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Abstract 

Objective: We aimed to evaluate the prognostic value of C-C motif chemokine receptor type 5 (CCR5) expression 
level for patients with ovarian cancer and to establish a radiomics model that can predict CCR5 expression level using 
The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) database.

Methods: A total of 343 cases of ovarian cancer from the TCGA were used for the gene-based prognostic analysis. 
Fifty seven cases had preoperative computed tomography (CT) images stored in TCIA with genomic data in TCGA 
were used for radiomics feature extraction and model construction. 89 cases with both TCGA and TCIA clinical data 
were used for radiomics model evaluation. After feature extraction, a radiomics signature was constructed using the 
least absolute shrinkage and selection operator (LASSO) regression analysis. A prognostic scoring system incorporat-
ing radiomics signature based on CCR5 expression level and clinicopathologic risk factors was proposed for survival 
prediction.

Results: CCR5 was identified as a differentially expressed prognosis-related gene in tumor and normal sample, which 
were involved in the regulation of immune response and tumor invasion and metastasis. Four optimal radiomics 
features were selected to predict overall survival. The performance of the radiomics model for predicting the CCR5 
expression level with 10-fold cross- validation achieved Area Under Curve (AUCs) of 0.770 and of 0.726, respectively, in 
the training and validation sets. A predictive nomogram was generated based on the total risk score of each patient, 
the AUCs of the time-dependent receiver operating characteristic (ROC) curve of the model was 0.8, 0.673 and 0.792 
for 1-year, 3-year and 5-year, respectively. Along with clinical features, important imaging biomarkers could improve 
the overall survival accuracy of the prediction model.

Conclusion: The expression levels of CCR5 can affect the prognosis of patients with ovarian cancer. CT-based radi-
omics could serve as a new tool for prognosis prediction.
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Introduction
Ovarian cancer is one of the most common gynecologi-
cal malignant tumors worldwide, with more than 10,000 
patients suffering from it every year [1]. The fatality 
rate of ovarian cancer ranks high among gynecological 
malignancies, and it carries a dismal prognosis. Despite 
remarkable achievements in treating ovarian cancer, 
such as debulking surgery, chemotherapy, immunother-
apy, and targeted therapy, its 5-year survival rate is only 
approximately 30% [2]. Intratumor heterogeneity within 
patients and inter-tumor heterogeneity among patients 
present significant challenges for predicting overall sur-
vival and effectiveness of therapy. Although clinico-
pathologic features, serum markers including cancer 
antigen 125, and traditional imaging findings have served 
as prognostic indicators, limitations like low specificity 
[3] and requirement for surgical specimens and profes-
sional staff make them difficult to meet the clinical need. 
Thus, the search for additional reliable prognostic indica-
tors continues to enable personalized precision medicine.

The tumor microenvironment, which involves mul-
tiple immune infiltrations, plays an essential role in 
the prognosis and clinical benefit of therapy. The 
chemokines and their specific receptors could mediate 
migration and impact the cellular process of both tumor 
and immune cells [4, 5]. The C-C motif chemokine 
receptor type 5 (CCR5) is one of the G protein-coupled 
receptors on leukocyte surfaces and is involved in the 
process of host immune response, which serves as our 
main defense against pathogens. Emerging evidence 
indicates CCR5 contributes largely to the tumor inva-
sion and metastasis [6]. High expression of CCR5 causes 
tumor cell migration and vascular invasion, which can 
result in distant metastasis of several types of tumors 
such as breast cancers [7–9], hepatocellular carcinoma 
[10] and prostate cancers [11–13]. Given its prominence 
in the regulation of immunity， several clinical trials 
targeting CCR5 are underway, involving cancers [7, 13], 
COVID-19 [14], immune deficiency diseases like HIV 
[15–18], etc. It has been reported that in comparison to 
 CD133- non-cancer stem-like cells (CSLCs), chemokine 
CCL5 and its receptors, CCR1, CCR3, and CCR5, were 
significantly increased in CSLCs, and the blocking of 
CCL5 and its receptors effectively inhibits their invasive 
capacity [19]; CCR5 were consistently upregulated in 
Tregs in a patient who had been diagnosed with ovarian 
cancer， which indicated ovarian CSCs recruit Tregs 
via CCL5–CCR5 interactions [20].However, to the best 
of our knowledge, non-invasive and effective methods 

with a universal prognostic guidance to detect the 
marker for survival are still lacking.

