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Abstract 

Ovarian cancer (OC) is one of the common malignant tumors that seriously threaten women’s health, and there is a 
lack of clinical prognostic predictors, while m5c and lncRNA have been shown to be predictive of multiple cancers, 
including OC. Therefore, our goal was to construct a risk model for OC based on m5c-related lncRNA.340 m5c-
related lncRNA were identified and a novel risk model of OC ground on nine m5C-related lncRNA was constructed 
using LASSO-COX regression analysis. Kaplan–Meier analysis showed there was a significant difference in prognosis 
between risk groups. We established a nomogram which was a good predictor of overall survival. In addition, GSEA 
was enriched in multiple pathways and immune function analysis suggested that immune infiltration varies depend-
ing on the risk group. In vitro experiments show that AC005562.1, a key lncRNA of the risk model, is highly expressed 
in OC cells and promotes OC cell proliferation. Finally, we further explored the potential biological markers of m5c-
related lncRNA in OC with WGCNA analysis and established a ceRNA network. In conclusion,we have developed a 
reliable m5c-related prediction model and performed systematic validation and exploration of various aspects. These 
results can be used for the assessment of OC prognosis and the discovery of novel biomarkers.

Introduction
OC is a common gynecological tumor whose incidence 
ranks third among the total number of gynecological 
tumors, after cervical cancer and endometrial cancer [1]. 
Results indicate that OC has the highest death rate and 
the worst prognosis of all gynecologic cancers. Surgical 
resection and chemotherapy of the tumor remain the 
most common treatments for OC [2]. According to the 
SEER database, the data shows that the rate of new cases 
of OC was 10.6 per 100,000 women per year. There is a 
circumstance that most OC is found to be advanced and 
chemotherapy resistance results in high relapse rates and 
a worse prognosis [3]. Therefore, there is a high necessity 
to better understand the molecular mechanisms of OC 

and the functional predictive features that may facilitate 
personalized survival prediction and provide the best 
treatment for patients.

The modification of RNA 5-methylcytosine (m5C) uses 
S-adenosyl-l-methionine as a donor methyl for the for-
mation of m5C. The process of m5C methylation mainly 
includes the related methyltransferases, demethyltrans-
ferases, and the related binding proteins. The presence 
of RNA m5C modification has now been found in tRNA, 
snRNA, miRNA, lncRNA, and eRNA [4–7]. Many stud-
ies give evidence that methylation modifications act in 
promoting tumor metastasis, invasion, and drug resist-
ance [8–10]. In addition, m5C methylation has been 
found to affect the survival risk associated with tumors 
such as OC [11], hepatocellular carcinoma [12], and low-
grade glioma [13].

Long-stranded non-coding RNA (lncRNA), a type 
of non-coding RNA above 200 nucleotides in length., 
influences tumor development by inhibiting the growth 
of tumors through participating in tumor growth and 
metastasis [14], malignant transformation [15], and 
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dynamic changes in the tumor microenvironment [16] 
and other processes. Studies show that in many malig-
nancies, methylation-related genes have been proven to 
influence tumor progression through the regulation of 
lncRNA methylation levels, confirming that m5c modifi-
cations are widely present in lncRNA [17].

Both m5C-related genes and lncRNA are ideal diagnos-
tic and prognostic markers. Increasing evidence suggests 
that m5C-related genes and lncRNA can predict prog-
nosis in a variety of cancers with good predictive results. 
For instance, m5c-related genes have the ability to predict 
the prognostic value of lung squamous cell carcinoma 
patients [18]. For pancreatic ductal adenocarcinoma, the 
m5c-related lncRNA signature not only predicts progno-
sis independently but also provides accurate survival rate 
predictions [19]. Besides, m5c-related lncRNA signature 
stratify prognosis and response to chemotherapy in low-
grade glioma patients [20]. Although m5C regulators and 
related lncRNA play an important role in the diagnostic 
and prognostic process, few studies have been conducted 
on the relationship between m5C-related lncRNA and 
OC.

The objective of this study is to develop and validate a 
risk model using m5c-related lncRNA. Furthermore, to 
reveal this prognostic model’s potential functions, the 
relationship between signature and immune infiltration, 
and drug sensitivity are explored. Meanwhile, GSEA and 
WGCNA analysis studied the biological features as well 
as molecular pathways in patients with different prog-
noses of OC. Finally, the signature lncRNA, which is 

performed in  vitro experiments, further illustrated the 
reliability of the model.

