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Abstract 

Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by chronic ovulation dysfunction 
and overabundance of androgens; it affects 6–20% of women of reproductive age. PCOS involves various pathophysi-
ological factors, and affected women usually have significant insulin resistance (IR), which is a major cause of PCOS. IR 
and compensatory hyperinsulinaemia have differing pathogeneses in various tissues, and IR varies among different 
PCOS phenotypes. Genetic and epigenetic changes, hyperandrogenaemia, and obesity aggravate IR. Insulin sensiti-
zation drugs are a new treatment modality for PCOS. We searched PubMed, Google Scholar, Elsevier, and UpToDate 
databases in this review, and focused on the pathogenesis of IR in women with PCOS and the pathophysiology of IR 
in various tissues. In addition, the review provides a comprehensive overview of the current progress in the efficacy 
of insulin sensitization therapy in the management of PCOS, providing the latest evidence for the clinical treatment of 
women with PCOS and IR.
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Background
Polycystic ovary syndrome (PCOS) is currently recog-
nized as the most common endocrine disorder in women 
of reproductive age, with a worldwide prevalence rang-
ing from 6 to 21%, depending on the diagnostic criteria 
[1–5]. PCOS is a heterogeneous disease characterized by 
hyperandrogenism, dysfunctional ovulation, and poly-
cystic ovary morphology, accompanied by metabolic 
abnormalities, such as insulin resistance (IR) and obesity. 
However, the underlying pathogenesis of PCOS remains 

unclear. Recent studies have suggested that genetics, epi-
genetic changes, environmental factors, oxidative stress, 
chronic low-grade inflammation, mitochondrial dysfunc-
tion, and metabolic disorders are involved in PCOS, thus 
damaging normal ovarian function [6–13]. IR and com-
pensatory hyperinsulinaemia (HI) are considered major 
drivers of PCOS pathophysiology and are involved in the 
development of hyperandrogenaemia and reproductive 
dysfunction by various mechanisms [14].

IR and compensatory hyperinsulinaemia (HI) are pre-
sent in 65–95% of women with PCOS, including the vast 
majority of overweight and obese women and more than 
half of women of normal weight. IR is independent of 
and exacerbated by obesity [14–18]. Currently, there are 
four commonly recognized phenotypes of PCOS: type 
A, polycystic ovary (PCO), chronic oligo-anovulation 

*Correspondence:
Bing He
hebing7557@163.com
Department of Endocrinology, Shengjing Hospital, China Medical 
University, Shenyang, Liaoning 110000, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-022-01091-0&domain=pdf


Page 2 of 17Zhao et al. Journal of Ovarian Research            (2023) 16:9 

(OA) and hyperandrogenism (HA); type B, OA and HA; 
type C, PCO and HA; and type D, PCO and OA [19]. IR 
is present in all phenotypes, and insulin sensitivity varies 
according to the PCOS phenotype. IR is the most com-
mon classical phenotype (Types A and B) (80%), followed 
by ovulating PCOS (65%) and non-hyperandrogenaemic 
PCOS (38%) [20]. Women with PCOS and IR have a sig-
nificantly increased risk of adverse pregnancy outcomes 
[21, 22] and chronic diseases, such as type 2 diabetes 
mellitus (T2DM), cardiovascular disease, and metabolic 
syndrome, which seriously affect the physical and men-
tal health of women of childbearing age, increasing their 
social burden [23–25]. However, the root cause of IR in 
PCOS is largely unknown and the underlying mecha-
nism remains to be elucidated. Therefore, recognizing 
the strong influence of IR on the occurrence and develop-
ment of PCOS, accurate assessment of insulin sensitivity 
in the early stages of PCOS, and effective intervention on 
IR are essential to reduce the risk of long-term complica-
tions. Lifestyle change is the treatment of choice for all 
women with PCOS, and insulin sensitization is a prom-
ising choice for the chronic treatment of women with 
PCOS. This paper aims to summarize recent findings on 
the involvement of IR in the occurrence and development 
of PCOS and the mechanism of IR in various tissues. Fur-
thermore, we aim to summarize and provide an update 
on the current research status of insulin sensitization 
therapy for women with PCOS to provide more effective 
and reasonable clinical treatment.

Methods
An extensive literature search was performed up to July 
2022 in PubMed, Google Scholar, Elsevier, and UpTo-
Date databases. Keywords and subject terms included 
(“PCOS” AND “insulin”) OR (“PCOS” AND “insulin” 
AND “tissues”) OR (“PCOS” AND “insulin” AND “patho-
genesis”) OR (“PCOS” AND “insulin” AND “diagno-
sis”) OR (“PCOS” AND “insulin” AND “evaluation”) OR 
(“PCOS” AND “insulin” AND “therapy”). Only English-
language research papers were considered. In addition, 
publications focus on the new ones (since 2018) and 
exclude those without full manuscripts.

Pathogenesis of insulin resistance in polycystic 
ovary syndrome
Genetics and foetal origin
PCOS is an autosomal dominant genetic disease with 
various expression patterns that begins in early life, and 
metabolic changes precede reproductive abnormalities. 
A clustering analysis of 893 women with PCOS identi-
fied the metabolic subtype of PCOS, which was char-
acterized by higher BMI and glucose and insulin levels 
with relatively low SHBG and LH levels [5]. IR is one 

of the prominent phenotypic characteristics of PCOS 
[26]. Twin and family cluster studies have suggested HI 
has a genetic component in PCOS, and a family history 
of T2DM is associated with significant insulin secretion 
defects [27, 28]. The daughters of women with PCOS 
develop HI and lower adiponectin levels before puberty 
[29], which persist throughout adolescence [30].

