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Abstract 

Background  There has been a recent discovery of a new type of cell death produced by copper-iron ions, called 
Cuproptosis (copper death). The purpose of this study was to identify LncRNA signatures associated with Cuproptosis 
in ovarian cancer that could be used as prognostic indicators.

Methods  RNA sequencing (RNA-seq) profiles with clinicopathological data from TCGA database were used to 
select prognostic CRLs and then constructed prognostic risk model using multivariate regression analysis and LASSO 
algorithms. An independent dataset from GEO database was used to validate the prognostic performance. Combined 
with clinical factors, we further constructed a prognostic nomogram. In addition, tumor immune microenvironment, 
somatic mutation and drug sensitivity were analyzed using ssGSEA, GSVA, ESTIMATE and CIBERSORT algorithms.

Result  A total of 129 CRLs were selected whose expression levels were significantly related to expression levels of 10 
cuproptosis-related genes. The univariate Cox regression analysis showed that 12 CRLs were associated with overall 
survival (OS). Using LASSO algorithms and multivariate regression analysis, we constructed a four-CRLs prognostic sig‑
nature in the training dataset. Patients in the training dataset could be classified into high- or low-risk subgroups with 
significantly different OS (log-rank p < 0.001). The prognostic performance was confirmed in TCGA-OC cohort (log-rank 
p < 0.001) and an independent GEO cohort (log-rank p = 0.023). Multivariate cox regression analysis proved the four-
CRLs signature was an independent prognostic factor for OC. Additionally, different risk subtypes showed significantly 
different levels of immune cells, signal pathways, and drug response.

Conclusion  We established a prognostic signature based on cuproptosis-related lncRNAs for OC patients, which will 
be of great value in predicting the prognosis patients and may provide a new perspective for research and individual‑
ized treatment.
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Introduction
Ovarian cancer (OC) is one of the most common malig-
nancies of the genital tract, with high mortality rates and 
a significant impact on the health of women worldwide 
[1]. More than 70% of OC patients were diagnosed at an 
advanced stage due to a lack of clinical characteristics 
and effective biomarkers during the early stage and there-
fore missed the opportunity to receive treatment [2, 3]. 
Although the development of treatment such as targeted 
therapy and immunotherapy, the 5-year overall survival 
is still less than 30% due to recurrence, drug resistance 
and curative uncertainty [4, 5]. Hence, it is imminent to 
find promising biomarkers for predicting prognosis and 
develop effective therapeutic strategies.

Programmed cell death (PCD) is an important biologi-
cal process during tissue homeostasis and animal devel-
opment [6]. Increasing evidence indicated that PCD 
such as apoptosis, ferroptosis, autophagy, and others 
plays vital roles in tumorigenesis, progression as well as 
metastasis [7–9]. A recent study published in the journal 
Science is first revealing cuproptosis, differs from previ-
ous PCDs in its special mechanism that excess intra-
cellular copper induces the aggregation of lipoylated 
dihydrolipoamide S-acetyltransferase (DLAT), which 
is related to the mitochondrial tricarboxylic acid (TCA) 
cycle, ultimately leading cell death [10]. Peter Tsvetkov 
et  al. revealed that copper-induced cell death requires 
mitochondrial respiration, but ATP from glycolysis has 
less effect on it. Copper does not directly participate in 
the electron transport chain (ETC) and only plays a role 
in the tricarboxylic acid (TCA) cycle. These results sug-
gest a strong relationship between copper-induced cell 
death and mitochondrial metabolism, and a strong link 
between copper and the TCA cycle [11]. Although the 
detailed mechanism underlying the role of cuproptosis 
in tumors is still unclear, the copper ionophore Elesclo-
mol already helped patients whose tumors depend on 
mitochondria for energy. This blockbuster study seems to 
point to a new mode of cell death that has great potential 
as a target for tumor therapy.

