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Abstract 

Background Ovarian cancer (OC) is one of the most life-threatening cancers affecting women worldwide. Recent 
studies have shown that the DNA methylation state can be used in the diagnosis, treatment and prognosis prediction 
of diseases. Meanwhile, it has been reported that the DNA methylation state can affect the function of immune cells. 
However, whether DNA methylation-related genes can be used for prognosis and immune response prediction in OC 
remains unclear.

Methods In this study, DNA methylation-related genes in OC were identified by an integrated analysis of DNA meth-
ylation and transcriptome data. Prognostic values of the DNA methylation-related genes were investigated through 
least absolute shrinkage and selection operator (LASSO) and Cox progression analyses. Immune characteristics were 
investigated by CIBERSORT, correlation analysis and weighted gene co-expression network analysis (WGCNA).

Results Twelve prognostic genes (CA2, CD3G, HABP2, KCTD14, PI3, SERPINB5, SLAMF7, SLC9A2, STC2, TBP, TREML2 
and TRIM27) were identified and a risk score signature and a nomogram based on prognostic genes and clinicopatho-
logical features were constructed for the survival prediction of OC patients in the training and two validation cohorts. 
Subsequently, the differences in the immune landscape between the high- and low-risk score groups were systemati-
cally investigated.

Conclusions Taken together, our study explored a novel efficient risk score signature and a nomogram for the sur-
vival prediction of OC patients. In addition, the differences of the immune characteristics between the two risk groups 
were clarified preliminarily, which will guide the further exploration of synergistic targets to improve the efficacy of 
immunotherapy in OC patients.
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Introduction
Ovarian cancer (OC) is one of the most lethal malig-
nant tumors affecting women. The incidence rate is 
third among gynecologic cancers, but the mortality 
rate is the highest in women around the world [1]. At 
present, the major treatment of OC is to add mainte-
nance treatment, such as inhibitors against poly ADP-
ribose polymerase (PARP) molecules combined with 

*Correspondence:
Jie Fu
fujie2016@csu.edu.cn
Xiaoling Fang
fxlfxl0510@csu.edu.cn
1 Department of Obstetrics and Gynecology, The Second Xiangya 
Hospital of Central South University, Changsha 410011, Hunan, China
2 Department of General Surgery, The Second Xiangya Hospital of Central 
South University, Changsha 410011, Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-023-01142-0&domain=pdf


Page 2 of 14Wang et al. Journal of Ovarian Research           (2023) 16:62 

bevacizumab for high-grade OC, after debulking sur-
gery and platinum-based chemotherapy [2–5]. How-
ever, the curative effect is still unsatisfactory due to 
occult onset and no obvious early symptoms [4]. There-
fore, it is urgent to clearly clarify the pathogenesis of 
OC and find more sensitive prognostic indicators, as 
well as more effective treatment methods.

DNA methylation, one of the most prevalent types 
of epigenetic modifications, has been shown to play 
important roles in a variety of physiological and patho-
logical processes, including benign and malignant ovar-
ian diseases [6–8]. Recently, it has been reported that 
DNA methylation status, as well as DNA methylation-
related genes, can be used in the diagnosis, treatment 
and prognosis of diseases [9–11]. Meanwhile, DNA 
methylation probes or methylation-related genes have 
also been reported for the prognostic assessment of OC 
[12, 13]. However, the predictive efficacy of these meth-
ylation related models is not particularly accurate, and 
it is not clear whether there are other values in addition 
to the prognostic value.

Immunotherapy is a promising therapeutic method 
for the treatment of a variety of tumors [14]. For exam-
ple, immune checkpoint inhibitors have shown good 
efficacy in the treatment of lymphoma and non-small-
cell lung cancer (NSCLC) [15, 16], and immune check-
point inhibitors combined with angiogenesis inhibitors 
and other molecular targeted drugs have also shown 
good efficacy in liver cancer and melanoma [17, 18]. 
Meanwhile, chimeric antigen receptor-T (CAR-T) 
cell immunotherapy has also shown impressive cura-
tive  effects for hematologic malignancies [19]. Never-
theless, the efficacy of immunotherapy for OC remains 
limited [20, 21].