PCOS is associated with specific gene mutations, and 
most gene variants identified in genome-wide association 
studies are involved in regulating sheath steroid produc-
tion, follicular maturation, or insulin signalling through 
the modified proteins they encode, such as insulin recep-
tors, LH/HCG receptor activators, cell traffic proteins, 
and transcription factors [31, 32]. Genome-wide associa-
tion studies on European, Chinese, and Indian popula-
tions have established that some insulin receptor (INSR) 
gene variants (rs2059807 and rs1799817) are significantly 
associated with IR in women with PCOS [33, 34]. Studies 
of Indian women suggest that C/T polymorphisms in the 
INSR tyrosine kinase domain may be susceptible variants 
in women with normal-weight PCOS, contributing to the 
development of IR and compensatory HI [35]. A meta-
analysis showed that the Gly972Arg polymorphism in 
insulin receptor substrate 1 (IRS-1) mediates the patho-
genesis of PCOS by increasing fasting glucose levels and 
is a risk factor for susceptibility to PCOS [36, 37]. How-
ever, the genetic assessment of insulin-related genes is 
affected by the diagnostic criteria and genotyping meth-
ods employed with patients, resulting in different results 
[38]. Exposure to adverse intrauterine environments 
can lead to varying degrees of IR and HI. Exposure to 
dihydrotestosterone and insulin in the second trimes-
ter of pregnancy produces a PCOS-like phenotype and 
increases the risk of miscarriage [39]. Intrauterine growth 
restriction can affect foetal insulin secretion, and insulin 
resistance trends in PCOS may be involved in develop-
mental origin and preprogramming as a nutritional com-
pensation mechanism [40, 41]. Adolescents and young 
women with a history of low birth weight are more likely 
than normal women to have PCOS-like manifestations of 
IR and high androgen levels [42, 43].

Insulin signal transduction pathway
Insulin is a small peptide receptor-binding hormone 
released by pancreatic beta cells, which binds to cell 
surface receptors. INSR is a heterotetramer composed 
of α- and β-subunits linked by disulphide bonds. The 
extracellular α-subunit is responsible for binding to the 
ligands. The β-subunit is a glycoprotein spanning the 
cell membrane with tyrosine kinase activity [44]. Insulin 
binding to receptors induces specific tyrosine autophos-
phorylation, which phosphorylates intracellular sub-
strates, including IRS1-4, SRC homologues, and collagen 
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homologues (Shc), leading to a complex intracellular cas-
cade that initiates insulin signal transduction [45]. Insulin 
has two main signalling pathways: metabolism and mito-
sis. Metabolism is primarily mediated through phosphati-
dylinositol 3-kinase (PI3-K) and serine/threonine kinase 
Akt/protein kinase B (PKB), also known as the PI3-K 
pathway. Through these pathways, insulin stimulates glu-
cose uptake by promoting the translocation of glucose 
transporter 4 (GLUT4) from intracellular vesicles to the 
cell surface [46] and leads to the inactivation of serine 
phosphorylation of glycogen synthase kinase 3 (GSK3), 
increasing glycogen, fatty acid, and protein synthesis. It 
also activates mammalian target of rapamycin (mTOR) 
to regulate protein synthesis and degradation [46]. The 
mitotic pathway is the mitogen-activated protein kinase-
extracellular signal-regulated kinase (MAPK-ERK) path-
way, which is activated by insulin receptor-mediated 
phosphorylation of Shc or IRS. This progressively stimu-
lates the translocation of cascade erk1/2 to the nucleus 
and phosphorylates transcription factors to stimulate cell 
growth and differentiation and regulate gene expression 
[47, 48]. Increased serine phosphorylation and decreased 
tyrosine phosphorylation of insulin receptors and IRS 
can terminate insulin action, resulting in post-binding 
defects in insulin signal transduction and leading to insu-
lin dysfunction in women with PCOS [49, 50].

Hyperinsulinaemia and tissue insulin resistance
IR in PCOS is caused by impaired insulin action in vari-
ous target tissues, which is characterized by basal com-
pensatory HI and a reduced insulin response to glucose 
overload. PCOS affects the majority of organ systems 
and tissues. Insulin plays different roles in different tis-
sues in balancing the supply and demand of nutrients. 
HI caused by tissue IR is central to PCOS pathology [51]. 
IR in women with PCOS selectively and mutually affects 
metabolism or mitotic pathways in classical insulin target 
tissues (e.g., liver, skeletal muscle, and adipose tissue) and 
non-classical insulin target tissues (e.g., ovary, pituitary 
gland) [52]. In addition, androgen overload, lipid deposi-
tion, inflammatory cytokines, and other systemic factors 
are also involved in the IR process of peripheral tissues 
[53] (Fig. 1).

Adipose tissue
Adipose tissue plays a central role in systemic glucose 
metabolism and insulin sensitivity. Compared with body 
mass index (BMI)-matched control women, women with 
PCOS showed systemic fat accumulation and signifi-
cantly increased subcutaneous fat cell volume, whereas 
visceral fat volume was only increased in PCOS phe-
notype A [54–56]. The increase in adipose tissue vol-
ume, especially visceral adipose tissue volume, is closely 

Fig. 1 A summary of the most representative impact of IR and HI in women with PCOS. Abbreviations: SHBG: sex hormone-binding globulin; 
LH: luteinizing hormone; IGF1: insulin growth factor 1; GnRH: gonadotropin-releasing hormone; ACTH: adrenocorticotropic hormone; HPO: 
Hypothalamus-pituitary-ovary; HPA: Hypothalamus–pituitary–adrenal
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associated with whole-body IR [57]. The IR of adipose 
tissue results in decreased glucose uptake and lipid accu-
mulation, and significantly inhibits lipid decomposition. 
Excessive fatty acids flow into skeletal muscle and liver, 
resulting in lipid storage and aggravating IR of skeletal 
muscle and the liver [58].

Adipose tissue IR in women with PCOS is influenced 
by circulating androgen levels and excessive energy 
intake. Androgens induce adipocyte IR by affecting the 
phosphorylation of insulin-stimulated protein kinase C 
(PKC), leading to a decrease in insulin-induced GLUT-4 
content in PCOS abdominal subcutaneous adipocytes 
and a decrease in insulin-stimulated serine phosphoryla-
tion of GSK3, indicating the presence of insulin receptor 
binding or phosphorylation defects in adipocyte IR [59]. 
This impairs the effect of insulin on glucose metabolism 
but does not affect insulin-induced mitosis [59]. Andro-
gens also regulate lipid metabolism and adipocyte dif-
ferentiation, and induce the accumulation of abdominal 
adipose tissue. Animal models have shown that prenatal 
and postnatal exposure to androgens can lead to enlarge-
ment of adipocytes, accumulation of visceral fat, and 
decreased insulin sensitivity in women [60, 61]. In addi-
tion, testosterone is specific to catecholamine-stimulated 
lipolysis and can reduce the sensitivity of human subcu-
taneous fat cells but not visceral fat cells [62].