RNAs that are larger than 200 nucleotides, known 
as long non-coding RNAs (lncRNAs), play an impor-
tant role in the development and progression of tumors 
[12, 13]. Recently, a number of studies have revealed 
that lncRNAs are the crucial mediators in the regula-
tion of PCD in OC. For example, Cai et  al. found that 
lncRNA ADAMTS9-AS1 inhibit ferroptosis by target-
ing microRNA-587/SLC7A11 in OC, which provide a 
new therapeutic target [14]. The lncRNA TUG1 induces 
autophagy-related resistance to paclitaxel in OC via 
sponging miR-29b-3p with miR-29c6 [15]. In recent 
years, exploring tumor biomarkers has become an 
increasingly popular field using bioinformatics analysis in 

OC research [16, 17]. Nevertheless, the regulation of the 
lncRNA on the cuproptosis pathway in OC is not known 
at the present time. A better understanding of the func-
tion of CRLs (cuproptosis-related long noncoding RNAs) 
in OC could lead to a deeper understanding of possible 
mechanisms and ensure accurate treatment.

To the best of our knowledge, this is the first bioinfor-
matics research integrating lncRNA and cuproptosis in 
OC to reveal the possible mechanism and find accurate 
biomarker. Based on the TCGA database, we identified 
the expression of CRLs in OC patients. Using LASSO-
Cox regression analysis can minimize the potential of 
model overfitting and improve the accuracy of model 
parameter estimation (including shrinkage and tuning 
parameters) [18]. Thus, for feature selection and subse-
quently obtaining an optimal model, we use LASSO-Cox 
regression analysis for further analysis. By using this 
analysis, a 4 CRL based risk score (RS) model was con-
structed. Furthermore, we evaluated the differences in 
the tumor microenvironment (TME), tumor mutation 
burden (TMB) and immunotherapy response between 
two risk groups based on the prognostic model. The 
relationship between those lncRNAs with OC TME and 
candidate drugs was further analyzed and functional 
enrichment analysis was conducted, too. Our studies aim 
to improve the accuracy of prognostic prediction and 
elucidate the possible mechanisms of CRL in OC.

Methods and materials
Data acquisition and identification of cuproptosis‑related 
lncRNAs
A dataset containing RNA sequence transcriptome data, 
clinical information, as well as somatic mutation data of 
patients with OC was obtained from the Cancer Genome 
Atlas (TCGA) database. (https://​cance​rgeno​me.​nih.​gov/). 
We excluded patients (0/ < 30 OS values) for reducing 
statistical bias and finally obtained 364 OC patients for 
subsequent bioinformatics Analysis. After randomiza-
tion, all OC patients were divided into training dataset 
(n = 184) and testing dataset (n = 180). Comparing the 
clinical characteristics of training and testing datasets 
was done using Chi-square tests. Besides, We down-
loaded an independent dataset (GSE138866) from the 
Gene Expression Omnibus (GEO; https://​www.​ncbi.​nlm.​
nih.​gov/​geo/)database to validate the prognostic perfor-
mance. There are ten Cuproptosis-related genes (FDX1, 
LIPT1, DLD, LIAS, DLAT, PDHA1, PDHB, MTF1, GLS, 
and CDKN2A) that have been identified in previous liter-
ature [11]. In addition, CRLs were identified via Pearson 
correlation following the filter criteria (|Pearson R|> 0.3 
and p < 0.001).

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Establishment of the CRLs risk model
The clinical characteristics of the training dataset and the 
testing dataset are shown in Table S1 and the two data-
sets are consistent in clinical characteristics (p > 0.05). 
We selected CRLs that were associated with OS using 
univariate Cox regression in the training dataset. Base 
on the prognostic CRLs, we constructed the risk model 
using LASSO Cox regression analysis and multivariate 
Cox regression. The RS was calculated using the follow-
ing formula:

The coef is the multivariate Cox regression coefficients 
of CRLs and expr is the expression of CRLs. We selected 
the median RS was the optimal cut-off values and defined 
the OC patients as two subgroups: low-risk group and 
high-risk group.