Preoperative computed tomography (CT) images can 
tailor the surgery strategy since a wealth of cancer infor-
mation can be obtained. However, intraoperative explo-
ration and postoperative pathological diagnosis are more 
widely applied for treatment guidance and response 
assessment. It is developing an accurate and safe method 
to evaluate survival and guide treatment before operation 
remains a significant challenge. With the development of 
science and technology that enables the digital medical 
image to be converted into high-throughput data, radi-
omics has evolved rapidly [21, 22]. Radiomics involves 
the application of advanced computational analyses of 
images, increasing visual assessment by extracting fea-
tures not perceptible to the naked human eye [23]. Com-
bined with machine learning techniques, radiomics is 
amenable to good performance in cancer prognosis pre-
diction [24]. It provides highly accurate, dynamic and 
non-invasive methods for personalized medicine. Prior 
studies have demonstrated that CT imaging features are 
associated with angiogenesis, metabolism, hypoxia, and 
microenvironment of cancers [25–27]. Radiomics on 
CT imaging can be used in early diagnosis, risk stratifi-
cation, evaluation of residual lesions, and tumor hetero-
geneity in a patient with ovarian cancer [28–33]. Despite 
recent advances in radiomics, to our best knowledge, no 
study involving survival analysis of patients with ovarian 
tumors has used radiomics features to predict the expres-
sion levels of CCR5 and evaluate its prognostic value.

Our current research aims to investigate the associa-
tion between CCR5 expression levels and the prognosis 
of patients with ovarian cancer by using data from the 
Cancer Genome Atlas (TCGA) and matched patient data 
from the Cancer Imaging Archive (TCIA). Furthermore, 
based on CT images, we attempted to develop a radiom-
ics model to predict the expression level of CCR5 which 
could be offered as a reference for clinical decisions.

Methods
Data retrieval and processing for this study
343 OC cases from the TCGA portal system (https:// 
portal. gdc. cancer. gov/) were used for the gene-based 
prognostic analysis. Fifty-seven cases had preopera-
tive CT images stored in TCIA (https:// wiki. cance 
rimag ingar chive. net/ displ ay/ Public/ TCGA- LGG) with 
genomic data in TCGA were used for radiomics fea-
ture extraction and model construction. Eighty-nine 
cases with TCGA and TCIA clinical data were used for 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
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radiomics model evaluation. All the samples from TCIA 
and TCGA were anonymized and publicly available.

The exclusion criteria were: samples with incomplete 
clinical data without CCR5 expression data; samples 
without CT images; samples with poor image quality, and 
images with no corresponding clinical or gene expression 
information (The brief inclusion/exclusion criteria can be 
seen in supplemental table 1).

Identification of CCR5 as a differentially expressed gene
We calculate the cutoff value of CCR5 expression using 
the survMisc package of R. An online tool (https:// www. 
xiant ao. love/ produ cts) was employed to characterize 
the gene expression profiles of different tissues. RNA-
seq data in TPM format were uploaded and transferred. 
Kaplan–Meier (KM) curves and log-rank test were used 
to calculate survival probability and median survival 
time. We further performed conditional landmark analy-
ses separately at 12, 36, and 60 months to compare two 
groups using the package jskm and survival.

Univariate and multivariate analysis of various factors 
that affect OS was performed by Cox regression. The 
time-dependent receiver operating characteristic (ROC) 
analysis was applied to validate the CCR5 expression-
based prognostic signature. The relationships between 
the CCR5 expression and clinical parameters were 
assessed using the Spearman correlation test.

CIBERSORTx (https:// ciber sortx. stanf ord. edu/) was 
employed to analyze the immune composition based on the 
gene expression profiles of complex tissues. RNA-seq data 
in TPM format were uploaded as the mixture file. Impute 
Cell Fractions, and LM22 (22 immune cell types) were 
selected for the signature matrix file. Gene ontology (GO) 
and KEGG enrichment analyses of differentially expressed 
genes were carried out with the clusterProfiler package in R.