Recently, it has been reported that the DNA meth-
ylation state can affect the function of immune cells and 
their response to immunotherapy in some tumors [22–
25]. Furthermore, it has also been reported that the effi-
cacy of immunotherapy can be enhanced by intervening 
in the level of DNA methylation [26, 27]. However, the 
relationship between DNA methylation and immune 
cells in OC remains largely unknown.

In this study, a risk score signature was constructed 
based on 12 genes that were significantly associated with 
the prognosis of OC patients by systematically analyzing 
DNA methylation data and transcriptome data. Next, a 
nomogram combining the risk score and clinicopatho-
logical features was constructed for prognosis predic-
tion. Subsequently, we determined the difference in the 
immune characteristics between the high- and low-risk 
groups through comprehensive immune analysis, which 
will guide the further exploration of synergistic targets to 
improve the efficacy of immunotherapy in OC patients.

Material and methods
Data acquisition and processing of the training cohort
TCGA ovarian serous cystadenocarcinoma gene expres-
sion data was measured by AffyU133a array (GPL96, 
n = 593), as well as the corresponding DNA methylation 
data (Infinium HumanMethylation27 platform, n = 616), 
were both downloaded from UCSC Xena (https:// xena. 
ucsc. edu/) as the training cohort. After intersection anal-
ysis, 575 samples (including 567 primary tumor samples 
and 8 normal (non-tumor) ovarian samples) with both 
DNA methylation data and expression data were selected. 
For DNA methylation data, 21,676 probes without “NA” 
results across all the enrolled samples remained. Next, 
differentially methylated probes between tumor and non-
tumor samples were identified by the “limma” package in 
R software [28]. Subsequently, Pearson correlation analy-
sis between DNA methylation data and expression data 
of OC was conducted, and genes with a negative corre-
lation between expression levels and methylation levels 
were identified as DNA methylation-related genes. All 
methods were carried out in accordance with the Decla-
ration of Helsinki guidelines.

Functional enrichment analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses of 
the DNA methylation-related genes were conducted by 
the “clusterProfiler” package [29].

Acquisition and processing of the clinicopathological 
features
The clinical data of the OC patients from the training 
cohort were downloaded from the cBioPortal (https:// 
www. cbiop ortal. org/). A total of 484 patients with com-
plete clinicopathological data (including age, stage, his-
tological grade, longest dimension, tumor site, race and 
survival data) and overall survival (OS) time greater than 
one month were selected for further analysis. All of the 
clinicopathological features were divided into two cat-
egories: age (≥ 60 y, < 60 y), stage (stage I-II, stage III-IV), 
histological grade (G1-G2, G3-G4), longest dimension 
(≥ 1 cm, < 1 cm), tumor site (unilateral, bilateral) and race 
(white, non-white). The clinicopathological features of 
TCGA-OC patients are summarized in Table S1.

Screening of the prognostic DNA methylation‑related 
genes and the construction of risk score signature
Prognostic values of these DNA methylation-related 
genes were evaluated by least absolute shrinkage and 
selection operator (LASSO) method using the “glmnet” 
package with “nfold = 10” [30], “lambda.min” was used 
to screen prognostic genes. Next, the prognostic genes 
were further screened by univariate and multivariate 
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Cox methods (Table S2), and then the risk score signa-
ture was constructed according to the most prognostic 
genes (P < 0.05) and their corresponding risk coefficients 
calculated by Cox analyses (Table S3). Subsequently, 
the prognostic value of the signature was evaluated by 
Kaplan–Meier plotter curve and receiver operating char-
acteristic curve (ROC) analyses, which were performed 
by the “survival”, “survminer” and “timeROC” packages 
[31].