Assessment the prediction ability of risk model
In this article, we evaluated the prognostic signature inter-
nally and externally. The testing and entire datasets from 
TCGA datasets were used as internal data to assess the 
prognostic performance of the established risk model. The 
GSE138866 dataset was regarded as the external data to val-
idate the prognostic performance. We used Kaplan–Meier 
(K-M) analysis to verify whether the overall survival (OS) of 
OC samples in the high- and low-risk groups was statisti-
cally different using R packages “survival” and “survminer”. 
The receiver operating characteristic curves (ROC) was 
used to assess the prediction accuracy. Principal compo-
nent analysis (PCA) analysis, as the most widely used algo-
rithm for dimensionality reduction of high-dimensional 
data and model visualization, was used to visualize high-
risk and low-risk groups according to the expression of the 
entire TCGA-OC cohort, 10 cuproptosis associated genes, 
129 CRLs, and risk model [19]. The t-distributed stochastic 
neighbor embedding (t-SNE) analysis also was conducted 
to test the performance of the established model [20].

Independent prognostic factor analysis and construction 
of nomogram
The multivariate Cox proportional hazards regression 
model was used to evaluate independent association 
between prognostic signature and patient survival after 
adjusting for age and grade. Using R package “RMS”, we 
established a nomogram integrated RS as well as other 
clinicopathological characteristics (age, grade) to bet-
ter predict the 1-, 3-, and 5-year OS. Besides, we applied 
calibration curve analysis to examine the reliability of the 
established nomogram. Besides, the receiver operating 
characteristic curves (ROC) and the conformance index 
(C-index) was used to assess the prediction accuracy.

Risk score =
n

k=1
Coef (IncRNA) ∗ expr(IncRNAk

)

Comprehensive analysis of tumor immune 
microenvironment and somatic mutation
By using R package “ESTIMATE”, we calculate each 
patient’s immune score, stromal score and estimate score 
and then observed the difference between high- and low-
risk groups. Furthermore, we applied ssGSEA, GSVA, 
and CIBERSORT algorithms to quantify the infiltration 
of immune cells and immunological functional enrich-
ment in the tumor immune microenvironment between 
two subgroups. We applied VarScan software to process 
the “mask somatic mutation” data from TCGA database 
[21]. Furthermore, we analyzed the tumor mutation bur-
dens (TMB) in different risk groups using the R package 
"maftools". We used the median TMB score as a cut-off 
value to divide patients into high and low TMB groups 
and then observed the survival difference when com-
bined risk groups.

Exploration of the immunotherapy response and drug 
sensitivity
To explore potential therapeutic drugs of OC, we applied 
the R package “pRRophetic” to calculated the IC50 val-
ues of the 138 drugs obtained from the Genomics of 
Drug Sensitivity in Cancer (GDSC) database. By using 
Wilcoxon sign rank testing, we compared the IC50 val-
ues between high-risk and low-risk groups on the basis 
of this data. Furthermore, we evaluated the sensitivity of 
the anti-OC drugs such as (Cisplatin, Paclitaxel, Bleo-
mycin and Gemcitabine) between high- and low-risk 
groups. The expression levels of four critical immune 
checkpoint inhibitors (including PD-1, PD-L1, HAVCR2 
and CTLA4) were compared between two subgroups to 
investigate the immunotherapy value of the risk model.

Functional analysis
Differentially expressed genes (DEGs) were identified using 
"limma" package between high- and low-risk groups based 
on the criteria that |logFC|> 1 and adjusted p-values < 0.05. 
GO and KEGG enrichment analyses were applied using 
the package “cluster Profiler” in R based on the differential 
expression genes between two subgroups. We performed 
gene dataset enrichment analysis using GSEA software 
4.2.1 (c2.cp.kegg.v7.2.symbols.gmt) (https://​www.​gsea-​
msigdb.​org/​gsea/​index.​jsp) in order to examine pathways 
related to high-risk and low-risk groups.