Radiomics feature extraction and model establishment
The image processing was shown as a supplemental 
figure  1. Device information and scan parameters are 
as follows:

Manufacturer: GE, SIEMENS
X-ray tube current: median 259.0 mA
X-ray tube voltage: median 120 kVp
Slice thickness: median 5.0mm
Exposure_Times: median 828ms
Pixel spacing: median 0.742×0.742mm2
Contrast: Optiray 350, Isovue 370

Before feature selection, data were centered and 
scaled, implemented by the preProcess function from 
the R caret (Classification And Regression Train-
ing) package. As explained and reported in previous 

research [34], a Principal Component Analysis (PCA) 
was performed on the extracted features to plot data in 
a space of reduced dimensions (Supplemental Figure 8). 
The radiomics features of the two devices were similar. 
Radiomics features were extracted from 3D VOIs using 
Pyradiomics. Spatial Resampling: 1 × 1 × 1 mm3; Inten-
sity Rescaling: 500; Intensity Discretization: binWidth 
25 [35, 36]. The region of interest (ROI) delineating 
each tumor was manually drawn under the supervi-
sion of two experienced radiologists. The robustness 
of the radiomics features was assessed using the intra-
class correlation coefficient (ICC) by the R package irr. 
ICC ≥ 0.75 indicated high consistency, 0.51–0.74 mid-
dle, and < 0.5 low. Extracted radiomics features with an 
ICC of ≥0.75 met the criteria for further analysis, while 
the others were excluded from the final feature data-
set. The least absolute shrinkage and selection operator 

Table 1 Clinical characteristics of the population with high and 
low CCR5 expression group

Variables Total (n = 
343)

High (n = 
179)

Low (n = 164) p

Age, n (%)

 <65 220 (64) 124 (69) 96 (59) 0.05

 ≥65 123 (36) 55 (31) 68 (41)

Chemotherapy, n (%)

 NO 22 (6) 14 (8) 8 (5) 0.373

 YES 321 (94) 165 (92) 156 (95)

FIGO, n (%)

 I/II 19 (6) 10 (6) 9 (5) 1

 III/IV 321 (94) 167 (93) 154 (94)

 Unknown 3 (1) 2 (1) 1 (1)

Lymphatic invasion, n (%)

 NO 40 (12) 18 (10) 22 (13) 0.326

 Unknown 210 (61) 107 (60) 103 (63)

 YES 93 (27) 54 (30) 39 (24)

Neoplasm histologic grade, n (%)

 G1/G2 42 (12) 21 (12) 21 (13) 0.67

 GX/
Unknown

8 (2) 3 (2) 5 (3)

 G3/G4 293 (85) 155 (87) 138 (84)

Radiotherapy, n (%)

 NO 321 (94) 170 (95) 151 (92) 0.382

 YES 22 (6) 9 (5) 13 (8)

Tumor residual disease, n (%)

 No/
Unknown

94 (27) 45 (25) 49 (30) 0.389

 YES 249 (73) 134 (75) 115 (70)

Venous invasion, n (%)

 NO 32 (9) 14 (8) 18 (11) 0.571

 Unknown 251 (73) 132 (74) 119 (73)

 YES 60 (17) 33 (18) 27 (16)

https://www.xiantao.love/products
https://www.xiantao.love/products
https://cibersortx.stanford.edu/
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(LASSO) regression, suitable for high-dimensional data, 
was performed to select the most useful predictive fea-
tures using the “glmnet” package of R from the primary 
data set. Wilcoxon test analyses were used for explor-
ing the relationship between CCR5 expression and 
radiomics parameters, and the results were visualized 
using the R package Ggpubr. The predictive radiomics 
characteristics screened from LASSO regression were 

incorporated into a multivariate Logistic regression to 
establish a radiomics model.

Model evaluation and clinical application
Restricted cubic spline (RCS) was performed using the 
“rms” and “survMisc” package of R. RCS shows the hazard 
ratio (HR) and 95% confidence interval (CI) describing the 

Fig. 1 A comparison of the CCR5 expression level between the normal tissues and ovarian cancer tissues and the comparison of survival data. 
A The expression level of CCR5 in OV tissues was significantly higher than that in normal tissues; B The Kaplan–Meier curve shows no significant 
difference in patients’ OS between two groups with different CCR5 expression levels; C Landmark analyses at 36 months showed a higher rate of 
OS for patients with high-expression of CCR5, whereas landmark analysis at 12 and 60 months showed no significant difference between the two 
groups
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association of Radiomics scores (RS) to allow nonlinear 
assessment. Clinical and image data of 89 cases of ovarian 
cancer were retrospectively analyzed in TCIA. The sub-
jects were divided into the low-expression CCR5 and high-
expression groups according to Radiomics Score (RS) when 
the cutoff was 0.388. All patients were divided into the 
training and validation groups according to a ratio of 7:3.

