact clinical data were used for subsequent risk sig-
nature construction. The genes associated with prognosis 
were preliminarily screened out by univariate Cox regres-
sion analysis. According to the threshold of P < 0.1, seven 
genes (ABO, ALG8, B4GALT5, FUT8, GCNT2, ST6GAL1 
and ST8SIA3) were kept for further analysis, among which 
2 genes (B4GALT5 and ST8SIA3) were considered risk 
factor genes with hazard ratios (HRs) > 1, and the other 5 
genes (ABO, ALG8, FUT8, ST6GAL1 and GCNT2) were 
considered protective genes with HRs < 1 (Fig.  3A). The 
HR of a total of 50 genes is represented in Supplementary 
Fig. 3. Next, by performing LASSO Cox regression analy-
sis, six genes (ALG8, B4GALT5, FUT8, GCNT2, ST6GAL1 
and ST8SIA3) were selected to construct the risk model 
based on the minimum criteria (Fig.  3B-D). Accordingly, 
the risk scores of 377 patients were calculated by the coef-
ficients of six genes, and patients were divided into high- 
and low-risk groups (Fig. 3E). The death rate of the low-risk 
group (50.3%) was lower than that of the high-risk group 
(61.2%) (P < 0.05, Fig. 3F-G).

Subsequently, we performed survival analysis of these 
two groups to probe the prognostic value of this six-gene 
risk model. The results showed that the OS of patients in 
the high-risk group was shorter than that of patients in the 
low-risk group (P = 1.15 ×  10–5, Fig.  4A). We then drew 
receiver operating characteristic (ROC) curves to check the 
area under the curves (AUCs) at 1, 3, and 5 years of 0.640, 
0.655, and 0.659, respectively, which demonstrated that the 
risk signature was reliable for predicting survival outcomes 
(Fig. 4B).

Validation of the GT‑based risk signature using the GEO 
database
 To validate the six-gene-based risk model, a total of 
185 OC patients with prognostic information from 
the GEO database (GSE26712) were utilized as the 
external dataset. Patients were classified into low-
risk (N = 93) and high-risk (N = 92) subgroups based 
on six risk-related GTs used in the TCGA cohort 
(Supplementary Fig.  5A). And the death rate of the 
low-risk group (52.4%) was lower than that of the 
high-risk group (74.8%) (Supplementary Fig.  5B-C). 
Consistent with the conclusions in the TCGA training 
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Fig. 2 The expression profiling of GTs in ovarian cancer. (A) The volcano plot of DEGs between ovarian cancer and normal ovary tissues. The red 
and blue dots represent upregulated and downregulated genes respectively. (B) The Venn diagram for the intersections between DEGs and GTs. (C) 
Heatmap of 50 differentially expressed GTs in tumour and normal tissues. (D) Spearman’s correlation analysis of these 50 glycosyltransferase genes 
in ovarian cancer. (E) PPI network showing the interactions of differentially expressed GTs
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cohort, the Kaplan‒Meier survival analysis demon-
strated that the overall survival rate of the high-risk 
group was notably lower than that of the low-risk 
group (P = 7.14 ×  10–5, Fig.  4C). The AUCs at 1, 
3, and 5  years were 0.737, 0.671, and 0.660, respec-
tively, indicating the superior efficiency of our model 
(Fig. 4D).

Independent prognostic significance of this GT‑based 
signature
To explore whether this risk model was able to predict 
the prognosis of OC independently from clinicopatho-
logical features, we conducted univariate and multivari-
ate Cox regression analyses to evaluate the associations 
between risk scores as well as clinical features and OS 

Fig. 3 Construction of a prognostic risk model on the basis of these differentially expressed GTs. A Univariate Cox regression analysis of GTs. 
Factors with P < 0.1 are shown. B‑D The process of establishing a risk signature with six glycosyltransferase genes. Coefficients were calculated by 
multivariate Cox regression by LASSO. E The distribution of risk scores in the prognostic model. F The distribution of survival status in the prognostic 
model. Patients in the high-risk group had more deaths and a shorter survival time than those in the low-risk group (the right side of the dotted 
line). G The proportion of deaths in two groups. *P < 0.05