Statistical analysis
All data analysis and processing based on the platform 
of R (https://​www.r-​proje​ct.​org/) and Strawberry Perl 
(https://​www.​perl.​org). For the above methods of analysis 
where no special instructions are given, p < 0.05 was con-
sidered statistically significant.

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.r-project.org/
https://www.perl.org
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Results
Identification of CRLs in OC
Performing Pearson correlation analysis, we identified 
129 CRLs whose expression levels were significantly 
related to expression levels of 10 CAGs (|R|> 0.4 and 
p < 0.001) based on the TCGA OC dataset (Table S2). 
Using the Sankey diagram and heatmap, we visualized 

the co-expression network between 10 CAGs and 129 
CRLs (Fig. 1A and B).

Construction and validation of the CRLs‑related risk model 
in training dataset
Twelve CRLs with prognostic significance for OC 
were identified by a univariate Cox regression analysis 

Fig. 1  The Sankey diagram and heatmap between 10 CAGs and 129 CRLs. A Co-expression network in Sankey diagram for CAGs and 
corresponding lncRNAs. B The heatmap of 10 CAGs and 129 CRLs
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in training dataset (Table S3). We performed LASSO 
regression analysis based on these CRLs to prevent 
over-fitting of the model, and the prediction accuracy 
was estimated through 1000 cross validations. We fur-
ther identified four key CRLs using multivariate Cox 
regression analysis (Fig.  2A). The heatmap showed 
the significant expression association between 4 CRLs 
and 10 CAGs (Fig.  2B). These four CRLs (including 
AP004609.3, AP003392.3, AP001372.2 and AC021851.1) 
were used in the risk model construction and the cor-
responding coefficients were also given (Table S4). 
We calculated RS with the formula: RS = expres-
sion of AP004609.3 × (-0.377155976) + expression of 
AP003392.3 × coefficient (-0.435241846) + expression of 
AP001372.2 × coefficient (-0.590948585) + expression 
of AC021851.1 × coefficient (-0.934876246). Then, using 
the median RS as a cut-off point, patients were divided 
into high-risk and low-risk groups. We applied the K-M 
curve and log-rank analysis to test whether there is a sig-
nificant difference in survival rates between groups with 
high- and low-risk (log-rank p < 0.001, Fig. 2C). Accord-
ing to the study results, OC patients in low-risk groups 
had a higher overall survival rate than those in high-risk 

groups. The AUC of receiver operating characteristic 
(ROC) at 1, 3 and 5  years was 0.750, 0.639 and 0.668, 
indicating the reliability of the model (Fig. 2D).

Validation of the CRLs‑related risk model in TCGA and GEO 
database
We evaluated the prognostic performance of the risk 
model by both internal and external validation. As shown 
in Figs.  3A and C, K-Msurvival curves indicated that 
patients in high-risk group suffered worse survival than 
those in low-risk group based on the testing dataset and 
the entire TCGA-OC dataset, respectively (p < 0.05). 
Besides, the 3- and 5-year AUC for the testing dataset 
was 0.627 and 0.633 (Fig. 3B), but for the entire TCGA-
OC dataset were 0.635 and 0.643 (Fig.  3D). Besides, we 
tested the prognostic performance in an independent 
dataset (GSE138866). The results showed that patients in 
high-risk group had a shorter OS than those in low-risk 
group (log-rank p = 0.023, Fig.  3E). Furthermore, the 3- 
and 5-year AUC for the GSE138866 database was 0.595 
and 0.577, respectively (Fig.  3F). Overall, both internal 
and external validations indicated that the stability and 

Fig. 2  Construction and validation of the CRL risk model based on the training dataset. A Forest plot of 4 CRLs within risk model. B Heatmap of the 
correlation between hub lncRNAs and CAGs. C Kaplan–Meier curve of high-risk and low-risk patients in the training dataset. D The 1-, 3-, and 5-year 
ROC curves of the training dataset
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credibility of our established signature based on CRLs in 
OC.