Type 1C3 aldosterone reductase (AKR1C3) is the 
only enzyme expressed in adipose tissue that can con-
vert androstenedione into testosterone, which is widely 
expressed in the adipose tissue of patients with PCOS 
[63]. Studies have shown that AKR1C3 is the main driver 
of active androgen production in PCOS adipose tissue 
[63]. In addition, AKR1C3 expression is regulated by 
insulin [64], suggesting a significant correlation between 
testosterone and circulating insulin levels in adipose tis-
sue. Increased androgen production in adipose tissue and 
subsequent lipid accumulation and fat mass can lead to 
systemic IR and lipotoxic organ damage in patients with 
PCOS [63]. HI further exacerbates hyperandrogenae-
mia, resulting in a vicious cycle that exacerbates poor 
metabolic performance [63]. In addition, free testoster-
one seen in PCOS is inversely proportional to the serum 
level of high-molecular-weight adiponectin, a collagen-
like protein synthesized only by adipose cells, which has 
insulin sensitization and anti-inflammatory effects and 
decreases with adipose tissue volume [65]. Decreased 
adiponectin levels result in decreased PKC activity and 
insulin signalling [66]. Adiponectin also stimulates the 
secretion of hepatic sex hormone-binding globulin 
(SHBG), suggesting that the effect of androgen’on adi-
pose IR may be influenced by hepatic SHBG through 
serum free testosterone levels [66]. Increased adipose 
tissue and its dysfunction may exacerbate physiological 

factors and cytokine levels, such as leptin, interleukin 
6, and tumour necrosis factor alpha, thereby promoting 
low-level inflammation, interfering with insulin signal-
ling, causing adipose tissue to release free fatty acids, 
increasing ectopic fat deposition, and aggravating IR on 
one’s own and other organizations [67–69].

Skeletal muscle
Skeletal muscle is responsible for most peripheral glu-
cose uptake regulation, and almost two thirds of the 
glucose intake after meals is absorbed by skeletal mus-
cle through insulin-dependent mechanisms, making it 
the most important insulin-resistant tissue [70]. Muscle 
insulin-mediated glucose processing, as measured by a 
normal glucose clamp, was significantly reduced in all 
women with PCOS compared to women without PCOS 
[71]. Skeletal muscle IR in women with PCOS is reflected 
by impaired insulin-stimulated glucose processing, which 
is a major risk factor for T2DM in women with PCOS 
[51]. However, human studies have not yet determined 
the molecular mechanism of PCOS-specific IR in skeletal 
muscle, and there have been many conflicting findings. 
The potential mechanisms currently considered include 
genetic and epigenetic programming, signalling pathway 
and mitochondrial dysfunction, intracellular and extra-
cellular lipid accumulation, and organ system crosstalk 
[72].

Initial studies of muscle tissue and cultured myoducts 
and fibroblasts [73, 74] found elevated phosphorylation of 
serine residues on IRS1/2, resulting in the translocation 
of GLUT4 and reduced glucose uptake, suggesting defec-
tive signalling at the proximal insulin site. Skeletal mus-
cle biopsies of women with PCOS revealed a significant 
decrease in insulin-mediated IRS1-related PI3-K activa-
tion, with an increase in IRS2 abundance as a compensa-
tory change after targeted IRS1 destruction. Subsequent 
skeletal muscle studies showed decreased phosphoryla-
tion of Akt/PKB and the Akt substrate 160-KDA (AS160) 
[75]. These studies in obese women with PCOS suggest 
that possible PCOS-specific defect in insulin signaling of 
skeletal muscle is proximal and distal to IRS1/2. Hansen 
et  al. studied molecular mechanisms in skeletal muscle 
underlying IR in normal-weight women with PCOS, find-
ing that decreased insulin sensitivity may only play a role 
in skeletal muscle IR through AMPK and is associated 
with low circulating adiponectin levels [76]. In addition, 
a lack of insulin-stimulated pyruvate dehydrogenase acti-
vation in skeletal muscle may lead to reduced systemic 
metabolic flexibility and mediation of IR through meta-
bolic signalling pathways [76]. Furthermore, constitu-
tive activation of the mitotic signal MAPK-ERK1/2 has 
also been found in skeletal muscle biopsies of women 
with PCOS, which promotes serine phosphorylation of 



Page 5 of 17Zhao et al. Journal of Ovarian Research            (2023) 16:9  

IRS1 and reduces metabolic signalling in PCOS myotube 
[77], suggesting that IR may impact both the metabolic 
and mitotic pathways in skeletal muscle of women with 
PCOS.

Animal studies have shown that hyperandrogenaemia 
promotes IR by increasing serine phosphorylation of 
Akt/PKB, mTOR ribosomal S6 kinase, and IRS1 in myo-
tubes and promoting visceral fat accumulation [78]. In 
addition, hyperandrogenaemia may increase inflamma-
tion by activating nuclear factor kappa B (NF-κB), which 
in turn affects intracellular enzyme pathways associated 
with insulin receptors [51]. A recent meta-analysis sug-
gested that obesity, but not HA or IR, appears to predict 
skeletal muscle mass in reproductive-aged women with 
PCOS [79]. Intramuscular lipid accumulation within 
muscle cells or between fibres may account for a small 
percentage of skeletal muscle IR [80]. PCOS is associated 
with abnormal skeletal muscle gene expression, and it is 
affected by specific changes in DNA methylation [72]. 
Furthermore, a link between TGF-β superfamily ligand 
signalling and extracellular matrix deposition in PCOS-
specific IR results in inappropriate crossing between 
these cells and their host organs, suggesting that epige-
netic as well as tissue crossing is involved in skeletal mus-
cle metabolic abnormalities [72]. Mitochondrial oxidative 
phosphorylation genes are downregulated in the skeletal 
muscle of women with PCOS, suggesting that mitochon-
drial dysfunction is involved in PCOS-specific IR forma-
tion [72, 81].

Liver tissue
The liver is also the main site of glucose uptake and stor-
age, accounting for one third of postprandial glucose 
processing, and the main site of insulin clearance [81]. 
Insulin in the liver promotes glycogen synthesis and de 
novo lipogenesis while also inhibiting gluconeogenesis. 
PCOS-related hepatic IR is usually only present in obese 
women, leading to a deficiency in insulin-stimulated liver 
glycogen synthesis and insulin-mediated inhibition of 
hepatic glucose production [82]. IR and compensatory 
HI can directly inhibit the synthesis of liver SHBG and 
insulin growth factor 1 (IGF1) binding protein. The for-
mer is a glycoprotein synthesized mainly in the liver, and 
its reduced synthesis leads to increased free testosterone 
levels [83]. The reduction of the latter increases the cir-
culating concentration of IGF1, which not only triggers 
the ovarian membrane cells to produce more androgens, 
but also reduces specific microRNAs, thus accelerating 
the apoptosis of granulosa cells and inhibiting follicular 
development. These two effects together lead to hyper-
androgenaemia and follicular development disorders in 
PCOS [13].