External validation of the prognostic value of the risk score 
signature
Microarray data and the corresponding survival data of 
OC patients from the GSE9891 (n = 276) and GSE32062 
(n = 260) datasets were downloaded from the GEO data-
base (https:// www. ncbi. nlm. nih. gov/ geo/) as validation 
cohorts [32, 33]. The prognostic values of the risk score 
signature was further validated by these two GEO data-
sets by Kaplan–Meier plotter analysis.

Evaluation of the prognostic values 
of the clinicopathological features
To further investigate the prognostic values of the clin-
icopathological features in OC patients, univariate and 
multivariate Cox regression analyses were performed. 
As a result, significant prognostic clinicopathological 
features combined with the risk score were used for the 
construction of the nomogram by the “rms” package in 
R software. Clinical subgroup analysis was performed by 
the “forestplot” package in R software.

Gene set enrichment analysis (GSEA) and immune analysis
GSEA was performed between the high- and low-
risk groups of OC patients in the training cohort using 
the “clusterProfiler” package. Immune cell component 
analysis was conducted by CIBERSORT, while immune 
scores and tumor purity were calculated by the “esti-
mate” package [34]. Potential drugs targeting the prog-
nostic genes were screened preliminarily by CellMiner, 
a web tool based on the NCI-60 cell line set(38). Sub-
sequently, functional modules in the two groups were 
identified by weighted gene co-expression network 
analysis (WGCNA) through integrated analysis of tran-
scriptome data and immune cell abundances data [35]. 
Next, interactions between immune cells and functional 
modules were evaluated by correlation analysis. Before 
integrated analysis, immune cells expressed as “0” were 
removed, and the other 15 immune cells (memory B 
cells, plasma cells, memory resting CD4 T cells, follicu-
lar helper T cells, regulatory T cells, gamma delta T cells, 
activated NK cells, monocytes, M0 macrophages, M1 
macrophages, M2 macrophages, resting dendritic cells, 

activated dendritic cells, activated mast cells and neutro-
phils) were left for further WGCNA.

Quantitative real‑time PCR (qPCR)
Six pairs of OC tumor tissues and corresponding peri-
tumor tissues were collected from the Department of 
Obstetrics and Gynecology, The Second Xiangya Hos-
pital of Central South University. All experiments per-
formed in this study involving human samples were 
approved by the Clinical Research Ethics Committee of 
the Second Xiangya Hospital, Central South University. 
All patients have signed informed consent in accordance 
with the Declaration of Helsinki guidelines. Total RNA 
was extracted from OC tumor tissues and corresponding 
peri-tumor tissues using RNAiso Plus Reagent (TaKaRa, 
Kyoto, Japan) according to the manufacturer’s instruc-
tion. The detailed procedures of qPCR were conducted 
as previously described [36]. Specific primers used in 
this study were synthesized by Tsingke (Beijing, China). 
GAPDH were used as internal controls. Relative expres-
sion levels of each gene were calculated according to the 
 2−△Ct method. The primer sequences are listed in Table 
S4.

Immunohistochemistry (IHC) staining
Ovarian cancer tissues and corresponding peri-tumor 
tissues were fixed in 10% formalin and embedded in par-
affin blocks, then cut into sections. The detailed proce-
dures of IHC were conducted as previously described 
[36]. At the end of the first day, tissue sections were incu-
bated with primary antibody against CA2 (1:100, Pro-
teintech, 16,961–1-AP) at 4 ℃ overnight.

Statistical analysis
Statistical analysis was performed by R (version 4.1.0). 
Log-rank test was used for survival analyses. The con-
tinuous variables between the two groups were compared 
by t-test. Subgroup analysis was displayed as forest plots. 
Hazard ratios (HRs), 95% confidence intervals (CIs) and 
P-values were calculated by univariate Cox proportional 
hazards models of each subgroup. P < 0.05 was consid-
ered statistically significant.

Results
Identification of DNA methylation‑related genes
The analysis flowchart of this study is shown in Fig. 1. By 
comparing 567 tumor samples with 8 non-tumor sam-
ples, 3190 differentially methylated probes (P < 0.05) were 
identified (Fig.  2A). Next, correlation analysis was con-
ducted between DNA methylation data and expression 
profile data, and significant gene-probe pairs (correlation 
coefficient < 0 and P < 0.05) were selected to intersect with 
the previously screened differential methylation probes. 
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Finally, 715 genes negatively correlated with methylation 
level were identified as methylation-related genes.