Materials and methods
Data extracted
The processed OC RNA sequencing profiles and related 
patient clinical characteristics were extracted from The 
Cancer Genome Atlas (TCGA)(http:// portal. gdc. cancer. 
gov/). We choose the Transcripts Per kilobase Million 
(TPM) format for subsequent analyses. After excluding 
cases without survival information and secondary sur-
gery, 375 OC samples were incorporated into our study. 
Table  1 provides detailed clinical data for OC patients. 
Clinical variables involved age, stage, grade, treatment, 
follow-up time, dimension, lymph nodes invasion (LNin-
vasion), vascular invasion (Vinvasion), status, and sur-
vival status.

Identification of m5c‑related lncRNA
The correlation between m5c regulators and lncRNA 
was used to identify m5c-related lncRNA, which was 
selected under the rule that |correlation coefficient|> 0.4, 
P < 0.001. We used the R package “limma” to output the 
m5c-related lncRNA expression matrix. At the same 
time, an alluvial diagram was plotted to depict the rela-
tionship between the regulators and lncRNA.

Construction of the risk model and verify the signature
The matrix was analyzed by univariate cox regres-
sion and the 14 lncRNA that related to prognosis were 

Table 1 The detailed clinical characteristics of the OC patients

Characteristics Unknow Total set(n = 375) Testing set (n = 187) Training set (n = 188) P

Age,n(%) 0 age ≤ 65 257(68.533) 122(65.241) 135(71.809) 0.171

age > 65 118(31.467) 65(34.759) 53(28.191)

Status,n(%) 47 Tumor free 84(25.610) 36(22.222) 48(28.916) 0.165

With tumor 244(74.390) 126(77.778) 118(71.084)

Vascular invasion,n(%) 272 No 40(38.835) 17(37.778) 23(39.655) 0.846

Yes 63(61.165) 28(62.222) 35(60.345)

Lymph nodes invasion,n(%) 228 No 47(31.973) 20(31.746) 27(32.143) 0.959

Yes 100(68.027) 43(68.254) 57(67.857)

Grade,n(%) 1 G1 1(0.267) 0(0.000) 1(0.535) 0.935

G2 42(11.230) 22(11.765) 20(10.695)

G3 321(85.829) 160(85.561) 161(86.096)

G4 1(0.267) 0(0.000) 1(0.535)

GX 9(2.406) 5(2.674) 4(2.139)

Stage,n(%) 3 Stage I 1(0.269) 1(0.535) 0(0.000) 0.716

Stage II 21(5.645) 12(6.417) 9(4.865)

Stage III 292(78.495) 147(78.610) 145(78.378)

Stage IV 58(15.591) 27(14.439) 31(16.757)

Dimension, mean(± SD) 14 (cm) 0.905 ± 0.394 0.876 ± 0.327 0.934 ± 0.450 0.158

http://portal.gdc.cancer.gov/
http://portal.gdc.cancer.gov/
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obatained. Then, the entire set classified into the training 
set (N = 188) and testing set (N = 187) by R language ran-
domly. Nine m5c-related lncRNA in the training set were 
identified by using the LASSO-COX regression analysis, 
and a prognostic model was builted. The risk score’s cal-
culation formula was set as RiskScore = ∑EXPi × COEi, 
in which EXP meant the expression value of the lncRNA, 
and COE referred to the regression coefficient. Based on 
the median risk score, patients in the training set were 
split into high-risk and low-risk groups. The Kaplan–
Meier and ROC curves were made by using the "Survival" 
and "SurvivalROC" packages, respectively, while the 
PCA scatter plot was created by using the "ggplot2" tool. 
Meanwhile, the above analysis of the testing set has also 
been made accordingly. Kaplan–Meier analysis was used 
to explore the relationship between risk scores and differ-
ent clinical subgroups.

Construct the nomogram
Univariate and multivariate Cox regression analyses 
were undertaken to determine if the prognostic signature 
might be independent of other clinical characteristics. 
Depending on the risk score and other independent clini-
cal prognostications, an OC patient prognostic nomo-
gram was created by the “rms” package to anticipate the 
likelihood of 1-, 3-, and 5-year OS. Calibration plots were 
used to compare predicted survival with actual survival. 
ROC curve were used to analyze the sensitivity and spec-
ificity of the nomogram.