Page 9 of 21Xu et al. Journal of Ovarian Research            (2023) 16:5  

in OC patients. Univariate Cox regression analysis 
illustrated that the risk score could serve as a prognos-
tic factor for OC (Fig.  5A, HR = 3.18 and P < 0.001). 
Then, after adjusting for confounding factors, the risk 
score was independently correlated with the OS of OC 
patients (Fig. 5B, HR = 3.20, P < 0.001). The ROC curves 
were plotted to define the predictive power of this signa-
ture. The AUCs for age, grade, stage, and risk score were 
0.571, 0.536, 0.620, and 0.640, respectively, which meant 
that this model performed better in prognostic indica-
tors than age, grade and stage (Fig. 5C). In addition, the 

expression levels of six genes in the high- and low-risk 
groups are displayed in a clustering heatmap (Fig.  5E). 
Finally, we built an innovative prognostic nomogram 
with age, grade, stage, and risk score to quantitatively 
predict the survival at 1, 3, and 5 years (Fig. 5D).

Functional enrichment analysis on the basis of the risk 
signature
To determine the potential mechanisms that lead to 
the apparently different clinical outcomes of the two 
subgroups stratified by this GT-based signature, we 

Fig. 4 The Kaplan‒Meier OS analysis of prognostic models and the ROC curves showing the predictive efficiency of the risk signature. The patients 
in the two datasets were assigned to the high-risk and low-risk groups (separately represented by red and blue), taking the median risk score as 
the threshold. A, B In the TCGA discovery set, the survival rate of the high-risk group was lower than that of the low-risk group (P < 0.001). The areas 
under the curves (AUCs) at 1, 3, and 5 years were 0.640, 0.655, and 0.659, respectively. C, D In the GEO validation cohort, the survival rate was lower 
for the high-risk group than for the low-risk group (P < 0.001). The areas under the curve (AUCs) at 1, 3, and 5 years were 0.737, 0.671, and 0.660, 
respectively
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Fig. 5 Effect of the risk signature combined with clinicopathological features on the prognosis of ovarian cancer patients. A, B Univariate and 
multivariate Cox regression analyses of the correlation between risk score plus clinicopathological features and overall survival. C The predictive 
ability of these factors was displayed by ROC curves. D Establishment of a prognostic nomogram for ovarian cancer patients by integrating the 
risk score and clinicopathological characteristics. E The expression of the six glycosyltransferase genes and distribution of clinicopathological 
characteristics between the two groups are shown by heatmap. When comparing the clinical parameters between the low- and high-risk groups, 
no significant differences were observed in terms of stage, grade or age
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screened 38 DEGs between the high-risk and low-risk 
groups. Among them, 23 genes were downregulated, 
and the other 15 genes were upregulated (Supplemen-
tary Fig. 7). GO analysis revealed that these DEGs were 
mainly related to the immune response, immunoglob-
ulin receptor binding and maintenance of epithelial 
structure (Fig. 6A and C). KEGG pathway analysis dem-
onstrated that mucin-type O-glycan biosynthesis and 

several oncogenesis-related signalling pathways (such as 
the Raf1, Ras, MAPK and PI3K-Akt signalling pathways) 
were altered (Fig. 6B and D).

Immune characterization of the two subgroups
Considering that this risk signature was connected with 
immune-related biological processes, several universally 

Fig. 6 Functional analysis of DEGs between the two subgroups in the TCGA cohort. Circle plots of 10 enriched (A) GO terms and (B) KEGG 
pathways. The red and blue dots located in the outer rings represent upregulated and downregulated genes, respectively. The z score is portrayed 
by the colour of the inner ring. C Bubble plots for the top 10 biological processes (BPs), cellular components (CCs) and molecular functions (MFs) of 
GO enrichment. D Barplot graphs for the top 10 enriched KEGG pathways
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recognized methodologies were used to compute the 
immune cell infiltration score of samples in the two sub-
groups. The results of the ESTIMATE algorithm showed 
that the high-risk group had higher stromal scores and that 
the two subgroups exhibited no significant difference in 
immune scores, suggesting that nonimmune stromal cell 

infiltration significantly increased with increasing risk score 
(Fig.  7A). Based on the CIBERSORT algorithm, the high-
risk group had a higher proportion of M2 macrophages, 
while the proportion of activated dendritic cells (DCs) was 
higher in the low-risk group (Fig. 7B). In the TIMER algo-
rithm, B cells were more enriched in the low-risk group than 

