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Abstract 

Background Most of the resources that support the early development of the embryo are stored in the oocyte. 
Clearing of maternal resources and activation of the embryonic genome to produce its own mRNA transcripts marks 
the maternal-to-embryo transition. Dependence on stored mRNA can last from a few hours to several days, depend-
ing on animal species. The mechanisms regulating stabilization and recruitment of stored maternal transcripts have 
not yet been described in full detail but are known to involve reversible polyadenylation and modulation of 3’UTR-
mediated elements. RNA epigenetic modifications, new players in this field, have an important role in RNA regulation 
and stabilization.

Results The objectives of this study were first to determine if some of post-transcriptional methylation of stored 
mRNA is greater in oocytes than in somatic cells. We found that  m6A, known to be the most prevalent and involved 
in various aspects of RNA metabolism and physiological functions, is particularly abundant in porcine oocyte mRNA 
compared to liver used as a somatic tissue reference. The second objective was to compare the epitranscriptome 
machinery, such as methyltransferases (“writers”), binding proteins (“readers”) and demethylases (“erasers”) catalyzing 
the different process, in follicles and oocytes of different mammalian species by immunofluorescence and confocal 
microscopy. The expression and localization patterns of these proteins differ between mice, pigs and cows ovaries 
and oocytes.  m5C-associated proteins were generally less abundant. In contrast,  m6A-associated proteins were 
expressed strongly during the early and late stages of folliculogenesis. Transzonal projections were found to contain 
more granules bearing the  m5C mark in mice but both  m5C and  m6A methylation marks in association with mature 
oocytes of pigs and cows. Eraser proteins showed the greatest interspecies diversity in terms of distribution in the 
germinal tissues.

Conclusions So far, few studies have looked at the oocyte and ovarian epitranscriptomic profile. Our findings indi-
cate that a hitherto unrecognized species-specific layer of transcript regulation occurs at the RNA level and might be 
consequential during the oocyte transcriptional silencing period.
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Background
A central tenet of gene expression theory is that DNA-
encoded information is first transcribed to RNA, an 
intermediary, transitory and short-lived molecule that 
is translated into protein as needed. However, oocytes 
display atypical RNA management, stocking molecules 
synthesized during oogenesis to support early develop-
ment until embryonic genome activation [1]. Messen-
ger RNA (mRNA) transcripts stored in oocytes exhibit 
an extended half-life that can be estimated in days 
rather than in minutes generally measured in somatic 
cells [2, 3].

Maternal RNA reserves ensure protein synthesis in the 
absence of transcriptional activity prior to genome acti-
vation [4, 5]. Transcriptional activity resumes differently 
depending on the species: 1-cell or 20  h post fertiliza-
tion in mice [6], 4-cell or about 55 h post fertilization in 
pigs [7] and 8-cell or about 72 h post fertilization in cows 
[8-11].

The lifespan of maternal transcripts has not been meas-
ured directly but could in theory extend from final syn-
thesis prior to DNA compaction in the oocyte to genome 
activation in the embryo. Compacted DNA is seen in 
oocytes still in the follicle. Based on the mean time for 
ovulation from this point plus fertilization and activation 
of embryo development, this lifespan can be estimated at 
30 h in mice, 7 days in pigs and 10 days in cattle.

It is known that stabilization of maternal RNA involves 
removal of the poly(A) tail and packaging into ribonu-
cleoprotein complexes [1]. In addition, specific sequences 
located in the 3’UTR have been shown to control stabil-
ity [12]. The details of these mechanisms remain poorly 
understood and appear to differ greatly between species. 
Several RNA binding proteins and microRNA molecules 
have been shown to control the temporal destiny of tran-
scripts but also the spatial distribution of mRNA in the 
oocyte cytoplasm [13, 14]. The influence of specific UTR 
sequences on maternal RNA stability is well documented, 
but spatial distribution has not been shown in mamma-
lian oocytes [15].