GSEA
Gene function was analyzed by using GSEA version 4.1.0 
software from the MSIGDB database on the GSEA web-
site (http:// softw are. broad insti tute. org/ gsea/ msigdb) 
and the standard weighted enrichment approach was 
used for enrichment analysis. In this study, one thousand 
times were specified for the random combination. Hall-
mark, GO and KEGG enrichment analyses were executed 
using the GSEA analysis for the high and low-risk groups. 
FDR q-val < 0.25, |NES|> 1, and NOM p-val < 0.05 were 
regarded as significant enrichment parameters.

Estimation of Tumor‑Infiltrating Immune Cells and ssGSEA
We calculated the enrichment levels for 29 immune gene 
sets per OC sample by using the single-sample gene-set 
enrichment analysis (ssGSEA) score. Meanwhile, within 
each sample, the proportion of 22 different types of 
immune cells was calculated using the CIBERSORT R 
package.

Prediction of chemotherapy response
To predict chemotherapy responses for each patient 
based on the ovarian cell lines gene expression matrix 

and drug sensitivity data from Genomics of Drug Sen-
sitivity in Cancer (GDSC). Each sample’s sensitivity to 
chemotherapeutic drugs was estimated by the R package 
“pRRophetic” which computed the half maximal inhibi-
tory concentration (IC50) for each patient through ridge 
regression.

CeRNA network construction
WGCNA is a comprehensive weighted association net-
work analysis software based on the R language. This 
study performed WGCNA analysis on the lncRNA of dif-
ferent risk groups. The WGCNA in R software was going 
into performing this process and visualizing it. After 
checking the missing values and identifying outliers, the 
minimum soft threshold whose scale-free topology fitting 
index reaches 0.9 was calculated to construct hierarchi-
cal clustering that co-expresses the network and module 
identification. Pearson correlation analysis was dedicated 
to calculating the modules most related to risk. In the 
related module, the significant GS of the gene and the 
MM of the module member were going by identifying the 
highly related genes, and we set MM > 0.65, and GS > 0.2. 
Based on the lncRNA we get from WGCNA, we use 
Lncbase v3 to predict the lncRNA–miRNA relationships. 
After that, we use miRDB to predict the miRNA–mRNA 
relationships. The ceRNA network graph was visual-
ized by Cytoscape v3.6.0 and mRNA was imported into 
STRING(https:// string- db. org/) to draw the PPI network.

In vitro assays
The cell lines SKOV-3, A2780, HEY, and IOSE 80 were 
obtained from the National Collection of Authenti-
cated Cell Cultures (Shanghai, China). siRNA against 
human AC005562.1 were synthesized by GenePharma 
(Shanghai, China), and transfected into cells using 
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA). 
Total RNA has been extracted from cells using TRIzol 
Reagent(Invitrogen, Carlsbad, CA, USA). According to 
the manufacturer’s instructions for the Reverse Tran-
scription Kit (EnzyArtisan, China), RNA was reversely 
transcribed into cDNA. Using cDNA as a template, 
2 × S6 Universal SYBR qPCR Mix (EnzyArtisan, China) 
and quaint studio 7 flex real-time PCR system (Ther-
moFisher) were going to detect real-time Quantitative 
PCR(rt-qPCR).

The transfected OC cells were seeded in 96-well plates, 
and cell proliferation was measured using cell counting 
kit-8(CCK-8)(Dojindo, Tokyo, Japan). In addition, the 
AC005562.1 primers were the following: AC005562.1 -F, 
5′- tggtcgtcatggaccggaag -3′; AC005562.1 -R: 5′- cttgc-
gagccaaaagtcctc -3′.

http://software.broadinstitute.org/gsea/msigdb
https://string-db.org/
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Statistical analysis
Statistical analysis was conducted by R software (version 
4.0.3), Perl software (version 5.3), and Graphpad Prism 
9.3.0. Univariate and multivariate Cox proportional haz-
ard models, LASSO method, Kaplan–Meier method, 
PCA, and ROC analysis were used in this study. More-
over, the rt-qPCR results were quantified by the ΔΔCT 
method and analyzed using the Student’s t-test.