Validation of the CRLs‑related risk model by PCA and t‑SNE
To assess the classification ability of the risk model 
based on the 4 CRLs, we firstly applied PCA and t-SNE 

analyses to the training dataset (Fig. 4A, D), testing data-
set (Fig. 4B, E), and entire dataset (Fig. 4C, F). According 
to the results, the distributions of the high- and low-risk 
parts were distinct, suggesting the prognostic signature 
can differentiate between them accurately. The 3D-PCA 
showed that the distribution of high- and low-risk 

Fig. 3  Internally and externally validation separately of the CRLs-related risk model. Kaplan–Meier curves in the testing dataset (A), the entire 
dataset (C) and GSE138866 dataset (E). The 3- and 5-year ROC curves in the training dataset (B), the entire dataset (D) and GSE138866 dataset (F)
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patients is indistinguishable based on the entire gene 
sequencing data and CRG expression sets (Fig.  4G, H). 
There was a tendency of the two subgroups to fall into 
two subgroups based on CRLs expression set (Fig. 4I). It 
was, however, the distribution with two subgroups based 

on the 4 CRLs that appeared to be the most significant 
(Fig.  4J). These results showed that the risk model had 
robust and superior classification performance, and the 4 
CRLs within the risk model could well reflect the differ-
ences between high- and low-risk samples.

Fig. 4  The classification ability of the risk model was evaluated by PCA and t-SNE. PCA map based on training dataset (A), testing dataset (B), 
and entire dataset (C). t-SNE map based on training dataset (D), testing dataset (E), and entire dataset (F). 3D-PCA map based on entire gene 
sequencing data of TCGA-OC dataset (G), 10 CAGs (H), 129 CRLs (I), and CRLs-related risk model (J)
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Construction and verification of prognostic nomogram 
for OC patients
We performed the univariate and multivariate Cox 
regression analysis to test the prognostic correlations. 
The results showed that the RS calculated by four-CRLs 
signature was significantly associated with OS using 
univariate Cox regression analysis (Fig.  5A) and was an 
independent prognostic factor after adjusting for age and 
grade using multivariate Cox regression analysis (Fig. 5B) 
in the entire TCGA-OC dataset. By combining four CRLs 
features, we constructed a prognostic nomogram to pre-
dict the possibility of 1-year, 3-year and 5-year OS. As 
shown in Fig. 5C, the score assigned to each factor is pro-
portional to its risk contribution to survival. We verified 
the accuracy of the nomogram using calibration curves, 
and found a high degree of accuracy between actual val-
ues and predictions (Fig. 5D). Besides, the C-index of RS 
was higher than that of other predictors, suggesting that 
the risk model has a significant advantage in predicting 
the OS of OC patients (Fig. 5E).

Association of risk model with somatic mutation 
landscapes and TMB
It has been found that TMB is positively correlated with 
tumor stage, grade, and immune infiltrating cells accord-
ing to research [22]. Next, we analyzed and compared 
the mutation information between the high- and low-
risk groups. According to TCGA somatic mutation data, 
the mutation status of the top 20 genes with the highest 
change frequency are shown in Fig.  6A and B for high- 
and low-risk groups, respectively. The results showed 
that mutation rate was different between high- and low-
risk groups, such as TP53, MUC16 and FLG. Further-
more, TMB scores in the low-risk group were higher than 
those in the high-risk group (p = 0.018, Fig.  6C). It was 
found that there was a negative correlation between the 
TMB and the risk model (Fig. 6D) (R = -0.22, p < 0.001). 
Besides, K-M analysis showed that patients in the high-
TMB group had a significantly better OS than patients 
in the low-TMB group (p = 0.0074, Fig.  6E). We further 
found that patients in high-risk group with low-TMB suf-
fered worse survival than those in low-risk group with 
high-TMB (Fig. 6F).