Another type of post-transcriptional modification 
is RNA editing. Analogous to the epigenome, which 
is based primarily on 5-methylation of DNA cytidine 
groups (reviewed by Bird, 2002) [16], transcribed RNA 
is also modified by attachment of chemical groups 
[17]. Methylation is only one of more than 170 distinct 
chemical modifications that have been found on RNA 
molecules [17, 18]. The most abundant modification is 
 N6-Methyladenosine  (m6A), occurring mainly on mRNA 
and long non-coding RNA [19]. Enzymes that catalyze 
this reversible modification are called RNA modify-
ing proteins or RMPs, of which three groups have been 

identified: writers, which catalyze the modification, eras-
ers, which remove the marks, and readers, which recog-
nize the modification and initiate a cellular response [20]. 
While the understanding of the function of the epitran-
scriptome has demonstrated its implication in various 
metabolic processes and diseases but its role in RNA sta-
bility and control of gene expression remains obscure.

We posit that some transcript labelling mechanism 
must exist and we hypothesized that different RNA 
methylation marks and process are involved in stabilizing 
stored maternal RNA. The aim of this study was therefore 
to compare the type and the abundance of RNA modifi-
cations in oocytes and somatic cells and to investigate if a 
relationship exists between the types of RMP present in 
oocytes of animals with different length of the transcrip-
tional silence period. Modifications, namely  m6A, were 
found abundantly in maternal RNA, as was the contin-
gent of different RMPs, in some cases with species spe-
cific distributions.

Methods
Animals
All animals used in this study were handled according 
to the guidelines of the Canadian council on animal care 
and manipulation of animals used in research. Mouse 
experiments were carried out on 8-weeks old animals in 
accordance with protocols approved by the Comité de 
Protection des Animaux du Centre Hospitalier Universi-
taire de Québec. Bovine ovaries from 2–5 years old dairy 
cows and porcine ovaries and liver tissues from 5 months 
old gilts were collected from a local slaughterhouse.

All chemicals and enzymes, unless otherwise speci-
fied, were purchased from Sigma-Aldrich (Oakville, ON, 
Canada).

RNA isolation
Total RNA from oocytes, cumulus and granulosa cells 
were extracted with the Picopure RNA Isolation Kit 
(Thermo Fisher Scientific, Mississauga, ON, Canada) 
including on-column DNAse I digestion (Qiagen, Mis-
sissauga, ON, Canada) in accordance with the manufac-
turer’s instructions. Cumulus and granulosa cells were 
homogenized beforehand using QIAshredder spin-
columns (Qiagen) and ovarian and liver tissues were 
homogenized using a Ruptor bead mill as recommended 
by the manufacturer (VWR International, Mississauga, 
ON, Canada). Total RNA was extracted from homogen-
ates using TRIzol (Thermo Fisher Scientific) then isolated 
using a Picopure kit. Total RNA integrity and concentra-
tion were evaluated on a 2100-Bioanalyzer (Agilent Tech-
nologies, Palo Alto, CA, USA) using the RNA 6000 Nano 
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Kit (Agilent Technologies). Samples with a RIN greater 
than 7 were chosen.

RNA enzymatic digestion and LC–MS/MS analysis
RNA was converted to mono-ribonucleotides as described 
previously [21, 22]. Briefly, 1 µg of RNA was hydrolyzed 
for 3 h with 0.2 U of nuclease P1 in 60 µl of ammonium 
acetate buffer (pH 5.3) at 50 °C followed by 0.04 U of phos-
phodiesterase I (Thermo Fisher Scientific) for 2 h then 2 U 
of alkaline phosphatase for 2 h (both at 37 °C). Enzymes 
and buffers were removed using Nanosep 3  K columns 
(VWR International) centrifuged at 5000 × g for 30  min. 
Concentrated nucleotides were eluted in two 20  µl frac-
tions of nuclease-free water for a total of 40 µl, dried using 
a speed-vac and kept at -80 °C until LC–MS/MS analysis 
as described previously [22]. Experiments were performed 
in triplicate. Experimental effects on nucleoside meth-
ylation were assessed by one-way ANOVA and the Tukey 
multiple comparisons test. Treatment means were consid-
ered significantly different when p < 0.05.