Insulin in the liver can directly regulate glucose and 
lipid metabolism and can also be indirectly regulated by 
fat and muscle insulin action. Direct effects activate de 
novo lipogenesis, convert excess carbohydrate substrates 
to triglycerides, and promote liver triglyceride delivery 
to adipose tissue [82]. Indirect effects are mainly caused 
by insulin-mediated inhibition of lipolysis in adipose tis-
sue, which leads to an increase in circulating plasma non-
fatty acids in the liver and promotes fat deposition in the 
liver. Approximately 59% of the lipids in hepatocytes are 
derived from non-fatty acids produced by adipolysis [82]. 
The liver-specific insulin receptor knockout (LIRKO) 
mouse model suggests that the insulin signalling is essen-
tial for the regulation of glucose homoeostasis in the liver 
and maintenance of normal liver function [84]; further, 
it is also a prerequisite for the indirect regulation of adi-
pose insulin. LIRKO mice still showed obvious IR, severe 
glucose intolerance, and resistance to insulin’s ability to 
inhibit liver sugar production under the premise of nor-
mal insulin signal transduction in fat and muscle tissues 
[82]. In addition, hepatic lipid accumulation activates 
diacylglycerol/PKC and inhibits insulin receptors, affect-
ing insulin signalling and subsequent gluconeogenesis, 
thereby exacerbating hepatic IR [53].

In vitro and in  vivo studies of liver-specific androgen 
receptor (AR) gene knockout have found that AR sig-
nalling in liver cells mediates hepatic IR in hyperandro-
genaemia-induced female mice through a cascade of 
changes in hepatic insulin signalling and phosphoryla-
tion, suggesting that androgens are involved in hepatic 
IR [85]. Long-term androgen excess can induce hepatic 
insulin resistance and steatosis in PCOS-like rats. Under 
hepatic IR, excessive androgens can promote the devel-
opment of non-alcoholic fatty liver disease (NAFLD) 
through apoptosis and autophagy in the liver mitochon-
dria [86]. NAFLD, a metabolic syndrome characterized 
by abnormal fat accumulation, is now considered the 
most common chronic liver disease in the United States, 
and its prevalence in PCOS has increased significantly 
in recent years [87]. Several human studies have shown 
a close association between NAFLD and liver IR, and IR 
is an important risk factor for NAFLD in PCOS [88–90].

The ovaries and uterus
Ovarian androgen overload is the core of PCOS. HI 
enhances intrathecal steroid production and leads to 
impaired follicular maturation. Insulin receptors are 
widely distributed in stromal and follicular ovarian cells, 
and there is considerable evidence for the direct ovarian 
effect of insulin on steroid production and the impor-
tance of insulin-signalling pathways in ovulation control 
[91, 92]. Under physiological conditions, insulin acts as 
a helper gonadotropin through its homologous receptor 
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to increase LH-induced androgen synthesis in membrane 
cells, and LH induces luteinization in granulosa cells [93]. 
HI can lead to androgen-dependent anovulation via dif-
ferent mechanisms. Membrane cells are the main site of 
androgen production in the ovaries. Insulin acts on the 
membrane cells of the ovary to directly trigger andro-
gen synthesis by increasing the activity of cytochrome 
P450c17α, a key enzyme that regulates androgen bio-
synthesis encoded by CYP17. Insulin can also cooperate 
with LH. The 17α-hydroxylase activity of P450c17 is acti-
vated by PI3-K signalling to induce androgen synthesis in 
membrane cells [94–97]. The membrane cells of women 
with PCOS are more sensitive to the hyperandrogenic 
effects of insulin than healthy women [51]. In anovula-
tory PCOS granulosa cells, the synergistic effect of high 
insulin and LH levels may induce premature expres-
sion of LH receptors in small follicular subsets, leading 
to premature differentiation of granulosa cells and fol-
licular growth stagnation [98]. The effect of insulin on 
glucose metabolism was significantly reduced in granu-
lar lutein cells isolated from the ovaries of women with 
typical PCOS phenotypes, whereas the effect of insu-
lin on steroid production was unchanged [98]. Reduced 
phosphorylation of MEk1/2 and MApK-ERk1/2 in PCOS 
was associated with increased P450c17 expression com-
pared with that in normal membrane cells, contrary to 
the findings of increased phosphorylation of MEk1/2 
and MApK-ERk1/2 in PCOS skeletal muscle [74]. These 
results suggest the existence of selective insulin resist-
ance in PCOS ovarian tissue.

Energy metabolism is also critical for normal endome-
trial function, and endometrial studies of patients with 
PCOS have shown that IR and HI also negatively affect 
endometrial physiology. Endometrial tissues express 
molecules involved in insulin signalling pathways, and 
the expression of insulin receptors, IRS proteins, AS160, 
PKC, and GLUT4 in the endometrium of women with 
PCOS is impaired and associated with adverse repro-
ductive outcomes [39]. Hyperinsulinaemia can impair 
decidualization of endometrial stromal cells in  vitro 
through the transcriptional inhibition of FOXO-1 [99]. 
In addition, hyperandrogenaemia plays a role in the insu-
lin signalling pathway of the endometrium, reducing the 
expression of INRS-1 and GLUT-4 in endometrial glan-
dular epithelial cells [100]. The insulin sensitizer met-
formin promotes GLUT4 transcription by increasing 
AMPK, improves IR, and indirectly restores endometrial 
function in PCOS patients [101].