Comprehensive immune‑infiltration analysis based on risk 
model subgroups
The proportion of 22 immune cell infiltration calculated 
by CIBERSORT algorithm were compared between 
high- and low-risk groups. As shown in Table S5, Fig. 7A, 
there was a significant difference between risk subgroups 
with respect to specific immune cells, like Macrophages, 
T cells, resting NK cells, and so on. Besides, the GSVA 
enrichment analysis revealed that OC patients in the 

high-risk group were significantly related to immune 
pathways and functions such as Type II IFN Response, 
CCR, APC co inhibition, Para inflammation, T cell co-
stimulation, T cell co-inhibition and Check-point (Table 
S6, Fig. 7B). We further conducted the ssGSEA algorithm 
to explore the difference of immune cell infiltration and 
immune response for OC patients between high- and 
low-risk groups (Table S7). The results of immune cell 
infiltration suggested that infiltration proportions of B 
cells, CD8 T cells, DCs, Macrophages, Neutrophils, Treg, 
and T helper cells were obviously increased in the high-
risk group (Fig. 7C). As shown in Fig. 7D, immunological 
function shows significant differences between low- and 
high-risk groups for all immunological functions except 
inflammation-promoting, MHC class I, and Type I IFN 
response (p > 0.05). Furthermore, we calculated immune 
score, stromal score, and estimate score for each OC 
patient in TCGA-OC dataset using the ESTIMATE algo-
rithm. According to Fig. 7E-G, OC patients in the high-
risk group had significantly higher immune, stromal and 
estimate scores.

Prediction of the clinical treatment and drug sensitivity 
analysis based on the risk model
In light of the significantly different prognosis of OC 
patients in two subgroups, we decided to further screen 
potential drugs in order to better achieve targeted ther-
apy. The IC50 values of four common chemotherapeutic 
medicines were quantified in OC patients, and two were 
statistically different between risk groups. In detail, the 
IC50 levels for cisplatin and paclitaxel were significantly 
higher in the high-risk group of OC patients (Fig.  8A, 
p < 0.05), which indicates that the low-risk group was 
more sensitive to the above chemical drugs. For Bleomy-
cin and Gemcitabine, no statistical differences in drug 
sensitivity were observed between two groups. Further-
more, we investigated how two subgroups of patients 
expressed ICI-related biomarkers. It was noticed that 
high risk group patients showed high expression of 
PD1, CTLA4, PD-L1 and HAVCR2, suggesting they 
might benefit from the above immune therapy (Fig.  8B, 
p < 0.05). As a result of the potential drugs analysis, we 
found that 4 potential drugs (AP.24534, AZ628, AUY922, 
and AZD.0530) had significantly higher IC50 values in 
the low-risk group, suggesting that these drugs may be 
more suitable for patients in high-risk groups (Fig.  8C, 
p < 0.001).

Exploring the potential mechanism based on the degs 
between two subgroups
In order to investigate the potential biological func-
tions and signal pathway with 4 CRLs within the risk 
model, we identified DEGs between high- and low-risk 
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Fig. 5  Construction of nomogram and assessment of prognostic performance. Forrest plot of the univariate Cox regression analysis (A) and 
multivariate Cox regression analysis (B) in the entire TCGA-OC dataset. C The prognostic nomogram constructed based on the RS of CRLs and 
clinicopathological parameters including age and grade. D The calibration curve of the nomogram. E C-index of the RS and clinical characteristics
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Fig. 6  The association between the risk model and the somatic mutation landscapes and the TMB. Mutation information of the genes with high 
mutation frequencies displayed by waterfall plot in the high-risk group (A) and low-risk group (B). C The TMB differences between high- and 
low-risk groups. D Correlations between RS and TMB. E Kaplan-Meier curve between the high- and low-TMB groups. F Kaplan-Meier curves of OS for 
patients with OC and different TMBs and risk scores
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groups for enrichment analysis. A total of 163 DEGs 
were selected between two subgroups (Table S8). Based 
on these DEGs, we performed GO terms and KEGG 

pathway analysis to explore the underlying molecular 
mechanism (Table S9). As shown in Fig. 9A, DEGs were 
significantly enriched in immune-related biological 