Ovary section immunohistofluorescence
Ovarian tissue (15  mm diameter, 5  mm thick) was 
fixed in 4% (v/v) paraformaldehyde in phosphate-
buffered saline (PBS, Thermo Fisher Scientific) over-
night at room temperature then dehydrated in ethanol 
at increasing concentrations and embedded in par-
affin. Sections  7  µm thick were cut on a microtome, 
mounted in series on positively charged glass slides, 
dewaxed with xylene and rehydrated by washing with 
ethanol at concentrations decreasing to zero in dis-
tilled water. The slides were then processed in heat-
induced epitope retrieval buffer (HIER, Agilent) in a 
pressure cooker at 95  °C for 20  min as per the manu-
facturer’s instructions (Biocare medical, Concord, CA, 
USA). Slides were cooled for about 5 min at room tem-
perature then washed 3 times in PBS for 5  min each. 
Non‐specific binding was prevented by blocking with 
5% donkey serum diluted in Tris-buffered saline with 
Tween 20 (TBST) for 1  h before applying the primary 
anti-rabbit or anti-chicken antibody diluted in TBST 
or the corresponding secondary antibody as a negative 
control (supplementary Fig. S1; antibodies are listed in 
supplementary Table S1). The slides were kept over-
night at 4  °C in a humidified chamber then washed 3 
times in TBST for 10  min each with gentle agitation 
and exposed for 1 h to the secondary antibody (diluted 
1:1000 in TBST containing 20% bovine serum albumin) 
at room temperature with gentle agitation and shield-
ing from light. DNA was stained using Hoechst 33,342 
(Thermo Fisher Scientific). After three washes in PBS/

TBST, slides were mounted in SlowFade Diamond Anti-
fade Mountant (Thermo Fisher Scientific).

Whole‑mount oocyte immunofluorescence
Except for primary antibody applications, all steps 
below were performed at room temperature. Oocytes 
were fixed in 4% (v/v) paraformaldehyde in PBS-poly-
vinyl alcohol (PBS-PVA) for 15  min followed by three 
5-min washes in PBS-PVA then permeabilized in Tri-
ton X-100 in TBST (1:200) for 15 min, blocked for 1 h 
with donkey serum (Sigma-Aldrich) diluted in TBST 
(1:20) and contacted with the primary antibody (in 
TBST with 20% BSA) overnight at 4  °C. Application 
of secondary antibody alone served as a negative con-
trol (supplementary Fig. S2). The oocytes were then 
washed 3 times in TBST (10  min each) and exposed 
for 1  h to secondary antibody (donkey anti-rabbit 488 
or donkey anti-chicken 488, Thermo Fisher Scientific, 
diluted 1:1000 in TBST). DNA and actin (cytoskeleton) 
were stained respectively with Hoechst 33,342 (1:1000 
in TBST) and Acti-Stain 555 (7:1000 in TBST) for 1 h. 
Oocytes were then washed 3 times in PBS-PVA (10 min 
each) and mounted in PBS-PVA.

Ovary and oocyte imaging
Z-stack images of oocytes and ovaries were captured 
using a Zeiss LSM700 Confocal microscope (Carl Zeiss 
Canada, Toronto, ON, Canada) fitted with a 40X water-
immersion Zeiss objective and Zen Black acquisition 
software. The images were analyzed using Fiji ImageJ 
[23]. Secondary-only controls are shown in supplemen-
tary data. At least four ovary section slides and pools of 
15 whole-mount oocytes from three different animals 
were examined.

Results
Identification and measurement of RNA modifications 
by LC–MS/MS analysis
Methylated ribonucleosides, namely  N1-methyladenosine, 
 N6-methyladenosine, 5-methylcytosine and 7-methyl-
guanosine (respectively  m1A,  m6A,  m5C and  m7G) in total 
RNA of oocytes, cumulus cells, granulosa cells, ovarian 
and liver tissue from pigs were detected quantitatively 
using LC–MS/MS. Liver was used as a somatic cell refer-
ence since mRNA is rarely stable in this tissue. As shown 
in Fig. 1 (A, B), RNA  m1A was less abundant in oocytes 
than in liver, ovary and granulosa cells whereas  m6A was 
more abundant in oocyte compared to liver. In the case of 
 m5C and  m7G, cumulus cells stand out with a low abun-
dance of these molecules (Fig. 1C, D). In all tissues tested, 
the most abundant post-transcriptional modifications of 
RNA were  m6A and  m5C.
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Detection of RNA modifying proteins
Using immunofluorescence and confocal micros-
copy, RMP writers, erasers and readers in follicles and 
oocytes from mice, porcine and bovine tissues were 
examined.