Fig. 7 The immune infiltration landscape of the GT-based signature in OC. A Estimation of immune score, stromal score and ESTIMATE score 
between low- and high-risk patients using the ESTIMATE algorithm. B, C Evaluation of the proportions of immune cell subsets using the CIBERSORT 
and TIMER algorithms. (D, E) Boxplot and Heatmap of the infiltration levels of 28 immune cell subsets in the low- and high-risk groups calculated by 
ssGSEA, respectively. F Correlation heatmap between six hub genes and these 28 immune cell subdivisions. ***P < 0.001; **P < 0.01; *P < 0.05; -, not 
significant
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in the high-risk group (Fig. 7C). Then, 28 types of IICs were 
evaluated by ssGSEA, the heatmap of which is depicted to 
show the distribution in the two groups (Fig.  7D). IICs of 
the antitumour cluster, including activated CD4 T cells, 
activated CD8 T cells, effector memory CD8 T cells, type 
17 T helper cells and natural killer T cells, were abundant 
in the low-risk group, while regulatory T cells belonging to 
the protumour cluster were elevated in the high-risk group 
(Fig.  7E). Moreover, the correlation between the six hub 
genes and these 28 IICs is shown in a heatmap (Fig. 7F).

Relationship between the risk signature 
and immunotherapy response
Because mounting evidence has proven that somatic 
mutations may play a vital role in immunotherapy, we 
explored the mutational landscape of the two risk groups. 
The distribution of the top 20 frequently mutated genes 
was ranked, but none of them had a significant difference 
in the high-risk and low-risk groups (Supplementary 
Fig.  8A). We then analysed the distribution difference 
of somatic mutations between groups, and  found that a 
total of 19 genes (PKHD1L1, TRPS1, HECW1, CLTCL1, 
NAV3, BRCA1, KAT6B, ROBO2, VARS, SP100, ABCC5, 
MYO1H, GRM8, PCDHB2, NYNRIN, CACHD1, 
SMURF1, LTBR, CHD3) had different mutation frequen-
cies (except TRPS1 with P < 0.01, the rest with P < 0.05) 
(Fig. 8A). Moreover, the number of mutations in the low-
risk group was greater than that in the high-risk group, 
while no significant association was found between the 
risk score and the number of neoantigens (Fig. 8B).

PD1 and CTLA4 were enrolled for IPS analysis, 
including four parts: ips_ctla4_neg_pd1_neg (CTLA4 
negative response and PD1 negative response), ips_
ctla4_neg_pd1_pos (CTLA4 negative response and 
PD1 positive response), ips_ctla4_pos_pd1_neg, and 
ips_ctla4_pos_pd1_pos. These four parts of the IPS 
showed no significant difference between the high- and 
low-risk groups (Supplementary Fig.  8B), which indi-
cated that this GT-based signature might lack the abil-
ity to predict the immunophenotype. The TIDE score, 
a more accurate computing architecture consisting of 
dysfunction scores and exclusion scores, was used as a 
powerful predictor for ICB therapy. Patients in the high-
risk group achieved a higher TIDE score and dysfunc-
tion score than those in the low-risk score group, while 
there was no significant difference in the exclusion score 
(Fig. 8C), illustrating that OC patients with higher risk 
scores were more prone to immune escape. In addition, 
CAFs, an important component of tumour microenvi-
ronment (TME) that may contribute to the formation 
of an immunosuppressive microenvironment, were 
evaluated in the high-risk group (Fig.  8D). According 

to the TIDE score, the low-risk group had more ICB 
therapy responder OC patients than the high-risk group 
(Fig. 8E).

Knockdown assay of B4GALT5 in the proliferation, 
migration and invasion of OC cells
As the result of univariate Cox regression analysis 
showed (Fig.  3A), one of the genes (B4GALT5) was 
the risk factor (HR = 1.410, P = 0.014), and three of 
them (FUT8, ALG8, and ST6GAL1) were the protec-
tive factors (HR = 0.730, 0.750, 0.747 and P = 0.024, 
0.038, 0.036, respectively). We then drew the Kaplan‒
Meier OS curves of each gene, and the results were in 
accordance with the conclusion above (Supplementary 
Fig.  6B-G). The multivariate Cox regression analysis 
showed that B4GALT5 was the only independent risk 
factor (HR = 2.028, P < 0.001), and ALG8, ST6GAL1, 
FUT8 were independent protective factors with HR < 1 
and P < 0.05 (Supplementary Fig.  6A). Among them, 
the upregulation of B4GALT5 in OC tissues compared 
to normal ovary tissues  was logically consistent with 
the poor prognosis. Therefore, we further explored the 
function of B4GALT5 in OC cells, we transfected siRNA 
into OC cells to knock down B4GALT5 expression. The 
efficiency of transfection was then verified at the mRNA 
and protein levels using RT‒qPCR and WB assays, 
respectively (Fig.  9A-B). The CCK-8 assay showed that 
OC cells transfected with si-B4GALT5 exhibited sig-
nificantly decreased proliferation compared with those 
in the control group (si-NC) (Fig. 9C). In the transwell 
assay, the knockdown of B4GALT5 significantly inhib-
ited the migration and invasion of OC cells (Fig. 9D).