Fig. 7  Analysis of immune-infiltration in different risk group. A Box plot of the proportion of 22 immune cell components. B The GSVA of 
immune-related pathways between two groups. The difference of immune cell infiltrations (C) and immune functions (D) between high- and 
low-risk groups. The differences of the immune score (E), stromal score (F), and estimate score (G) between high- and low-risk groups, respectively. 
*p < 0.05, **p < 0.01, and ***p < 0.001; ns, not significant
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processes, including extracellular matrix, extracel-
lular structure and external encapsulating structure 
organization based on GO enrichment. KEGG enrich-
ment analysis presented that these DEGs were primar-
ily connected with extracellular matrix organization, 
extracellular structure organization and external 
encapsulating structure organization (Fig. 9B). By using 
GSEA software, we were able to explore further differ-
ences between high-risk and low-risk groups in terms 
of biological functions (Fig. 9C, D, Table S10). Pathways 
such as ECM receptor interaction, T and B cell recep-
tor signaling pathway were significantly enriched in 
the high-risk group, while pathways like homologous 
recombination RNA polymerase were highly enriched 
in the low-risk group.

Discussion
Women who are diagnosed with ovarian cancer account 
for 2.5% of all cancers in women, yet they also account for 
5% of all cancer-related deaths in women, due largely to 
advanced diagnosis [23]. Recent studies have suggested 
that there may be a completely new form of programmed 
cell death: copper-dependent program cell death known 
as cuproptosis [11]. Copper is an essential component 
of many biochemical reactions and is widely involved in 
a variety of cellular functions, such as cell metabolism, 
growth, and proliferation, protein activity regulation, as 
well as apoptosis, autophagy, and other cellular processes 
[24, 25]. There could be severe consequences if muta-
tions lead to the overloading of copper. In spite of that, it 
is feasible to manage intracellular copper levels within a 

Fig. 8  Association of the risk model with chemotherapy and analysis of potential drugs. A Evaluation of IC50 for four common chemotherapeutic 
medicines. B Expression levels of PD-L1, CTLA4, HAVCR2, PD-1 in the high- and low-risk groups. C Differential analysis of potential drug sensitivity



Page 13 of 15Liu et al. Journal of Ovarian Research           (2023) 16:88 	

certain range in order to selectively kill tumor cells [26]. 
As a result, cuproptosis has the opportunity to play a role 
in the treatment of cancer. Studies conducted recently 
have shown that Long non-coding RNA (lncRNA) has 
proven to be a key regulatory factor for multiple can-
cers [27], including OC [28]. Therefore, based on the 
above evidence, we established a novel OC predictive 
risk model from CRLs and explored how these lncRNAs 
affect OC progression.

Based on our initial findings, we identified 4 lncRNAs 
with functions related to the regulation of cupropto-
sis and increased prognostic value, providing theoreti-
cal support for further studies. Our surprise was finding 
that, except for AP001372.2, which was studied earlier, all 
three CRLs were studied for the first time. The research 
group of Liu et  al. have developed a risk model using 
cuproptosis-related lncRNAs, including AP001372.2, 
to predict the outcome of head and neck squamous cell 

Fig. 9  Exploring the potential mechanism based on the DEGs between on two subgroups. A GO analysis based on DEGs between high- and 
low-risk groups. B KEGG analysis based on DEGs between high- and low-risk groups. The top 10 pathways significantly enriched in the high-risk 
group (C) and low-risk group (D) using gene set enrichment analysis respectively
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cancer patients [29]. There was potential for them to 
become OC prognostic markers, which deserve to be 
explored and studied further. A risk model for predict-
ing OC patients’ OS based on 4 CRLs was then devel-
oped and validation. To explore the potentially molecular 
mechanisms by which 4 CRLs affect OC, we performed 
an enrichment analysis based on DEGs between high- 
and low-risk groups. Our study found that in GO anal-
ysis and KEGG analysis, the DEGs in the high and low 
risk groups were highly directed to extracellular matrix-
related signaling pathways and biological processes. The 
components of extracellular matrix (ECM) are extremely 
complex, and they are responsible for the transmission 
of information between cells. With the deepening of 
research, it has been found that changes in the content 
and arrangement of ECM components are often closely 
related to the occurrence and development of cancer, and 
the alienated ECM constitutes an important layer in the 
survival environment of tumor cells [30, 31]. A recent 
blockbuster study by Laura S M Lecker et al. pointed out 
that macrophages can change the ECM components of 
OC by producing TGFBI, resulting in an immunosup-
pressive environment that is conducive to tumor growth, 
which is critical for the proliferation and migration of OC 
cells [32].