With the R package of rms, the clinical features and 
RS were incorporated into multivariate stepwise logistic 
regression with minimum AIC (Akaike Information Cri-
terion) method to measure goodness of fit. Based on the 
factors in the final model, a predictive nomogram was 
generated to predict the 1-year, 3- year, and 5-year prog-
nosis for patients with ovarian cancer. The time-depend-
ent Receiver Operating Characteristic (ROC) curve was 
plotted. The calibration curve was used to describe and 
evaluate the nomogram performance visually. The perfect 
prediction should fall on the diagonal line of the figure.

Statistical analysis
We conducted all the statistical analysis using R version 
3.5 (https:// www.r- proje ct. org). All p values < 0.05 was 
considered statistically significant. The performance 
of the radiomics model was assessed by using several 
indices with 10-fold cross-validation on the training 
and validation set, including accuracy (ACC), specific-
ity (SPE), sensitivity (SEN), positive predictive value 
(PPV), and negative predictive value (NPV). A ROC 
curve was also employed to assess the overall perfor-
mance of the radiomics models, and a Precision-Recall 

(PR) curve was displayed for comprehensive evaluations 
of the performance. The area under the curve (AUC) 
was calculated. We also calculated the Brier score to 
quantify the radiomics model’s performances. Finally, 
the decision curve analysis (DCA) was conducted to 
reveal the clinical usefulness of the radiomics evalua-
tion. Wilcoxon test analyses were used for exploring the 
relationship between RS and CCR5 expression, and the 
results were visualized using the R package Ggpubr.

Results
Identification of CCR5 as a differentially expressed gene
Clinical characteristics of the population with high and low 
CCR5 expression group
0.829 was calculated as the cutoff of the CCR5 expres-
sion. All the cases were divided into high- and low-
expression groups according to this value. Comparisons 
of the clinical characteristics are shown in Table 1. No 
statistical difference found in clinical factors between 
two groups, except for age.

A comparison of the CCR5 expression level 
between the normal tissues and ovarian cancer tissues 
and the comparison of survival data
The expression level of CCR5 in OV tissues was signifi-
cantly higher than that in normal tissues(P<0.001), as 
shown in Fig. 1(A).

Fig. 2 Associations between overall survival and clinicopathological characteristics using Cox regression: CCR5. A Univariate Cox regression analysis 
revealed that high expression of CCR5 was a protective factor for OS, although the result was not statistically significant. B With multivariate Cox 
regression analysis, the result demonstrated a significant correlation between CCR5 expression and OS. High expression of CCR5 remained to be a 
protective prognostic factor

https://www.r-project.org
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Figure  1(B) demonstrates the Kaplan-Meier sur-
vival curves of patients in the two groups of different 
CCR5 expressions. It indicates that patients with low-
expression CCR5 were associated with worse OS than 
patients with high-expression CCR5, with a median OS 
of 44,53 months vs. 48.27 months. However, the result 
was not statistically significant (p=0.158).

Landmark analysis shows a higher rate of OS for the 
high expression CCR5 group at a late stage (p=0.018) 
with a 36-month landmark, while no statistical differ-
ence was found at an early stage (p=0.66) and at the 
other landmark time (Fig. 1(C))

Associations between overall survival 
and clinicopathological characteristics using Cox regression: 
CCR5
Univariate Cox regression analysis revealed that high 
expression of CCR5 was a protective factor for OS although 

the result was not statistically significant (HR=0.872， 
95%CI:0.72-1.055，p=0.159) (Fig.  2A). With multivariate 
Cox regression analysis, however, the result demonstrated 
a significant correlation between CCR5 expression and OS 
(HR=0.803， 95%CI: 0.655-0.985，p=0.035) High expres-
sion of CCR5 remained to be a protective prognostic factor. 
(Fig. 2B)

ROC curves for predicting OS of ovarian cancer by CCR5 
expression in the survival model
The time-dependent ROC curve was plotted, and 
the AUC was 0.442, 0.490, 0.562 for 12 months, 36 
months, and 60 months, respectively (Fig. 3).