Pathway prediction of B4GALT5 using bioinformatic 
analyses
To predict the pathways in which B4GALT5 is involved, 
we performed gene set enrichment analysis. The results 
showed that VEGF signalling pathway, ubiquitin-medi-
ated proteolysis, apoptosis, WNT signalling pathway and 
MAPK signalling pathway were significantly enriched 
in high B4GALT5 expression group (Fig.  10A-E). And 
ribosome-associated pathway was enriched in low 
B4GALT5 expression group (Fig.  10F). Among them, 
ubiquitin-mediated proteolysis attracted our interest. 
Thus, Pearson correlation analysis between the expres-
sion level of B4GALT5 and OTU (ovarian tumour) fam-
ily deubiquitinases (OTUB1, OTUB2, OTUD1, YOD1, 
OTUD3, OTUD4, OTUD7B) was performed. The results 
showed that four enzymes (YOD1, OTUD4, OTUD3 
and OTUD7B) were positively correlated with B4GALT5 
(r > 0.3 and P < 0.05), among which OTUD4 had the high-
est correlation coefficient of 0.44 (Fig. 10G).



Page 14 of 21Xu et al. Journal of Ovarian Research            (2023) 16:5 

Fig. 8 Identification of the GT-based signature for prediction of immune response in OC. A Waterfall plot of 19 genes with different mutation 
frequencies between the low- and high-risk groups. B The number of somatic mutations and neoantigens in low- and high-risk patients from the 
TCGA dataset. C, D The tide score, dysfunction score, exclusion score and infiltration level of MDSCs, CAFs, and M2 TAMs in the low- and high-risk 
groups. E The proportions of OC patients who responded to ICB in the low- and high-risk categories. R, responder; NR, nonresponder. *P < 0.05; -, 
not significant
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Discussion
Glycosylation, as an essential type of PTM, has aroused 
increasing interest in the academic community with 
recent advances in analytical technologies [28]. Although 
the intimate connection between glycosylation and can-
cer was detected decades ago [29–31], it has not been 
systematically researched in regards to GTs in OC until 
now. In the context of precision medicine, constructing 
a risk signature based on GT genes by means of machine 
learning made up for the insufficiency of one single factor 
to stratify OC patients. And we discussed the possibil-
ity that GT stratification together with different immune 
microenvironment will elucidate the poor  prognosis of 
OC.

In our study, a total of 50 GT genes were differentially 
expressed in OC. However, the two clusters divided 
by the consensus clustering analysis based on these 
50 DEGs showed little significant difference in clin-
icopathological characteristics. Encouragingly, a risk 

signature established on the basis of six GT DEGs (ALG8, 
B4GALT5, FUT8, GCNT2, ST6GAL1 and ST8SIA3) via 
Cox univariate analysis and LASSO Cox regression anal-
ysis was proven to predict the OS of OC patients effec-
tively in the training and validation cohorts both with 
P < 0.001 and AUCs > 0.6. Additionally, the risk score was 
competent in predicting the prognosis for OC patients 
independently. A nomogram was successfully estab-
lished; nonetheless, more studies should be conducted 
before clinical application.

FUT8 is an α-1,6-fucosyltransferase that take part in 
the core fucosylation of N-glycans and has a substrate 
specificity toward biantennary complex N-glycan oli-
gosaccharide [32].But the sialylation of the N-glycans 
could reduce their activity as a substrate of FUT8 [33]. 
It was reported that there existed an interplay among 
FUT8, GnT-IV (MGAT4), and GnT-V (MGAT5) in 
N-linked glycosylation [34]. FUT8 was reported to be 
highly expressed in a variety of cancers, including lung, 