Central nervous system
Insulin affects the hypothalamic-pituitary system and 
can increase the frequency and amplitude of gonadotro-
pin-releasing hormone (GnRH) release pulses through 

MAPK and increase GnRH gene expression, thereby 
increasing LH release, enhancing androgen biosynthe-
sis in the ovary, and impairing ovarian function [102]. 
Insulin signalling in the central nervous system plays an 
important role in normal reproduction and body weight 
regulation. Female mice with neuron-specific destruc-
tion of IR genes show increased food intake, disrupted 
LH release, and impaired ovarian follicle maturation 
[103, 104]. Leptin, one of the earliest known adipokines, 
is essential in the hypothalamus for maintaining normal 
body weight and insulin sensitivity [105]. Specific knock-
out of insulin receptors and leptin receptors in hypotha-
lamic proopiomelanocortin neurons induces a PCOS 
phenotype [106]. The pituitary gland is one of the most 
important components of the PCOS insulin. Insulin can 
directly stimulate LH secretion, leading to abnormal 
reproductive function in PCOS patients [107]. In addi-
tion, IR- and HI-mediated reduction of pituitary sensitiv-
ity to GnRH and disruption of pituitary insulin receptors 
can lead to anovulation [108]. Women with PCOS had 
a higher ACTH response to corticotropin-releasing 
hormone (CRH) stimulation than women who ovulate 
normally, which was strongly associated with HI sever-
ity [109]. IR and compensatory HI can increase adrenal 
androgen levels and aggravate PCOS hyperandrogenae-
mia by increasing adrenal sensitivity to ACTH [110].

Women with PCOS show hyperactivation of the AR in 
the preoptic area, hypothalamus, and other limbic struc-
tures [110]. Animal studies have found that male mice 
with neuronal AR deletions exhibit hypothalamic IR, sug-
gesting that androgens may also promote IR by acting on 
the central nervous system [111]. In addition, increased 
leptin expression in the hypothalamus can aggravate 
obesity, and enhanced leptin secretion by adipocytes can 
further contribute to the induction of IR [48]. the two 
interact to cause metabolic disorders in PCOS.

Factors affecting insulin resistance in polycystic ovary 
syndrome
Epigenetic changes (DNA methylation, histone status, 
and miRNA expression) are involved in the regulation 
of IR in women with PCOS. A study identified 79 dif-
ferentially methylated genes in women who have PCOS 
with or without IR [112], and hypermethylation of the 
LAMIN gene promoter was associated with IR in PCOS 
[113]. MicroRNAs (miRNAs) are small non-coding RNA 
involved in the post-transcriptional regulation of genes. 
As regulators of gene expression, miRNAs are essen-
tial genes involved in the control of androgen synthesis, 
inflammation, adipogenesis, and signalling [114]. There 
are significant differences in miRNA expression levels 
between women with PCOS and healthy women [114]. 
Studies have shown that microRNAs secreted into the 
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circulation by adipocyte exosomes and adipose tissue 
macrophages affect the PI3K/Akt-GLUT4 signalling 
pathway [115]. Mir-155-5p and related target genes of 
PCOS are concentrated in the insulin-sensitive pathway 
of the ovary, and Mir-222 is also positively correlated 
with serum insulin levels, suggesting their potential value 
as biomarkers of PCOS [115].

Insulin sensitivity can also be negatively affected by 
changes in diet, the environment, and mood. Recent 
studies suggest that an imbalance of intestinal flora and 
abnormal levels of metabolites produced by bacteria 
in individuals with may lead to insulin receptor signal-
ling deficiency, leading to IR by causing immune system 
dysfunction, the development of chronic low-grade 
inflammation, and the enhancement of proinflammatory 
cytokine synthesis [116]. Vitamin D deficiency can also 
affect insulin signalling in tissues by affecting intracel-
lular calcium regulation and exacerbating inflammatory 
responses [117, 118]. Melatonin is involved in regulating 
insulin secretion, and decreased melatonin secretion at 
night is associated with increased IR [119]. In addition, 
melatonin’s action is mediated by the melatonin recep-
tor (MTNR), and activation of the MTNR1B signalling 
pathway in pancreatic beta cells reduces insulin secretion 
[120–122]. A meta-analysis also showed that MTNR1B 
RS1083096 and RS2119882 are involved in the pathogen-
esis of IR in Chinese women with PCOS [123]. Advanced 
glycation end products alter cellular translocation of 
insulin intracellular signalling and glucose transporters in 
PCOS through a variety of mechanisms, leading to tissue 
IR [124]. The endocrine disruptor bisphenol A also dis-
rupts glucolipid metabolism and induces IR in PCOS by 
altering insulin secretion, adipocyte differentiation, and 
adipokine secretion [125]. In addition, chronic stress can 
trigger the release of cortisol from the hypothalamic–
pituitary–adrenal axis, which can stimulate visceral fat 
accumulation, gluconeogenesis, and lipolysis, leading to 
IR [126, 127].

Diagnosis and evaluation of insulin resistance 
in polycystic ovary syndrome
The glucose clamp technique is the ‘gold standard’ for eval-
uating metabolic insulin resistance in vivo. The amount of 
glucose injected in the steady state was equal to the amount 
of glucose absorbed by the peripheral tissue, which can 
be used to measure peripheral sensitivity to insulin [128]. 
Minimal model analysis using a frequently sampled intrave-
nous glucose tolerance test (FSIGT) is an alternative to the 
simplified clamp procedure for assessing insulin secretion 
in insulin sensitivity experiments [129]. However, both the 
clamp test and FSIGT are complex, time-consuming, and 
expensive sampling procedures that are unsuitable for clini-
cal practice. In recent years, clinical practice has developed 

many simple, cheap, and effective alternative quantitative 
indicators, such as BMI, waist circumference, waist-to-hip 
ratio, wrist circumference [130]and other anthropometric 
markers; fasting insulin, oral glucose tolerance test (OGTT), 
glucose/insulin ratio (G/I), homoeostasis model assess-
ment of insulin resistance (HOMA-IR), quantitative insu-
lin sensitivity test index (QUICKI) [131], lipid/lipoprotein 
ratio [132–134]and other biomarkers. These indices are 
reasonably correlated with each other and with the gold 
standard clamp technique. HOMA-IR is currently the best 
and most widely validated marker, but the cut-off point for 
the diagnosis of PCOS-IR is still not universally accepted 
[135]. Studies suggest that a more complex evaluation of 
the decrease in insulin sensitivity as a continuous variable is 
required in clinical practice [10]. In addition, owing to the 
strong association between inflammation and IR, inflamma-
tory markers such as interleukin-6 (IL-6) [136] and ferritin 
[137] are becoming increasingly popular in the evaluation 
of IR, while cytokines such as leptin [138] and adiponectin 
[139] have also been proposed as new IR markers. However, 
conflicting data limit their use in clinical settings, and more 
studies are needed to clarify their suitability as IR markers in 
patients with PCOS [140].