Functional enrichment analysis
To further clarify the functional roles of the 715 methyl-
ation-related genes, enrichment analysis was conducted. 
The biological process (BP) results were mainly enriched 
in response to tumor necrosis factor, monosaccharide 
metabolic process, regulation of leukocyte differentia-
tion, tumor necrosis factor-mediated signaling pathway, 
etc. (Fig. 2B). The cellular component (CC) results were 
mainly enriched in the apical part of the cell, apical 
plasma membrane, secretory granule lumen, cytoplasmic 
vesicle lumen, etc. (Fig.  2C). Molecular function (MF) 
was mainly enriched in transcription coregulator activ-
ity, enzyme inhibitor activity, peptidase regulator activity, 
symporter activity, etc. (Fig. 2D). For KEGG analysis, the 
results were enriched in transcriptional mis-regulation in 

cancer, AMPK signaling pathway, glycolysis, gluconeo-
genesis, p53 signaling pathway, etc. (Fig. 2E). The KEGG 
module analysis results showed enrichment in glyco-
lysis, the pentose phosphate pathway, NAD biosynthesis, 
V-type ATPase, the glucuronate pathway, etc. (Fig. 2F).

Construction and evaluation of the prognostic risk score 
signature
Through LASSO screening of the 715 methylation-
related genes, 36 prognostic genes were selected (Fig. 3A, 
B). Correlation analysis between the expression level of 
these 36 genes and DNA methylation level is shown in 
Fig. S1. Subsequently, univariate and multivariate Cox 
regression analyses were conducted, and 12 prognostic 
genes were used to construct a risk score signature for 
prognosis prediction. The risk score was calculated as 
follow: expression level of CA2 × 0.1345479 + expres-
sion level of CD3G × (-0.2689675) + expression 

Fig. 1 Analysis flowchart of this study
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level of HABP2 × (-1.1382079) + expression level of 
KCTD14 × (-0.1530112) + expression level of PI3 × 0.1185228 + expres-
sion level of SERPINB5 × (-0.2308773) + expres-
sion level of SLAMF7 × (-0.3947159) + expression 
level of SLC9A2 × 0.3721432 + expression level of 
STC2 × (-0.3173046) + expression level of TBP × 0.6366898 + expression 

level of TREML2 × (-1.2285490) + expression level 
of TRIM27 × (-0.4467591). According to the median 
risk score, OC patients were divided into high-risk and 
low-risk groups. The survival status and expression lev-
els of the 12 prognostic genes between the two groups 
are presented in Fig. 3C and Fig. S2A. Next, we further 

Fig. 2 Identification and functional enrichment analysis of DNA methylation-related genes in OC. A Heatmap of differential methylation probes 
between tumor and non-tumor samples. The X axis represents samples (N = 8, T = 567), the Y axis represents methylation probes, the color legend 
represents methylation levels (β value). N: non-tumor, T: tumor. B Dot plot of biological process (BP) analysis. C Dot plot of cellular component (CC) 
analysis. D Dot plot of Molecular function (MF) analysis. E Dot plot of KEGG pathway analysis. F Dot plot of KEGG module analysis
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verified the expression status of these 12 genes between 
OC tissues and corresponding peri-tumor tissues of OC 
patients in our center through qPCR (Fig. S3A). And the 
expression status of the significantly overexpressed gene 
CA2 in the high-risk group and OC tissues was further 
validated by IHC at the protein level (Fig. S3B).

As revealed by the Kaplan–Meier plotter curve, the 
high-risk group had a significantly poorer prognosis than 
the low-risk group in the training cohort (Fig.  3D). The 
independent prognostic values of these 12 genes were 
further investigated and visualized in Fig. S2B-M. Sub-
sequently, the corresponding areas under the curves 
(AUCs) of the 1-, 3-, 5- and 7-year time-ROC curves 

were listed as 0.63, 0.74, 0.78 and 0.81, respectively 
(Fig. 3E), which indicates a good prognostic efficiency of 
this risk score signature. In addition, the red slope indi-
cates that the prediction accuracy of this model is gradu-
ally increasing from 1-year to 7-years (Fig. 3F).