Relationship between CCR5 expression level 
and clinicopathological characteristics
Specifically, it was observed that the expression of CCR5 
was negatively correlated with age, chemotherapy, FIGO 

Fig. 3 ROC curves for predicting OS of ovarian cancer by CCR5 expression in the survival model (A) The time-dependent AUC according to years of 
follow-up; (B) The designated ROC curves at 1, 3, and 5 years of follow-up; the areas under the ROC curves are 0.442, 0.49, and 0.562, respectively
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stage, and radiotherapy. In contrast, its expression was pos-
itively correlated with lymphatic invasion, neoplasm histo-
logic grade, tumor residual disease, and venous invasion, 
although only its correlation with lymphatic invasion was 
statistically significant. (p<0.05) (Fig. 4)

Relationship between CCR5 expression level 
and abundance of immune infiltrates
It was observed in the heat map of Spearman’s rank cor-
relation that the expression level of CCR5 correlated 
positively with the relative abundance of dendritic cells 
activated(p<0.05). By contrast, CCR5 was negatively related 
to B cells naive (p<0.05); CCR5 was also found not to be 
significantly correlated with B cells memory. (Supplemental 
figure 2)

GO and KEGG enrichment analysis of the CCR5
The most significantly enriched GO categories in the high-
expression CCR5 group compared to the others were for 
neuromodulation and protease metabolism process (Sup-
plemental figure 3). The results of KEGG analysis showed 
that pathways in the cell cycle, tumor necrosis factors, and 
m-TOR signaling pathway were mainly enriched.

Radiomics feature extraction and model establishment
Consistency evaluation, Feature Selection, and Construction 
of the radiomics model
The interobserver ICC was ≥ 0.75, 0.51–0.74, < 0.5 for 
95(88.8%), 9(8.4%) and3(2.8%) of the features, respec-
tively. The median ICC was 0.94.

Four optimal features, called original_glcm_Idn, origi-
nal_gldm_GrayLevelNonUniformity, original_glrlm_
RunEntropy, and original_shape_MinorAxisLength (The 
overall importance was 1.271, 0.445, 0.763 and 0.426, 
respectively) were selected by the LASSO algorithm 
among a total of 95 features after ICC analysis. (Supple-
mental figure  4) There were statistical significances in 
these four features between the high-grade group and the 
low-grade group of CCR5 (p<0.05). (Supplemental fig-
ure 5), (Supplemental Table 2)

We construct the radiomics signature with a Radscore 
calculated using the following formulas:

Features’ importance was shown in Supplemental 
figure 6.

The performance of the radiomics model for predicting 
the CCR5 expression level with 10‑fold cross‑validation
In the training set, the ACC, SPE, SEN, PPV and NPV 
of the radiomics model was score 0.737, 0.875, 0.636, 
0.875, 0.636 respectively, with a ROC-AUC of 0.770, and 
a brier score of 0.19.In the validation set, he ACC, SPE, 
SEN,PPV and NPV of the radiomics model was score 
0.737, 0.833, 0.667, 0.846, 0.645 respectively, with a ROC-
AUC of 0.726, and a brier score of 0.212. The PR-AUC of 
the model was 0.759 and DCA demonstrated its prefer-
able clinical practicality (Fig. 5)

Difference between radiomics score when compared using 
Wilcoxon test in the training and validation set
The radiomics score (RS) was significantly higher in high-
expression CCR5 group than in low-expression CCR5 
group both in training and validation set (p<0.05). (Sup-
plemental figure 7)

Model evaluation and clinical application
Association between Radiomics score and patients’ OS
Figure 6 shows when we choose the cutoff of RS (=0.388) 
as reference, it exists a linear dose-response relation-
ship between RS and overall survival of patient with 
ovarian cancer as analyzed by RCS (p overall≥0.05, 
p-non-linearity≥0.05).