Treatment of insulin resistance in polycystic ovary 
syndrome
Lifestyle change
Guidelines recommend that once women are diagnosed 
with PCOS and have decreased insulin sensitivity, they 
should make lifestyle changes and start insulin sensitiv-
ity treatment immediately, even if there are no signifi-
cant changes in glucose tolerance [141]. The first step in 
managing IR is lifestyle change, which is the cornerstone 
of improving multiple endocrine and metabolic disor-
ders in women with PCOS [142] and can be achieved 
through appropriate diet and exercise recommendations 
[143]. Studies on the relationship between caloric intake 
and expenditure in women with PCOS have been incon-
sistent, with preliminary data suggesting that the diets 
of women with PCOS tend to be high in carbohydrates 
and fat [144], with decreased satiety and increased sweet 
cravings [145]. Calorie-restricted diets may be the best 
option for reducing IR and improving body composition 
[146]. Studies have shown that the Mediterranean diet—
which emphasizes a high intake of vegetables, fruits, sea-
food, legumes, and nuts; whole grains as staple foods; 
and the promotion of vegetable oils—combined with a 
low-carbohydrate regimen improves endocrine disorders 
and menstrual cycles in overweight patients with PCOS 
[147]. International evidence-based guidelines recom-
mend that all women with PCOS, especially those who 
are overweight or obese, engage in at least 150  min of 
aerobic exercise per week, including more than 90 min of 
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vigorous exercise [148]. There have been conflicting con-
clusions regarding the efficacy of the choice of optimal 
exercise mode in improving insulin sensitivity in women 
with PCOS. The heterogeneity of PCOS necessitates indi-
vidualization of treatment options, and it appears that 
exercise combined with additional dietary/drug interven-
tion is better for improving insulin sensitivity than either 
intervention alone [149–151].

Sleep deprivation is associated with an increased risk of 
IR, obesity, and T2DM in women with PCOS; therefore, 
sleep management should also be part of lifestyle change 
in women with PCOS [152]. Ensuring adequate, high-
quality sleep can be an important initial change in women 
with PCOS. Since IR is strongly and independently asso-
ciated with depression in PCOS, lifestyle interventions 
should be supported by mental health professionals who 
can provide appropriate psychological care for women 
with PCOS [25]. PCOS treatment is a long-term process, 
and diet and physical exercise require high self-discipline, 
are time-consuming, and are prone to relapse. Targeting 
IR is an effective strategy for treating PCOS. Clinical and 
experimental studies in recent years have explored sev-
eral promising new therapies for improving IR in women 
with PCOS. Common pharmacological approaches for 
reducing IR in women with PCOS are outlined in the 
chart below (Table 1).

Insulin sensitization therapy
Metformin
Metformin, the most widely used insulin sensitizer for 
PCOS, reduces hepatic glucose production, inhibits glu-
coneogenesis and adipogenesis, improves peripheral tis-
sue sensitivity to insulin, and prevents excessive insulin 
activity in the ovary [153]. Numerous studies have shown 
that metformin not only reduces weight and metabolic 
disorders but also corrects menstrual patterns, restores 
ovulation, and even improves chances of pregnancy 
[154]. Evidence-based guidelines recommend the use 
of metformin in obese, insulin-resistant women with 
PCOS to manage weight and endocrine and metabolic 
disorders, in conjunction with lifestyle adjustments [155, 
156]. Metformin improves insulin sensitivity, alleviates 
metabolic disorders, and ameliorates polycystic symp-
toms in mice with PCOS by increasing the translocation 
of the glucose transporters GLUT1 and GLUT4 to cell 
membranes [157], activating the AMPK signalling path-
way [158], and reconstructing the role of endogenous 
insulin-sensitizing molecules, such as adiponectin, in 
endometrial tissues under pathological conditions [159]. 
However, metformin use may be limited by gastrointesti-
nal side effects [160].

Thiazolidinediones
Thiazolidinediones (TZDs) and peroxisome proliferator-
activated receptor γ (PPAR-γ) agonists are true insulin 
sensitizers. PPAR-γ is a nuclear receptor that enhances 
insulin activity through a post-insulin receptor mecha-
nism, primarily by improving insulin sensitivity in the 
adipose tissue and skeletal muscle [213]. TZDs can be 
used as alternative drug therapy for PCOS-related met-
abolic and reproductive abnormalities in women who 
cannot tolerate or respond poorly to metformin [161, 
162, 213]. TZDs are effective as treatments for HI and IR 
in both lean and obese women with PCOS as well as in 
improving abnormal glucose tolerance, hyperandroge-
naemia, and ovulation disorders in women with PCOS. 
Several studies and our mesh meta-analysis suggest that 
TZDs improve IR and dyslipidaemia in PCOS more than 
metformin does [163, 214, 215]. In addition, the combi-
nation of metformin and TZDs has a synergistic effect in 
the treatment of women with PCOS, conferring greater 
improvement in IR and menstrual frequency in PCOS 
than metformin alone [215]. Women with dyslipidae-
mia and PCOS may also consider rosiglitazone alone or 
in combination with low-dose metformin and lifestyle 
changes [119]. Compared to trioglitazone and rosiglita-
zone, pioglitazone shows a higher affinity for the specific 
receptor PPAR-γ, has more effective insulin sensitization 
and lower hepatotoxicity, but does not promote weight 
loss [109].