Fig. 9 Knockdown of B4GALT5 affects the proliferation, migration and invasion of OC cells in vitro. A, B The transfection efficiency of B4GALT5 
siRNA in OC cells evaluated by RT-qPCR and western blot. C Proliferation curve of the CCK8 assay between the knockdown and control groups. 
D Transwell assay results between the knockdown and control groups. **P < 0.01; ***P < 0.001
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Fig. 10 Pathway prediction and analysis of B4GALT5 in ovarian cancer. A‑F Enrichment plots of DEGs between high- and low-expression levels 
of B4GALT5 from GSEA. G The relationship between the expression levels of OTU family deubiquitinases and B4GALT5. Scatter plots of four 
deubiquitinases with Pearson’s r > 0.3 and P < 0.05
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colorectal, ovarian, prostate, breast, melanoma and so 
on, and was associated with the prognosis of lung can-
cer, colorectal cancer and prostate cancer [15]. Overex-
pression of FUT8 can suppress the immune response in 
triple-negative breast cancer by mediating the abnormal 
N-glycosylation of B7H3, which may account for the lack 
of response to anti-PD1/PDL1 immunotherapy in triple-
negative breast cancer patients [35]. In ovarian cancer, 
FUT8 activates the hyper core fucosylation of copper 
transporter 1 to suppress cisplatin uptake into OC cells 
[36]. However, FUT8 was found to be expressed at lower 
levels in osteosarcoma, leading to lower core fucosyla-
tion levels of TNF receptors. Lower fucosylation of TNF 
receptors decreased mitochondria-dependent apoptosis 
by activating NF-κB2 signalling [37]. Interestingly, our 
study revealed that FUT8 was upregulated in OC tissues 
but was a good prognostic factor. Similarly, ST6GAL1 
was also overexpressed in OC but associated with favour-
able prognosis. The result was inconsistent with an ear-
lier study where high ST6GAL1 protein expression in 
OC was significantly associated with poor prognosis [38]. 
ST6GAL1 is a β-galactoside α-2,6-sialyltransferase that 
catalyses α2,6-sialylation of N-glycans. It has been proved 
that FUT8-mediated core fucosylation of IgG limited the 
B cell-mediated IgG sialylation catalysed by ST6GAL1 
[39, 40]. In view of the tight interaction between core 
fucosylation and α2,6-sialylation, we reasonably assume 
that the high sialylation level of the N-glycans in OC may 
affect the oncogenic function of FUT8. It is worth noting 
that ST6GAL1 was also found to be upregulated in many 
solid tumours [41–45] and promote their malignant phe-
notype by regulating the sialylation of signalling pathways 
[46]. What’s more, an increasing number of studies about 
the function of ST6GAL1 in immune enhancement have 
been published [47–51]. Thus, we also infer that the posi-
tive response to antitumour immunity may be another 
reason for its protective function in OC prognosis.

ST8SIA3 is another member of sialyltransferase fam-
ily which is mainly involved in the sialylated glycolipids, 
while ST6GAL1 preferentially links α-2,6-linked sialic 
acid to Galβ4GlcNAc chains, usually present in N-linked 
chains [52]. Unlike ST6GAL1, there are relatively few 
studies focusing on the relationship between ST8SIA3 
and cancer. ST8SIA3 was proved to participate in the syn-
thesis of A2B5 epitope and was critical for A2B5 immu-
noreactivity in glioblastoma, indicating the potential of 
neuraminidase treatment [53]. Apart from that, other 
studies on ST8SIA3 were mainly about nervous system 
diseases and antiviral immunity [54, 55]. Interestingly, 
B4GALT5, another risk factor in our signature, was also 
reported to involve in the biosynthesis of lactosylcera-
mide [56]. These results inspired us that the further study 
on the function of glycolipids in OC is promising. Except 