Detection of writer proteins during folliculogenesis
TRDMT1 (aka DNMT2) or tRNA aspartic acid methyl-
transferase 1 catalyzes methylation of cytosine. It is also 
slightly active as a DNA methyl transferase. This writer 
protein was barely detectable in early antral follicles 
of mice, pigs and cows and in mouse and cow oocytes 
(Fig. 2A and B). It was detected in the nucleus of porcine 
mature oocytes (Fig. 2B).

In contrast, Wilms Tumor-Associated Protein 1 
(WTAP), which produces  m6A, was detected in mouse 
oocytes in pre-antral follicles, especially in the nucleus 

and around the zona pellucida. It appeared in the por-
cine oocyte nucleus (spots in Fig.  2A) and in follicu-
lar cells but not the nucleus of bovine oocytes (Fig. 2A, 
lower panel). During the later stages of follicular develop-
ment, WTAP was found in the cytoplasm and nucleus of 
mature murine and bovine oocytes. In both large animals 
but not in mice, it was also localized throughout the net-
work of transzonal projections (Fig. 2B, lower panel).

Detection of reader proteins
A family of proteins binds to methyl-CpG domains 
on DNA [24]. One of these, called Methyl-CpG Bind-
ing Domain Protein 2 (MBD2), has a high affinity for 
 m5C-modified RNA [25, 26]. This protein was detected in 
the nucleus of early antral follicles in all species, but curi-
ously only at the periphery of the oocyte nucleus in mice 
(Fig. 3A). It was more abundant both in the nucleus and 

Fig. 1 Relative expression of modifications of porcine somatic and germinal cell RNA, based on mass spectrometry (A)  N1-methyladenosine, 
B N.6-methyladenosine, C 5-methylcytidine, D 7-methylguanosine. Means denoted by a different letter indicate significant differences between 
tissues (p < 0.05)
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the first layers of porcine cumulus cells and even more in 
the oocyte nucleus and cytoplasm, and in bovine cumu-
lus cells. In fully mature oocytes, it was detected in the 
zona pellucida and at the end of transzonal projections in 
all three species, perhaps less in pigs (Fig. 3B).

Another reader protein, YTH N6-Methyladenosine 
RNA Binding Protein F2 (YTHDF2) member of the YTH 
domain family, recognize and bind to  m6A (N6-meth-
yladenosine) to regulate mRNA stability. YTHDF2 was 
distributed throughout the oocyte cytoplasm in all three 

species (Fig.  3A, middle panels) and was detectable in 
granulosa/cumulus cells and in the cytoplasm of mature 
murine or bovine but not porcine oocytes. Cumulus cells 
of all three species and the edge of murine and bovine 
zona pellucidae also contained YTHDF2, whereas tran-
szonal protections contained very little (Fig.  3B, middle 
panels).

The RNA-binding protein FMRP (known as Fragile X 
Mental Retardation Protein or Fragile X Multifunctional 
RNA-binding Protein) is involved in shuttling transcripts 