New antidiabetic drugs
Many new antidiabetic drugs have shown positive effects 
in the treatment of PCOS. Glucagon-like peptide-1 ana-
logues (GLP-1RAs) mimic the incretin secreted by the 
distal small intestine, bind to insulin receptors on beta 
cells, stimulate insulin secretion, reduce glucagon secre-
tion, inhibit hunger centres, and delay gastric emptying. 
They also exhibit anti-inflammatory properties [216, 
217]. Recent studies have shown that GLP-1RAs therapy 
has excellent therapeutic effects in improving hyperan-
drogenaemia, increasing menstrual frequency, reducing 
manifestations of metabolic disorders such as obesity and 
IR, and reducing long-term cardiovascular risk in obese 
women with PCOS [164, 166]. The combination of GLP-
1RAs and metformin appears to be superior to any single 
agent in reducing body weight, hyperandrogenaemia, IR, 
and ovulation disorders in women with PCOS and may 
even improve metabolic outcomes in women who pre-
viously had an inadequate response to metformin [162, 
217]. However, most GLP-1RAs are administered sub-
cutaneously. Simultaneously, correct administration of 
medication is crucial to reduce the occurrence of adverse 
reactions [164, 165, 167, 168, 218]. Sitagliptin, a DPP-4 
inhibitor, enhances early insulin secretion by reducing 
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Table 1 Common pharmacological approaches for reducing IR in women with PCOS

Category Generic Name Ref Mechanisms for 
improving insulin 
sensitivity

Common Side Effects Contraindications

Biguanides Metformin  [153–160] ↓gluconeogenesis ↓intesti-
nal absorption ↓lipogenesis

gastrointestinal side effects 
(nausea, vomiting, diarrhea)

creatinine clearance < 40 mL/
min

↑glucose uptake ↑insulin 
receptor activity

headache

TZDs Pioglitazone  [161, 162] ↓lipidosis ↓fatty acid 
release ↓disruption of 
insulin activity by TNF α

upper respiratory tract 
infection、headache、myalgia

congestive heart failure

Rosiglitazone  [163] ↑ target cell response to 
insulin ↑PPAR-γ transcrip-
tion

peripheral edema peripheral edema

GLP-1RAs Liraglutide  [164, 165] ↑ glucose-dependent insu-
lin secretion↑ lipolysis

nausea, vomiting patients with a personal or 
family history of MTC

Exenatide  [166, 167] ↓ body weight↓ lipogen-
esis

injection site reaction multiple endocrine neoplasia 
syndrome type 2

Semaglutide  [168] ↓oxidative stress ↓inflam-
matory response ↓Er stress

↑heart rate、hypoglycemia、headache

DPP-4 inhibitor Sitagliptin  [169] ↓ DPP-4 enzyme upper respiratory tract infection angioedema

↑ incretin levels↑ insulin 
synthesis by pancreatic 
beta cells

nasopharyngitis、headache

SGLT1/2is Dapagliflozin  [170] ↓ reabsorption of glucose 
from renal tubules ↓renal 
threshold for glucose

increased urination、Female 
genital mycotic infections

severe renal impairment

Empagliflozin  [171] ↓glucose toxicity and lipo-
toxicity ↓oxidative stress 
↓inflammation

Linagliptin  [172] ↑ beta cell efficiency↑ 
caloric disposition ↑weight 
loss

Canagliflozin  [173] ↓ intestinal glucose 
reabsorption↑ secretion of 
incretin

mild diarrhea and nausea, 
urinary tract infection, Female 
genital mycotic infections

Weight loss intervention Orlistat  [174, 175] ↓ fat absorption ↓body 
weight ↓ gastric and pan-
creatic lipases

flatulence, steatorrhea, diarrhea, 
increased stool frequency

acute or chronic cholecystitis

↓hydrolysis of dietary 
triglycerides to absorbable 
fatty acids

oily stool, fecal urgency obstructive bowel disease

Bariatric surgery  [176–179] ↑endogenous secretion of 
incretin and GLP-1

secondary 
hyperparathyroidism、gastric 
erosion

severe heart 
failure、coronary artery 
disease、esophageal varices

↓ caloric intake by mechan-
ically limiting food intake

Long term hypovitaminosis, 
increased bone fracture

stomach or esophageal 
ulcer、cirrhosis with portal 
hypertension
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incretin and GLP-1 degradation, reduces peak glucose 
after oral glucose intake in overweight women with 
PCOS, and improves visceral obesity [169].

Sodium-glucose cotransporter type 1 and type 2 
inhibitors (SGLT1/2is) play important roles in glucose 
homoeostasis by reducing HI and improving IR by act-
ing on glucose (heavy) absorption in the gut and kidney, 
respectively [219]. Although the mechanism of action 
of SGLT1/2is in PCOS has not been fully investigated, 
weight loss and HI, improved IR and glucose metabo-
lism, and cardioprotective effects are beneficial in PCOS, 
suggesting that SGLT1/2is may be a novel treatment 
option [170–172]. In clinical trials, the SGLT2 inhibitor 
canagliflozin was not inferior to metformin in reducing 
HOMA-IR, and canagliflozin also significantly improved 
menstruation and body weight and reduced triglyceride 
levels, suggesting that it should be considered an effective 
treatment for patients with PCOS and IR [173]. Urinary 

symptoms are major adverse events associated with 
SGLT2 inhibitors, and more large-scale randomized con-
trolled trials are expected to be published in the future to 
explore their therapeutic potential for PCOS [220].

Natural molecules and dietary supplements
Inositol is a compound with nine forms (sugar alcohols), 
of which inositol (MI) and d-chiral inositol (DCI) are the 
most abundant forms present in humans, playing impor-
tant biological roles in mediating various effects of insu-
lin. Several scientific studies have confirmed that it has 
excellent insulin sensitization efficiency in women with 
PCOS and promotes ovulation [180]. Given that inositol 
administration is safe and effective in ameliorating the 
reproduction and metabolism of patients with PCOS, it 
may be used not only as a treatment for infertile women 
but also as a preventive treatment during pregnancy 
[180–183]. Appropriate application of MI and a suitable 

Table 1 (continued)

Category Generic Name Ref Mechanisms for 
improving insulin 
sensitivity

Common Side Effects Contraindications

Supplements Inositol  [180–185] metabolic regulator ↑glu-
cose uptake ↑glycogen 
synthesis and storage

not available not available

Alpha-lipoic acid  [186] anti-inflammatory, anti-
oxidant

not available not available

Omega-3  [187] antioxidant、anti-
inflammatory、anti-obesity 
↑adiponectin

mild gastrointestinal distress, 
gas, nausea, diarrhea and 
headache

not available

Coenzyme Q10  [188–190] antioxidant, ↑glucose 
uptake

gastrointestinal distress not available

Vitamin E  [191, 192] antioxidant nausea, headache, blurred 
vision

not available

Probiotics  [193–195] ↓inflammation, regulate 
intestinal flora and immune 
responses

not available not available

Carnitine  [196–199] antioxidant, improves the β 
oxidation of fatty acids

not available not available

TCM Berberine  [200–202] ↑AMPK↑PI3K/Akt/GSK-
3β↓MAPK ↓ lipogenesis 
↑lipid consumption↑ anti-
oxidase activity