for glycolipids, B4GALT5 also acts with high preference 
on substrate that contain the GlcNAc beta1– > 6Gal-
NAc structure which is found in mucin type O-linked 
core 6 glycan [57]. In our risk model, B4GALT5 was the 
GT gene with the highest coefficient of 0.7 and was the 
only independent risk factor, indicating that high levels 
of B4GALT5 might exert a stimulative effect on OC. In 
fact, many studies have elucidated its important role in 
many other tumour types. In colorectal cancer, B4GALT5 
was considered as a diagnosis/prognostic biomarker 
with huge application potential which could be detected 
by electrochemical immunosensor [58]. In 2020, Tang 
et  al. verified that B4GALT5 modulates the stemness 
of breast cancer through glycosylation modification to 
stabilize Frizzled-1 and activate Wnt/β-catenin signal-
ling independent of its cell surface location [59]. A bio-
informatic analysis concluded that B4GALT5 is one of 
the most consistently malignancy-associated enzymes 
using the transcriptomic data of the 21 TCGA cohorts 
[60]. Another recent bioinformatic analysis has drawn 
a similar conclusion as us regarding the negative role of 
B4GALT5 in hepatocellular carcinoma (HCC) progno-
sis and its vitro experiments also demonstrated that the 
knockdown of B4GALT5 in HCC cells was able to inhibit 
proliferation and metastasis [61], which is consistent with 
our in vitro experiments conducted on OC cells. In fact, 
about 20 years ago, researchers have found that beta1,4-
galactosyltransferase was likely to be a biomarker in the 
monitoring OC patients when the serum CA 125 level is 
normal [62]. Taken together, B4GALT5 may be a promis-
ing starting point to help the mechanistic research of OC 
from the view of glycosylation.

GCNT2 is an initiated enzyme for the synthesis of 
I-branched glycan which is a cancer-associated glycan 
[63]. Loss of GCNT2 expression would lead to the inef-
fective I-branch conversion, thus regulating cancer pro-
gression. For example, high expression level of GCNT2 
and its I-branched glycan product was proved to acceler-
ate epithelial-to-mesenchymal transition in colon cancer 
[64]. GCNT2 has been widely studied in melanoma, the 
loss of which brings corresponding loss of I-antigen and 
thus enhances melanoma growth and metastasis [65]. 
Importantly, many studies have pointed out that the high 
level of I-antigen synthesized by GCNT2 could increase 
the susceptibility of malignant cells against immune cells 
in leukemia [66, 67]. This kind of immune regulatory may 
account for why GCNT2 was upregulated in OC but 
a good prognostic predictor in our study. What’s more, 
due to the role of β4GalTs in I-antigen capping, it’s really 
something to see that whether there exists an interac-
tion between GCNT2 and B4GALT5. ALG8 is an alpha-
1,3-glucosyltransferase and ALG8-CGD (congenital 
disorders of glycosylation) is a widely studied monogenic 
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disorder of glycosylation that involves multisystem dis-
orders [68]. In malignancies, ALG8 was a variate of a 
risk predictive model established for gastric cancer [69] 
and ovarian cancer [70]. However, consistent with Zhao 
et al.’s study [70], ALG8 in our study was overexpressed in 
OC tissues and led to favourable outcomes. In summary, 
except for ALG8, other five GTs are all key enzymes that 
involves in the synthesis of cancer associated glycans and 
may exist a close tie between each other.

Subsequently, the functional enrichment analyses dem-
onstrated that DEGs between the two risk groups were 
correlated with immune responses and epithelial mainte-
nance, supporting our speculations above. Ultimately, the 
immune cell infiltration in the low- and high-risk groups 
was compared, and we found that the low-risk group had 
increased infiltrating levels of antitumour immune cells 
in the TME, such as activated DCs [71, 72], B cells [73, 
74], activated T cells [27, 75], and Type 17 T helper cells. 
In OC, T cells and B cells are associated with superior 
prognosis in ovarian cancer [76, 77]. High infiltration 
of type 17 T helper cells and DCs can also improve the 
outcomes of OC patients [78]. Simultaneously, high-risk 
patients had an immunosuppressive microenvironment 
with the presence of numerous CAFs and M2 TAMs. 
There is a popular belief that CAFs and M2 TAMs in the 
TME of OC are facilitators of carcinogenesis, tumour 
progression and metastasis, as well as therapeutic resist-
ance and immunosuppression, leading to worse survival 
of OC patients [79–81]. Therefore, the GT-based signa-
ture established in our study is accurate enough to pre-
dict the OS of OC patients due to the consistent results 
with previous publications. Notably, GTs may provide 
a link to explore the crosstalk between cells in the TME 
and OC cells.