Fig. 2 Representative confocal Z-stack images showing TRDMT1 and WTAP writer protein distribution (green) in murine, porcine and bovine 
germinal tissue obtained using fluorescent antibodies (green). A Sections of ovary showing secondary (S), early antral (Ea) and antral (A) follicle 
stages (bar = 20 μm). B Whole oocyte mounts (bar = 10 μm). Actin filaments of TZPs were stained with Acti-stain 555 phalloidin (red) and DNA with 
Hoechst 33,342 (blue)
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Fig. 3 Representative confocal Z-stack images of MBD2, YTHDF2 and FMRP reader protein distribution (green) in murine, porcine and bovine 
germinal tissue. A Sections of ovary showing primary (Pr), secondary (S) and early antral (Ea) follicle stages (bar = 20 μm). B Whole oocyte mounts 
(bar = 10 μm). Actin filaments of TZPs were stained with Acti-stain 555 phalloidin (red) and DNA with Hoechst 33,342 (blue)
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and regulating their docking on ribosomes [27, 28]. 
Its binding is enhanced by  m6A [29]. It was expressed 
strongly in early follicles of all three species, in mouse 
ovarian somatic cells and inside porcine and bovine 
oocyte follicular compartments as well as the oocyte 
cytoplasm (Fig. 3A). It was detected in antral follicles of 
all three species, in foci located under the zona pellucida 
and inside cumulus cells (Fig.  3B, lower panel). FMRP-
containing granules were absent in murine and porcine 
transzonal projections but abundant near the cumulus 
side of the projections.

Detection of RNA methylation eraser proteins
Chemical marks imprinted on RNA by writer proteins 
can be erased by the action of demethylases such as AlkB 
homolog 5, RNA Demethylase (ALKBH5) or by FTO 
Alpha-Ketoglutarate Dependent Dioxygenase (FTO). In 
early follicles of all three species, ALKBH5 was found 
mostly in the oocyte nucleus (Fig. 4A). In antral follicles 
of mice, it appeared only in the gamete nucleus in a dot-
ted pattern having no relationship to DNA (Fig.  4B). In 
the case of pigs and cows, it appeared in a diffuse state 
in the nuclear compartment but also in large foci in the 
subcortical region under the zona pellucida and was 

Fig. 4 Representative confocal Z-stack images of ALKBH5 and FTO eraser protein distribution (in green) in murine, porcine and bovine germinal 
tissue. A Sections of ovary showing primary (Pr), secondary (S) and early antral (Ea) and antral (An) follicle stages (bar: 20 μm). B Whole oocyte 
mounts (bar: 10 μm). Actin filaments of TZPs were stained with Acti-stain 555 phalloidin (red) and DNA with Hoechst 33,342 (blue)



Page 8 of 12Dubuc et al. Journal of Ovarian Research           (2023) 16:90 

expressed strongly in cumulus cells. The distribution of 
FTO was broader, with a strong expression in the cyto-
plasm of early oocytes in all three species, finely dis-
persed in pig oocytes at a later follicular stage, and 
granular near the outer end of transzonal projections (the 
cumulus cell side of the zona pellucida) in pigs and cows. 
FTO granules inside transzonal projections were seen 
only in bovine oocytes.  Table  1 provides a summary of 
the localization of the molecules detected.

Discussion
Oocytes accumulate RNA reserves to sustain protein 
synthesis during the transcriptional silence that reigns 
from the moment the genome condenses in the imma-
ture oocyte until activation of the embryonic genome [5, 
30]. The factors determining which stored mRNA tran-
scripts are active during mammalian early development 
remain largely unknown but studies of Drosophila and 
Xenopus have shown clearly that mRNA is not stored 
randomly in the oocyte cytoplasm [31, 32]. Furthermore, 
it has been shown that maternal reserves need to be bro-
ken down for embryonic genome activation to occur [33, 
34]. Their extended lifespan and active decay mecha-
nisms in mice nevertheless indicate clearly that mRNA 
stability is crucial for constituting the reserves and seeing 
to their timely clearing.

The finding that  m6A modification of RNA is more 
frequent in oocytes than in liver cells at least in pigs has 
interesting implications for maternal transcripts, since 
it has been demonstrated that an abundance of  m6A 
near the stop codon in 3’UTRs affects polyadenylation 
site selection [35]. Another study in pigs has detected 
a greater abundance of  m6A marks in the 5’ and 3’ UTR 
gene coding regions [36]. Moreover, it has found that 
the  m6A is abundant in granulosa cells and this mark is 

greater in small (< 3  mm) compared to large follicles 
(> 5  mm) demonstrating a potential role of  m6A during 
folliculogenesis through the modulation of specific tran-
script [36]. Since reproductive organs like ovaries exhibits 
a rate of aging that is much faster than other somatic, it 
has also been shown that  m6A associated gene in granu-
losa cells from aging women, an increased number of  m6A 
methylated genes compared to younger female group [37]. 
Differences in polyadenylation patterns have been associ-
ated with differences in transcript stability, export, trans-
lation and localization [38]. Transcriptional silencing of 
the X chromosome has been associated with the presence 
of at least 78  m6A marks throughout the long non-coding 
RNA of XIST [39]. Taken together these results provide 
novel insights of  m6A in female fertility and its implica-
tion in various functions from transcript stability to fol-
liculogenesis and ovarian functions through aging.