gastrointestinal discomfort, 
constipation, mild abdominal 
pain, anorexia

not available

Plant polysaccharides  [203, 204] ↑serum adiponectin, 
antioxidant

not available not available

Crocin  [205, 206] anti-inflammatory; antioxi-
dant ↑Glucose uptake

not available not available

Hehuan Yin decoction  [207] ↑PI3K/Akt/GSK-3β not available not available

Acupuncture  [208–212] ↑GLUT4↑glucose uptake slight bleeding at the acupunc-
ture site

not available

Abbreviations: PCOS polycystic ovary syndrome, IR insulin resistance, Ref reference, DPP-4 Dipeptidyl peptidase 4, GLP-1 Glucose-like peptide 1, GLUT4 Glucose 
transporter 4, PI3K phosphatidylinositol 3-kinase, GSK glycogen synthase kinase, MAPK mitogen-activated protein kinase, AMPK Adenosine Monophosphate Activated 
Protein Kinase, MTC Medullary thyroid carcinoma, Er endoplasmic reticulum, TZDs Thiazolidinediones, SGLT1/2is Sodium-glucose cotransporter type 1 and type 2 
inhibitors, GLP-1RAs Glucagon-like peptide-1 analogues
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proportion of DCI improves the health of organs and tis-
sues, while long-term high-dose DCI monotherapy in 
women with PCOS has a negative impact [184]. There-
fore, inositol treatment should be evaluated according to 
the specific situation and needs of patients, while its opti-
mal ratio still needs to be further clarified and supported 
by large-scale clinical trials and pharmacokinetic studies 
to better adjust supplement doses [185].

Alpha-lipoic acid [186] and omega-3 fatty acids are two 
supplements that improve lipid and insulin sensitivity in 
women through their anti-inflammatory and antioxidant 
properties, although omega-3 fatty acids are high in calo-
ries [187]. Studies suggest that coenzyme Q10 has ben-
eficial effects on glucose and lipid metabolism, insulin, 
HOMA-IR, and total testosterone levels in women with 
PCOS and can also improve ovarian function [188–190]. 
Vitamin E combined with coenzyme Q10 can improve 
IR and serum SHBG levels in PCOS [191, 192]. Supple-
mentation with probiotics, prebiotics, and synbiotics in 
women with PCOS can improve IR, protect the intesti-
nal barrier, and regulate the immune system, lipid pro-
file, and other metabolic disorders [193, 194]. Recent 
studies have also found that a high-fibre diet consisting 
of whole grains, traditional Chinese medicinal foods, 
and prebiotics combined with the α-glucosidase inhibi-
tor acarbose improved reproductive endocrine disorders, 
HI, and IR in women with PCOS compared with a high-
fibre diet alone [195]. Animal studies have shown that 
aloe gel extract can act as a potential metabolic regulator 
of PCOS by controlling glucose homoeostasis, improv-
ing insulin secretion, and enhancing insulin-mediated 
glucose uptake to reduce glucose tolerance [221, 222]. 
Clinical trials have also shown that l-carnitine supple-
mentation effectively improves PCOS-IR by improving 
fatty acid β-oxidation and carbohydrate metabolism [194, 
195, 221]. A recent trial showed that metformin com-
bined with pioglitazone and acetylcarnitine improved 
IR and ovulation in women with PCOS more than met-
formin plus pioglitazone [199].

Traditional Chinese medicine
Traditional Chinese medicine (TCM) is often an impor-
tant complement to modern Western medicine. Com-
pounds isolated from Chinese herbs are particularly 
beneficial in improving metabolic disorders. Berberine 
(BBR) is an alkaloid that can relieve IR and treat PCOS by 
acting on a variety of insulin signalling pathways, includ-
ing PPAR, MAPK, and AMPK. In recent years, it has 
been regarded as a safe and effective insulin sensitizer, 
although clinical data are lacking. BBR in combination 
with metformin appears to improve insulin sensitivity 
more [200–202]. Plant polysaccharides have many differ-
ent pharmacological effects, and Dendrobium officinale 

has been shown to be effective in alleviating IR in PCOS 
[203]. Astragalus polysaccharides may improve insulin 
sensitivity in PCOS model rats by upregulating serum 
adiponectin levels and it may play an important role in 
the treatment of IR [204]. In clinical trial studies, saffron 
had a significant protective effect on FBG, HOMA-IR, 
and inflammatory levels of women with PCOS [205, 206]. 
Pharmacological studies have also found that hehuan yin 
tang and yijing tang, as key components of various TCM 
prescriptions, can regulate androgen and insulin levels 
and improve PCOS-IR symptoms through various phar-
macological pathways [207, 223].

Acupoint application was also effective in improving 
metabolism and IR in obese women with PCOS [205, 
224]. Acupuncture is an important component of TCM. 
Systematic evaluation and some studies have shown 
that electroacupuncture may increase systemic glucose 
uptake and improve insulin sensitivity by activating the 
PCOS sympathetic nervous system and part of the para-
sympathetic nervous system [208–211], but it may not be 
as effective as metformin in improving insulin sensitivity 
in women with PCOS [212]. More large-sample clinical 
trials are needed to explore TCM as a potential treatment 
option for PCOS.

Conclusion
In general, women with PCOS develop IR owing to 
abnormal insulin signalling and metabolic dysfunction 
in insulin-responsive tissues, with a high incidence of 
IR in PCOS and a significant negative impact on health. 
Here, we discuss the molecular mechanisms, diagnosis, 
and protocol of IR-based PCOS. The pathogenesis of IR 
in PCOS is not completely clear, and apparently includes 
genetic and epigenetic changes, deficiency of insulin 
signal transduction, hyperandrogenaemia, obesity, and 
inflammation. IR in different PCOS tissues can selectively 
affect metabolic or mitotic pathways in many tissues, 
including the ovaries. Therefore, effective prevention and 
treatment options should be evaluated to improve IR in 
PCOS patients. Lifestyle interventions and insulin sensi-
tization therapy can be effective strategies for improving 
insulin sensitivity, while increasing ovulation and reduc-
ing androgen levels. Among all of the insulin sensitizers, 
metformin is the most widely used in PCOS. However, 
all mentioned drugs for PCOS are still off-label and fur-
ther studies with larger sample sizes are needed to evalu-
ate the efficacy of these new treatments and provide new 
insights into the molecular mechanisms of IR in PCOS. 
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