Rad − score =0.409 − 0.603 ∗ (original glcm Idn)

− 0.236 ∗ (original gldm GrayLevelNonUniformity)

− 0.301 ∗ (original glrlm RunEntropy)

− 0.227 ∗ (original shape MinorAxisLength)

Fig. 4 Relationship between CCR5 expression level and 
clinicopathological characteristics. It was observed that the 
expression of CCR5 correlated positively with the lymphatic invasion
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Clinical characteristics of the population with high and low 
RS group
Comparisons of baseline characteristics are shown in 

Table 2. No statistical difference was found in age, chemo-
therapy, FIGO stage, lymphatic invasion, neoplasm his-
tologic grade, radiotherapy, tumor residual disease and 

Fig. 5 The performance of the radiomics model for predicting the CCR5 expression level with 10-fold cross-validation on the training and 
validation set. A Receiver operating characteristic (ROC) curves of the model. B Precision-Recall (PR) curve of the model. The X-axis of the recall 
curve is the actual positive rate (Recall), and the Y-axis is the precision rate. The area under the curve (AUC)-PR is the average accuracy calculated for 
each coverage threshold. The more convex the turn to the upper right, the better the model’s performance. C Calibration curves of the model. A 
calibration curve describes the consistency between the predicted and gene expression levels. The 45-degree dotted black line represents the ideal 
prediction performance; the solid red line represents the model’s prediction performance. The closer the solid red line is to the ideal dotted line, the 
better the model’s prediction accuracy. D Decision curve analysis (DCA) for the model. The y-axis measures the net benefit. The red curve represents 
the radiomics model; the gray curve represents the assumption that all patients were treated and the straight black line at the bottom of the figure 
represents the assumption that no patients were treated
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venous invasion between the high (n=70) and low (n=19) 
RS group.

The comparison of survival data
Figure  7(A) demonstrates the Kaplan-Meier survival 
curves of patients in the two groups. It shows that 
patients with low RS were associated with worse OS than 
patients with high RS, with a median OS of 49.43 months 
vs. 63.03 months. However, the result was not statisti-
cally significant (P=0.059). Landmark analysis (Fig. 7(B))
shows a higher rate of OS for high RS group at an early 
stage (p=0.049) with a 60-month landmark while no sta-
tistical difference was found at late stage (p=0.887) and at 
the other landmark time.

Nomogram and model evaluation
Besides RS, clinical characteristics including age, chemo-
therapy, tumor residual diseases were contained in the 
model using stepwise logistic regression with minimum 
AIC method. A predictive nomogram was generated 

based on the total score of each patient. For each person, 
every selected variable pointed to a score according to the 
above scale, and we could get a total score by summing 
up all scores (Fig. 8(A)). The AUC of the risk score of the 
time-dependent ROC was 0.8, 0.673 and 0.792 for 1-year, 
3-year and 5-year, respectively (Fig.  8(B)). Compared to 
every single predictor, the predictive nomogram achieved 
the best performance with the highest ROC-AUC (Sup-
plemental table  3). It appeared that all three calibration 
curves of 1-year, 3-year and 5-year were closed to the 
standard curve. (Fig. 8(C))

Discussion
In this integrated radiomics-molecular analysis based on 
CT images, we aimed to explore the correlations between 
the pre-treatment radiomics profile of ovarian cancer and 
CCR5 expression levels and overall survival. Our results 
demonstrated that CT features are associated with dif-
ferences in CCR5 expression levels and overall survival 

Fig. 6 Association between Radiomics score and patients’ OS. The curve of HR versus RS using restricted cubic splines. The solid red line indicates 
HR, and 95% CI is denoted by the dotted black lines
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of ovarian cancer, indicating that additional molecular 
information can be obtained from radiomics analysis of 
CT images which might provide a new method for thera-
peutic decision-making.