Just like on DNA, epigenomic marks on RNA are 
due to enzymatic activities that transfer, recognize or 
remove them. Some of these enzymes have been asso-
ciated with infertility of one type or another. TRDMT1 
(DNMT2) combined with NOL1/NOP2/SUN as part-
ner enzymes has been shown to catalyze writing of 
 m5C modifications [40]. Although we detected  m5C 
by mass spectrometry, expression of TRDMT1 was 
very low in all species except for some in the nucleus 
of porcine oocytes. The presence of TRDMT1 in the 
nucleus was expected since it has CpG DNA methyla-
tion activity, which plays a key role in oogenesis and 
embryonic development [41, 42]. Cytosine methyla-
tion by TRDMT1 is important for the stabilization of 
tRNA [43]. In Drosophila, 5-hydroxymethylcytosine is 
found on polyadenylated RNA and promotes mRNA 
translation in different physiological processes includ-
ing embryogenesis [44]. In the present study, WTAP 

Table 1 Localisation of RNA modifying proteins protein in early antral follicles and mature oocytes

n.d. not determined, oon oocyte nucleus, ocy oocyte cytoplasm, fc follicular cells, zp zona pellucida, tpi transzonal projection insides, tpe transzonal projection ends, cc 
cumulus cells, gc granulosa cells; ahigh intensity; blow intensity; cspotty; dlarge foci; eprimordial

Enzyme type Germinal tissue type

Early antral Mature oocyte

Mouse Pig Cow Mouse Pig Cow

Writer
    TRDMT1 n.d n.d n.d n.d oon n.d

    WTAP oon, zp oon fc oon, ocy, cc ocy, zp, tpi, tpe, cc oon, ocy, zp, tpi, tpe, cc

Reader
    MBD2 oon oon, ocy, cc oon, gc oon,  ocya, zp, tpe, cc oon, ocy, zp, tpe, cc oon, ocy, zp, tpi, tpe, cc

    YTHDF2 ocy, fc ocyb ocy, fc ocy, zp, tpe, cc tpze, cc ocy, tpi,  tpe1, cc

    FMRP ocy, cc,  fc2 ocy, cc, fc ocy, cc, fc ocy, zp, tpe, cc ocy, zp, tpi, tpe, cc zp, tpi, tpe, cc

Eraser
    ALKBH5 oon oon oon oonc oon, ocy,  zpd, cc oon, tpe, cc

    FTO ocy,  fce ocy, fc ocy, fc ocy, zp, tpe, cc cc ocy, zp, tpi, cc



Page 9 of 12Dubuc et al. Journal of Ovarian Research           (2023) 16:90  

was found in all three mammalian species. This  m6A 
writer is known to play a role in embryogenesis and 
tissue differentiation in the zebra fish [45] through 
transcriptional and post-transcriptional regulation of 
various genes. It is localized in the nucleoplasm and 
in pre-mRNA-rich speckles, and co-localizes partially 
with splicing factors [45, 46]. In mice, wtap knock-out 
becomes lethal during early embryogenesis [47].