The highlight of our study is that the underlying role 
of this signature allows the prediction of patients who 
may benefit from ICB therapy. Genomic instability with 
accumulation of somatic mutations is widely believed 
to be associated with cancer cell phenotype shaping, 
thereby leading to different response to immunotherapy 
[82]. Tumour mutation burden (or the number of somatic 
mutations), which can give rise to neoantigens as tar-
gets of tumour immunity, has been explored as a prom-
ising biomarker for ICB therapy [83, 84]. Patients with 
high tumour mutation burden is more likely to benefit 
from ICB therapy and have an improved survival [85].
Although the recognition of neoantigens is thought to 
be a random process, each somatic mutation is able to 
improve the opportunities for the immune system to rec-
ognize and attack cancer cells during ICBs [86, 87]. Our 
results showed that the number of somatic mutations in 
the low-risk group was higher than that in the high-risk 

group. Although not statistically significant, the neoan-
tigens in low-risk group was higher, which, according to 
Lang F et  al., may provide tumour-specific neoepitopes 
for individual therapeutical cancer vaccines [86]. We 
found that a total of 19 genes have significantly different 
mutational frequencies between two subgroups, which 
may provide supplementary targets for patients with poor 
response to ICB therapy. The high-risk group exhibited a 
higher TIDE score and dysfunction score than the low-
risk group. The greater the TIDE score is, the less ben-
efit patients achieve from ICB due to the more frequent 
existence of immune escape [88]. Meanwhile, according 
to the median TIDE score as the threshold of respond-
ers, the proportion of ICB responders was significantly 
higher in the low-risk group than in the high-risk group. 
Taken together, these results illustrated that the risk sig-
nature may be helpful in screening suitable candidates 
who would benefit more from ICBs.

The current study of GTs is still in its initial stages, 
especially regarding their mechanism in OC. Although 
our experiments have proven that B4GALT5 can regu-
late the progression of OC, the critical molecular 
mechanism is still unclear. Much effort will be put into 
probing the intrinsic mechanism, especially in determin-
ing whether B4GALT5 regulates ovarian cancer progres-
sion through abnormal glycosylation, in our subsequent 
studies. What is important to note is that although this 
signature was validated in an external dataset, formalin-
fixed paraffin-embedded specimens and a multicentre 
prospective study are needed to confirm our findings.

Conclusion
 In  conclusion, we comprehensively studied the prog-
nostic value of GT genes in OC and provided a theo-
retical foundation for future research. An effective 
prognostic signature was established based on six GT 
genes, and the risk score was an independent risk factor 
for OS prediction. Encouragingly, our results revealed 
that this signature may be a predictor of ICB response, 
contributing to the advancement of precision medicine. 
Moreover, the preliminary experiment revealed the 
promoting function of B4GALT5 in OC progression, 
and bioinformatic analysis predicted the likely path-
ways involved, paving the way for our follow-up study.
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(A-C) Functional annotation using Gene Ontology (GO) terms (includ-
ing Biological Process, Cellular Component and Molecular Function). (D) 
Barplot graph of the top ten enriched pathways using KEGG analysis.

Additional file 2: Supplementary figure 2. OC classification based on 
these differentially expressed genes. (A) Consensus clustering tracking 
plot for k = 2 to 9. (B) Consensus matrix for k = 2, in line with which 420 
OC patients were grouped into two clusters. (C) Kaplan‒Meier overall 
survival curves for patients in Clusters 1 and 2 (samples with a survival 
time of more than ten years and less than one month were excluded). (D) 
Heatmap and clinicopathological characteristics of these two clusters. Red 
represents high expression, and blue represents low expression.

Additional file 3: Supplementary figure 3. Consensus clustering of OC. 
(A) The cumulative distribution function (CDF) is displayed for k = 2–9. (B) 
The curve of the relative change in the area under the CDF for k = 2 to 9. 
(C-I) Consensus clustering matrix for k = 3 to 9.
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expressed GTs using univariate Cox regression analysis based on the data 
from the TCGA.

Additional file 5: Supplementary figure 5. Construction of the risk 
model in the GEO dataset for validation. (A) The distribution of risk scores 
in the prognostic model. (B) The distribution of survival status in the prog-
nostic model. (C) The proportion of deaths in two groups. **P < 0.01.

Additional file 6: Supplementary figure 6. Survival analysis of six GT 
genes. (A) Forest plot of six GT genes using multivariate Cox regression 
analysis. (B-G) KM survival plotter curves of the six hub genes.

Additional file 7: Supplementary figure 7. The volcano plot of DEGs 
between the high-risk and low-risk groups. The red dots represent 
upregulated genes, and the blue dots represent downregulated genes.

Additional file 8: Supplementary figure 8. (A) Waterfall plot of the 
top 20 somatic mutations in the low- and high-risk groups of the TCGA 
dataset. (B) IPS value of four parts in two subgroups.
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