Due to the heterogeneity of ovarian cancers, the sur-
vival rate of patients varies widely. 15% of women with 
ovarian cancer die within 2 months of diagnosis, while 
almost half are expected to survive beyond five years 
[37]. Accurate prediction of prognosis is pivotal for the 
management of ovarian cancer. CCR5 as a chemokines’ 
receptor, which may promote invasion and metastasis 
[6], has been actively investigated in various cancers 
[7–13]. Although limited in the field of ovarian cancer, 
several studies reported that CCR5 might be associated 
with prognosis [19, 20]. Recently, the successful appli-
cations of radiomics in ovarian cancer, including cancer 
detection, differentiation diagnosis, prediction of treat-
ment response, survival and lymph node metastasis 
[21, 28–33], suggested that radiomics may hold poten-
tial for decoding the CCR5 status in patients with ovar-
ian cancer. Therefore, we conducted the present study. 
Landmark analyses at 60 months showed a higher rate 
of OS for patients with high radiomics scores, which 

demonstrated that higher expression levels of CCR5 
are linked to better prognosis in patients with ovarian 
cancer (p < 0.05). We believe that noninvasive predict-
ing the expression levels of CCR5 based on radiomics is 
helpful for nuanced clinical judgments.

Recently, a wealth of critical molecular markers, 
other prediction information, and the development of 
molecular biological and artificial intelligence tech-
niques owed cancer researchers. Wingfield [5] applied 
radiomics features to predict the expression levels of 
CD44 and CD133 in lower-grade gliomas; In the train-
ing and validation sets, the model yielded AUCs of 
0.912 and 0.805, respectively, in the CD44 model; 0.912 
and 0.816, respectively, in the CD133 model. Xiao [38] 
applied a radiomics model to predict SYP gene expres-
sion; The prediction model yielded an accuracy of 0.93. 
In our study, after features screening based on repeat 
LASSO using the optimal lambda of -2.349, four opti-
mal features: original_glcm_Idn, original_gldm_Gray-
LevelNonUniformity, original_glrlm_RunEntropy, and 
original_shape_MinorAxisLength were selected for 
constructing the model. The predictive performance of 
models predicting CCR expression levels was good in 
the training and validation sets, and yielded AUCs of 
0.770 and 0.726, respectively. In our research, restricted 
cubic spline models were used to fit the relationship 
between RS and OS and identify the optimal cut-off 
value of RS. It showed good predictive power with 
the time-dependent 0.679, 0.552, and 0.613 for 1-year, 
3-year, and 5-year survival using single RS as predic-
tor and AUROC of 0.8, 0.673, and 0.792 using RS com-
bined with clinical features. The results demonstrated 
that combining clinical and radiomics models improved 
model performance. This finding was consistent with 
the research of Avesani [39], who built predictive radi-
omics models for early relapse and BRCA mutation 
based on a multicentric database of OC. Their mod-
els showed low performance in predicting both BRCA 
mutation and 1-year relapse with traditional radiomics 
(AUC: 0.46-0.59 for BRCA and 0.46-0.56 for relapse) 
and deep learning (AUC of 0.48 BRCA and 0.50 for 
relapse). The inclusion of clinical variables improved 
the performance of the radiomics models to predict 
BRCA mutation (AUC in the test set of 0.74).

Accurate survival prediction is important for decision 
making, especially for patients with cancers.

Decision-making, as one of the core tenets of medi-
cine, relies upon integrating quantitative data. Many 
indicators were used to predict the survival of OC. 
Zhang et  al. used indicator CA125 combined with 
D-dimer (ICD) in predicting OS in patients with OC. 
They showed that ICD (HR 2.651, 95% CI 1.273–5.520, 
p=0.009) was an independent predictor of OS in ovarian 

Table 2 Clinical characteristics of the population with high and 
low Radiomics score groups

Variables Total (n = 89) Low (n = 19) High (n = 70) p

Age, n (%)

 <65 57 (64) 9 (47) 48 (69) 0.15

 ≥65 32 (36) 10 (53) 22 (31)

Chemotherapy, n (%)

 NO 4 (4) 2 (11) 2 (3) 0.199

 YES 85 (96) 17 (89) 68 (97)

FIGO, n (%)

 II/III 47 (53) 8 (42) 39 (56) 0.427

 IV/Unknown 42 (47) 11 (58) 31 (44)

Lymphatic invasion, n (%)

 NO/Unknown 66 (74) 13 (68) 53 (76) 0.56

 YES 23 (26) 6 (32) 17 (24)

Neoplasm histologic grade, n (%)

 G1/G2 9 (10) 2 (11) 7 (10) 1

 G3/GX 80 (90) 17 (89) 63 (90)

Radiotherapy, n (%)

 NO 86 (97) 18 (95) 68 (97) 0.518

 YES 3 (3) 1 (5) 2 (3)

Tumor residual disease, n (%)