Next, the prognostic efficiency of this risk score sig-
nature was further validated in two external validation 
cohorts (GSE9891 and GSE32062). According to the best 
cutoff value automatically calculated by the ROC method, 
patients in these two GEO datasets were also divided into 
high-risk and low-risk groups (Fig.  4A, B). As revealed 
by Kaplan–Meier plotter curves, the high-risk group also 
had a significantly poorer prognosis than the low-risk 

Fig. 3 Construction and efficiency validation of the risk score. A Fit plot of LASSO screen. B Cvfit plot of LASSO screen. C Survival status and 
expression levels of the 12 prognostic genes between the two risk groups. D Overall survival (OS) time was compared by Kaplan–Meier plotter 
curve between the two risk groups. E, F Time-ROC curves of 1-, 3-, 5- and 7-years. AUCs: areas under the curves
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group in these two validation cohorts (Fig. 4C, D), con-
sistent with the result of the training cohort.

Evaluation of the prognostic values 
of the clinicopathological features
To investigate the prognostic values of the clinicopatho-
logical features in OC patients, univariate Cox regression 

analysis was performed. Features with P < 0.05 (age and 
stage) were further analyzed by multivariate regression 
(Table S5). As a result, age (P < 0.05) combined with the 
risk score was used for the construction of the nomogram 
(Fig. 5A). The results of calibration curves confirmed its 
good efficiency for 1-, 3-, 5- and 7-year OS prediction 
(Fig.  5B-E). To further elucidate the differences in the 

Fig. 4 External validation of the value of the risk score for prognosis prediction. A, B Survival status and expression levels of the 12 prognostic 
genes between the two risk groups in the two validation cohorts (GSE9891 and GSE32062). C Overall survival (OS) time was compared by Kaplan–
Meier plotter curve between the two risk groups in GSE9891. D Overall survival (OS) time was compared by Kaplan–Meier plotter curve between 
the two risk groups in GSE32062
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prognostic impact of different clinical subgroups, sub-
group analysis was performed. As revealed in Fig.  6A, 
older patients (≥ 60 y) had a significantly poorer prog-
nosis than younger patients (< 60 y). The results of the 
expression levels of risk scores between different sub-
groups showed that patients in the high-level stage had 
significantly higher risk scores than those in the lower 
stage, while there were no significant differences among 
other clinical subgroups (Fig. 6B-G).

GSEA and immune analyses
To elucidate the functional differences between the high- 
and low-risk groups, GSEA was performed. According 
to the results, we found that there were significant dif-
ferences in immune characteristics between the two 
groups, such as the immune response mediated by cir-
culating immunoglobulin, primary immunodeficiency, 
immune receptor activity, adaptive immune response 
and immune response regulating signaling pathway 
(Fig. 7A-C). To further systematically explore the differ-
ence in the immune landscape between the two groups, 
immune cell components and immune scores were ana-
lyzed. The results showed that several immune cells were 

significantly differentially expressed between the two 
groups, including activated dendritic cells, neutrophils, 
plasma cells and resting memory CD4 T cells (Fig. S4A, 
B), while there were no significant differences in the 
ESTIMATE score, immune score, stomal score or tumor 
purity (Fig. S4C-F). Considering that the expression dif-
ference of most immune cells between the high- and 
low-risk groups is not significant, we speculate that the 
difference of immune characteristics revealed by GSEA 
results between the two groups may be realized by affect-
ing the integrated function of immune cells.