The reader proteins MBD2, YTHDF2 and FMRP 
were detected in the cytoplasm of early and mature 
oocytes in all three species. MBD2 proteins offer dif-
ferent localization in mice and bovine early embryo 
stages and MD2 knockout mice is not known to lead 
to gross abnormalities and animals remain fertile [24, 
48]. However, YTHDF2 appears to be required for 
oocyte quality and zygotic development in mammals 
and regulates transcript dosage during oocyte matura-
tion in mice [49]. YTHDF2 with YTHDC2 have been 
shown to be crucial for meiotic initiation and pro-
gression in mice female germ cells [50, 51]. FMR1 is 
located on the X chromosome and codes for an RNA-
binding protein [52]. FMRP (the protein produced by 
FMR1) is considered as an  m6A reader since it controls 
the export, the stability and the translation of methyl-
ated RNAs [29, 53-55]. Binding to  m6A appears to be 
sequence-dependent, and possibly involve interaction 
with YTHDF [55]. FMR1 dysregulation is known to 
increase the risk of primary ovarian insufficiency lead-
ing to premature menopause [52]. How FMRP might 
cause primary ovarian insufficiency is still unclear, 
but its association is consistent with the role of RNA 
binding proteins that recognize methylation marks as 
essential elements of ovarian function.

The greatest differences between species were observed 
for eraser enzymes, both in terms of abundance and 
localisation. FTO was the most abundant in the oocyte 
cytoplasm and most abundant in mice. ALKBH5 and 
FTO are both essential for fertility, the former being 
involved in mRNA export and RNA metabolism as 
well as important for spermatogenesis [56] and the lat-
ter playing some role in preventing premature ovarian 
insufficiency disease [57]. It has also been shown that 
both are localized in the nucleus of eukaryotic cells [19, 
58], although we found that FTO was most abundant 
in the oocyte cytoplasm. FTO can also be an eraser for 
 N6,2’-O-dimethyladenosine  (m6Am), a post-transcrip-
tional modification that occurs on the first nucleotide on 
mRNA following the  m7G cap [59]. The reversible  m6Am 
mark stabilizes mRNA [60]. Our observations of nucleo-
side modifications and the abundance of the associated 
RMPs are consistent with this important role of  m6A 
during oogenesis. The differences between species in 

terms of FTO are consistent with the timing required for 
the breakdown of maternal reserves.

We have reported previously that in cattle, transzonal 
projections connecting cumulus cells to the oocyte act 
like synapses and can harbor ribonucleoprotein gran-
ules or transfer these and other complex materials to 
the oocyte [61, 62]. RNA thus transferred would add 
to the maternal reserves. In this study, we showed that 
 m6A writer WTAP is detectable in transzonal projec-
tions of both large mammals but not in those of mice. 
The three readers were found inside projections in all 
three species, whereas FTO was only in the case of cat-
tle. This is consistent with observed cross-species dif-
ferences in the duration of transzonal attachment to 
the oolemma, for example, persisting during matura-
tion in mice, rats, rabbits and humans but disconnect-
ing and retracting immediately after germinal vesicle 
breakdown in cattle [63].

The mechanisms underlying RNA shuttling through 
transzonal projections are still largely unknown, but 
we and others have described the role played by FMRP 
in RNA granules transport in mouse neurons [28]. 
 N6-methyladenosine pulldown has allowed identification 
of FMRP, FXR1P and FXR2P as new readers [64]. More-
over, in mouse embryonic stem cells, FMRP also shares 
targets with YTHDF1 and promotes nuclear export 
of transcripts containing  m6A residues [29, 64]. These 
reports all corroborate the involvement of RNA modify-
ing enzymes in transcript stability, transport and transla-
tional control. 

Conclusions
Three animal species were compared in an attempt 
to reveal the role of methylation in the persistence of 
maternal mRNA during mammalian early develop-
ment. The longest transcriptional silence period and 
the earliest disconnection of transzonal projections 
following meiosis resumption are observed in bovine 
oocytes. Murine oocytes have the shortest transcrip-
tional silence and are the least dependent on transcript 
stability and storage. Known modifiers of RNA nucleo-
side bases were very abundant in oocytes of all three 
species from the early to antral follicle stages. Spe-
cies-associated differences in the distribution of these 
enzymes were observed, notably for the  m6A eraser 
FTO. Increased presence of RNA modifying enzymes 
in transzonal projections was associated with greater 
dependence on RNA stability. This study provides sup-
port for an important role played by the epitranscrip-
tome in the management of maternal RNA stored in 
mammalian oocytes.
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