 No/Unknown 32 (36) 7 (37) 25 (36) 1

 YES 57 (64) 12 (63) 45 (64)

Venous invasion, n (%)

 NO/Unknown 73 (82) 17 (89) 56 (80) 0.506

 YES 16 (18) 2 (11) 14 (20)
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cancer, although the predictive power was limited [40]. 
Qi constructed a predictive nomogram based on risk 
factors for OS, including age, laterality, and American 
Joint Committee on Cancer (AJCC) stage. The C-index 
of the OS nomograms were 0.85 (95% CI: 0.81-0.89) and 
0.80 (95% CI: 0.74-0.87), respectively in the training and 
validation cohort [41]. These predictors usually require 
the invasive operation or experienced staff, being labor-
intensive, time-consuming, and possibly leading to inter-
observer bias, while the predictive power was not ideal. 
In the last few years, more and more new techniques 
have begun paving the way towards personalized and 

precision medicine based on the increasing knowledge 
of the tumoral microenvironment at a molecular level. 
Radiomics represents a recently introduced translational 
field of study, aiming to find relationships between mul-
tilayered information extracted from imaging examina-
tions and clinical data to support evidence-based clinical 
judgement [42]. Imaging biomarkers could be used as 
predictors of OS. Several previous papers have reported 
a significant correlation between radiomics based on CT 
images and survival in ovarian cancer patients (sum-
marized in supplemental Table  4) and have shown the 
good performance of the prediction model [43–49]. 

Fig. 7 The comparison of survival data (A) The Kaplan–Meier curve shows no significant difference in patients’ overall survival (OS) between two 
groups with different radiomics scores (RS); (B) Landmark analyses at 60 months showed a higher rate of OS for patients with high RS, whereas 
landmark analysis at 12 and 36 months showed no significant difference between the two groups
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Fig. 8 Nomogram and model evaluation (A) Creation of the nomogram to predict the overall survival of a patient with ovarian cancer. B The 
time-dependent ROC of the risk score (C) Calibration curves of the risk score
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These results are consistent with those of our analysis. 
This consistency suggests that the radiomics offer good 
prediction power in ovarian cancer. In this work, we 
built prognostic models based on a biomarker, radiom-
ics, and clinical features for survival analysis of patients 
with ovarian cancer. The model was proved to be a sig-
nificant predictor of overall survival. We provided a non-
invasive tool with relatively high accuracy to predict the 
OS of ovarian cancer using the CT-based machine learn-
ing radiomics predicting CCR5 expression level. Our 
findings suggested that combining the biomarker-based 
features into the standard radiomics might offer a useful 
approach for improving the prognostic prediction accu-
racy with a view to clinical use.

Some limitation of our research needs to be considered. 
Firstly, all image information was acquired from public 
dataset TCIA, which inevitably contain variance in the 
quality of images that may have an impact on predictive 
analysis, Secondly, this study is a retrospective study with 
a relatively small sample size, so the generalizability still 
has to be studied. Thirdly, in our study, ROI delineating 
each tumor was manually drawn under the supervision 
of two experienced radiologists, while manual delinea-
tion is a critical task, especially because it carries a cer-
tain amount of subjectivity. As reported in a recent study 
[50], although with high accuracy, manual segmenta-
tion by radiologists is labor-intensive, time-consuming, 
and not always feasible for radiomics analysis requiring 
huge datasets. Additionally, manual segmentation is sub-
ject to inter- and intra-observer variability [51]. Hence, 
many semi-automatic delineation algorithms are applied 
in the clinical practice although less precise than man-
ual segmentation [50]. On the other hand, in the case of 
manual delineations performed by different radiologists, 
one solution is the STAPLE tool [52] that can be used to 
overcome the limitation by producing a consolidated ref-
erence between the different operators. So, to reduce the 
operator interaction in the segmentation process and to 
improve the reproducibility of radiomics studies, auto-
matic or semi-automatic approaches should be used in 
further study.

Conclusion
In conclusion, the expression levels of CCR5 can sig-
nificantly influence the prognosis of patients with 
ovarian cancer. We developed a model from radiomics 
can effectively predict the expression levels of CCR5. 
Our model therefore has the potential to be widely 
used as a practical tool for the noninvasive characteri-
zation of tumor.
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