To address this hypothesis, correlation analysis was 
conducted. The results showed that the relationships 
between immune cells in the two groups were similar, 
some strong cell correlations existed in both the high- 
and low-risk groups, such as resting NK cells positively 
correlated with naive CD4 T cells and M0 macrophages 
negatively correlated with M2 macrophages (Fig. 7D, E). 
Furthermore, correlations between immune cells and risk 
score genes were analyzed in the two groups. The results 
suggested that SLAMF7 and CD3G were closely related 
to a series of immune cells (such as plasma cell, memory 
CD4 T cells, follicular helper T cells, regulatory T cells 

Fig. 5 Construction and evaluation of the nomogram. A Nomogram to predict the 1-, 3- and 5-year survival probability of OC. B-E The results of 
calibration curves for 1-, 3-, 5- and 7-year OS prediction. Blue line: fitting curve, diagonal dotted line: reference line, blue error bars: 95% confidence 
interval (CI)
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Fig. 6 Clinical subgroup analysis. A Forest plot of clinicopathological features. Whisker bars indicate hazard ratio and 95%CI compared with 
“reference” (control) group. Boxplot of the expression levels of the risk score among different clinical subgroups including (B) age, (C) stage, (D) 
histological grade, (E) longest dimension, (F) tumor site and (G) race. Boxes indicate lower and upper quartile, error bars indicate maximum and 
minimum values, while the points outside this range indicate outliers
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and gamma delta T cells) in both the high- and low-risk 
groups (Fig. 7F, G). However, there were also significant 
differences between the two groups in the correlation 

between some genes and immune cells, such as TBP with 
regulatory T cells in the high-risk group, as well as CA2 
with activated dendritic cells and SLC9A2 with naive B 

Fig. 7 GSEA, gene and immune cell correlation analysis. A-C Immune related GSEA results between the high- and low-risk groups. X axis represent 
ranks of genes in ordered dataset, and Y axis represents running enrichment score of genes. D Correlation between immune cells in the high-risk 
group. E Correlation between immune cells in the low-risk group. F Correlation between immune cells and risk score genes in the high-risk group. 
G Correlation between immune cells and risk score genes in the low-risk group
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cells in the low-risk group (Fig. 7F, G). These prognostic 
genes closely related with immune cells may be potential 
synergistic targets to affecting the function of immune 
cells, so as to improve the efficacy of immunotherapy 
in OC patients. To screen potential synergistic drugs to 
improve the efficacy of immunotherapy, potential drugs 
targeting these hub genes were investigated by CellMiner 
(Table S6).

Correlation between functional modules and immune cells
To further clarify the differences between the high- and 
low-risk groups, WGCNA was conducted. According to 
the results, we found that there were great differences 
in the distribution of expression modules between 
the two groups (Fig.  8A, B). Next, correlation analysis 
was conducted between the functional modules and 

immune cells in the two groups. We found that cor-
relations between immune cells and functional mod-
ules were also different between the two groups. For 
example, M1 macrophages were significantly positively 
correlated with green modules in the high-risk group, 
while gamma delta T cells and M1 macrophages were 
positively associated with turquoise modules in the 
low-risk group (Fig.  8C, D). In addition, some signifi-
cant correlations also existed in the two groups, such 
as follicular helper T cells and regulatory T cells were 
significantly negatively associated with turquoise mod-
ules (Fig. 8C, D). In this part, different functional mod-
ules are composed of different gene lists. The results 
of WGCNA further confirmed that the difference of 
immune characteristics between the two risk groups 
may be achieved by the integrated roles between genes 
and immune cells.

Fig. 8 WGCNA and module analysis. A The result of WGCNA in the high-risk group. B The result of WGCNA in the low-risk group. C Correlation 
between immune cells and functional modules in the high-risk group. D Correlation between immune cells and functional modules in the low-risk 
group
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Discussion
In recent years, the role of epigenetic modifications in 
the pathogenesis of diseases has been gradually clarified 
[37, 38]. As an important type of epigenetic modification, 
DNA methylation has been reported to participate in the 
process of disease occurrence, diagnosis, prognosis eval-
uation and treatment [10, 22, 39, 40]. In OC, DNA meth-
ylation also shows value in prognostic evaluation, but 
the prediction efficiency is not particularly accurate, and 
whether there are other values remains unclear [12, 13].