In order to develop an OC, immune regulation is a 
crucial factor that is widely recognized [33]. Counts 
and proportions of tumor-invading immune cells play 
a critical role in cancer development and immuno-
therapy response [34], as well as patient survival. Study 
findings suggest there is crosstalk between CRLs and 
immune cells, according to the CRLs signature we 
detected. There was a statistically significant difference 
between high and low risk groups with regard to the 
Macrophages, T cells (T helper, CD4, CD8, Treg), rest-
ing NK cells in specific immune cells. It has been shown 
that Tregs play a critical role in suppressing antitu-
mor immune responses and are associated with poor 
survival rates [35]. Our findings of abundant Tregs in 
the TME of high-risk patients are consistent with this. 
These results suggest that higher levels of immunosup-
pression in the TME may result in a poorer prognosis 
for high-risk patients, and this contributes to tumors 
progression. It is thought that immune cell infiltration 
in the TME plays a key role in tumorigenesis and pro-
gression, and that it influences a cancer patient’s prog-
nosis [36]. As immune cells and stromal cells make up 
TME, immune and stromal scores were associated with 
OC clinical characteristics and prognosis. According to 
the ESTIMATE algorithm, a high-risk group had higher 
immune and stromal scores than a low-risk group. Con-
sidering this, it can be hypothesized that cuproptosis 

may be associated with the involvement of the TME, 
thereby regulating the occurrence and development of 
neoplasms. Further, we found significant differences in 
TMB and somatic mutations between high- and low-
risk groups. As previously reported, we have confirmed 
that higher TMB is associated with better prognosis in 
OC patients [37], which is consistent with the findings 
in this study.

Meanwhile, we also evaluated the sensitivity of high-
risk versus low-risk patients to commonly used chemo-
therapeutic drugs, so that we could better guide clinical 
treatment. Ultimately, we found that cisplatin, pacli-
taxel, bleomycin, gemcitabine had higher IC50 lev-
els in the high-risk group than in the low-risk group, 
indicating that the low-risk group of OC patients was 
more sensitive to these drugs. Additionally, a num-
ber of potential compounds have been screened that 
might provide some new treatment options. As well, 
the introduction of immune therapies utilizing check-
point inhibitors has improved survival rates among OC 
patients [38]. Therefore, we wanted to make an attempt 
to explore the expression of immune checkpoint in 
high- and low-risk groups. Our results showed that 
the expressions of PD1, CTLA4, PD-L1 and HAVCR2 
in high-risk patients were higher than those in low-risk 
patients.

However, we have to admit that this study has 
some limitations. A major part of the queue in this 
study is derived from the TCGA database. Addition-
ally, cuproptosis death mechanism is a newly discov-
ered mechanism of programmed cell death, and the 
studies related to it are scarce. To further verify the 
feasibility of the prediction model and its potential 
mechanism, we will collect more samples and per-
form experiments.

Conclusion
In the present study, the first attempt has been made 
to analyze the mechanism of regulation of lncRNAs 
on cuproptosis in OC cells. Using the relevant data of 
OC patients in TCGA, we constructed a lncRNA prog-
nosis prediction model based on the regulation  of the 
cuproptosis process. This model can shed new light on 
the diagnosis and treatment of OC.
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