In this study, DNA methylation-related genes were 
identified by comprehensively analyzing the DNA meth-
ylation data and transcriptome data of OC patients. Next, 
a risk score signature for prognosis prediction was con-
structed based on the 12 prognostic genes (CA2, CD3G, 
HABP2, KCTD14, PI3, SERPINB5, SLAMF7, SLC9A2, 
STC2, TBP, TREML2 and TRIM27) screened by LASSO, 
as well as subsequent univariate and multivariate Cox 
analyses. After that, the prognostic value of this risk 
score signature was further validated in large samples by 
survival analysis in the training cohort (n = 484) and two 
validation cohorts, GSE9891 (n = 276) and GSE32062 
(n = 260). Furthermore, to comprehensively analyze the 
impact of the risk score and clinicopathological features 
on prognosis, a prognostic nomogram was constructed.

Among the 12 prognostic genes, there is no relevant 
research on CA2 (carbonic anhydrase II), CD3G, HABP2 
(hyaluronan binding protein 2), KCTD14 (potassium 
channel tetramerization domain containing 14), PI3 
(peptidase inhibitor 3), SERPINB5 (serpin peptidase 
inhibitor, ovalbumin member 5) and TREML2 (triggering 
receptor expressed on myeloid cells-like 2) in OC.

Except for these genes, SLAMF7 has been identified as 
a prognostic gene in OC combined with other noncod-
ing RNAs and genes [41]. SLC9A2 (solute carrier fam-
ily 9, member 2 of subfamily A) has been reported to be 
drug resistant in OC cell lines [42]. STC2 (stanniocalcin 
2) has been reported to participate in tumor proliferation 
in vitro and in vivo [43]. TBP (TATA box binding protein) 
has been reported to participate in the transcriptional 
regulation of OC [44]. TRIM27 (tripartite motif contain-
ing 27) has also been reported to exert roles in the cell 
proliferation and chemosensitivity of OC [45, 46]. How-
ever, the value of combined analysis of these genes in OC 
remains largely unknown.

Immunotherapy is a promising therapeutic method 
for a variety of tumors [14–16], but the response of OC 
patients to immunotherapy remains very limited [20, 
21]. Considering that it has been reported that the DNA 
methylation state can affect the function of immune cells 
and their response to immunotherapy [22–25], we sys-
tematically analyzed the relationship between the risk 
score signature constructed by the methylation-related 

genes and immune landscape. The GSEA results showed 
that there were significant differences in immune-related 
gene sets between the high- and low-risk score groups. 
Furthermore, the results of immune cell component 
analysis revealed that the proportions of some immune 
cells between the two groups were significantly different. 
According to the results of the correlation analysis, the 
correlation differences between immune cells and prog-
nostic genes and gene function modules were systemati-
cally identified between the two groups. Taken together, 
the differences of immune characteristics between the 
high- and low-risk groups had been confirmed by GSEA 
in this study. Reasons for these differences were prelimi-
narily elucidated by the results of immune cell compo-
nents analysis and correlation analyses. These prognostic 
genes may be potential synergistic targets to affecting the 
function of immune cells, so as to improve the efficacy of 
immunotherapy in OC patients.

There are still some limitations in our study. First, the 
risk score signature was constructed based on 12 genes 
quantified by microarray, which increases the difficulty 
of its clinical application. Second, how to improve the 
efficacy of immunotherapy according to the relation-
ships between DNA methylation-related genes and 
immune cells needs to be verified by further experimen-
tal research and clinical trials.

Conclusion
In summary, a novel efficient DNA methylation-related 
gene risk score signature and a prognostic nomogram 
were constructed in our study for the 1-, 3-, 5- and 7-year 
OS rate prediction of OC patients. In addition, the dif-
ference of immune characteristics between the high- and 
low-risk groups separated by the methylation-related 
risk score was reported for the first time in OC, which 
broadened our horizon of finding synergistic therapeutic 
targets to improve the efficacy of immunotherapy in the 
future.
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