Results
Identification of m5c‑related lncRNA
In order to visualize this study, a flow chart (Fig. 1) was 
provided which illustrated the framework of the research. 
We obtained 15 m5c regulators from the published arti-
cles. The list of related gene names was provided in Table 
S1. By referring to the rule of identification, 340 m5c-
related lncRNA were identified. The relationship between 
the m5c regulators and lncRNA was depicted through an 
alluvial diagram (Fig. 2a).

Establishment of the Risk Model
By using the univariate cox regression, 14 prognosis-
associated lncRNA were found (Fig.  2b)0.375 OC sam-
ples were separated into a training set (N = 188) and a 
testing set (N = 187). This m5C-related lncRNA under-
went the LASSO regression and multivariate Cox pro-
portional hazard regression analyses in order to further 
investigate the prognostic significance of this lncRNA in 
OC and to help choose a reliable risk model for prognosis 
prediction. Specifically, we further screened the lncRNA 
by lasso regression (Fig.    2c), we select the lambda cor-
responding to the left dashed line in the cross-validation 
curve (Fig.  2d) to obtain the best model and 12 prog-
nosis-associated lncRNA were found. After that, the 12 
lncRNA that related to prognosis were subjected to mul-
tivariate Cox regression analysis. As a result, it was able 
to identify 9 lncRNA, and the corresponding coefficient 
values are shown in Table 2. The correlation graph illus-
trates the relationship between these lncRNA and m5c 

Fig. 1 Flow chart of this study
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Fig. 2 Construction of the risk model. a An alluvial diagram which plotted to depict the relationship between the regulators and lncRNA. b 14 
prognosis-associated lncRNA were obtained by univariate cox regression analyses, show their hazard ration with a forest diagram. c LASSO analysis 
of 14 prognosis-associated lncRNA. d Cross-validation curve for adjusting parameter selection in LASSO analysis. e The correlation graph illustrate 
that risk model-related lncRNA has good correlation with m5c regulators
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regulators (Fig.  2e). The risk score formula was as fol-
lows: RiskScore = (2.097107) * AC005562.1 + (1.016992) 
* AC036103.1 + (0.355) * AC074029.3 + (-1.21116) * 
AL139815.1 + (-0.47768) * AL590652.1 + (0.618166) * 
CACNA1C-AS1 + (-0.43103) * LNC-LBCS + (0.479378) 
* MIR600HG + (-0.51962) * WAC-AS1. The risk score 
of each patient was calculated by the formula and the 
patients were divided into high- and low risk- groups 
according to the median risk score of the training set. 
After grouping, there were 94 high-risk and 94 low-risk 
patients in the training set while there were 87 high-risk 
and 100 low-risk in the testing set. In the training and 
testing set, it was discovered that high-risk patients were 
associated with more fatalities (Fig.  3a,3b). The survival 
status (Fig. 3d,3f ) and risk score distribution (Fig. 3e,3g) 
for each OC patient in the training and testing were 
shown, it implies that the high-risk group experiences a 
greater mortality rate and a shorter survival period. We 
performed the above analysis on the entire dataset to 
complete the internal validation and obtained the same 
results (Fig.  3c,3h,3i). Heatmap was used to represent 
model-related lncRNA expression (Fig.  3j). The areas 
under the curve (AUC) at 1,3,5  year are 0.69, 0.68, and 
0.72 (Fig. 3k), demonstrating the risk model’s proficiency 
in OC prognostic prediction.

Prognostic and Predict Value of Risk Modle
A subgroup study proceeded to determine if the risk 
score could be used in other situations. It was found that 
the risk score predicted overall patient survival in a vari-
ety of conditions (Fig.  4a-4f ). These results show how 
well the risk model is at predicting future events.

Then, to determine more about the predictors of OC, 
univariate and multivariate Cox regression analyses were 
conducted in the entire set. Age and risk score had an 
impact on the prognosis of the OC patients in the train-
ing cohort, as shown by the findings of the univariate Cox 

regression analysis. (Fig. 4g). Furthermore, the multivari-
ate Cox regression analysis revealed that the risk score 
remained significantly connected with the prognosis of 
OC patients. (Fig. 4h). This led to the conclusion that risk 
score is a separate risk factor.PCA results also showed 
distinct between the two groups in the entire set based 
on all genes, m5c gene, m5c-related lncRNA, and risk 
model-related lncRNA (Fig. 4i-l). The high-risk group is 
more distinct from the low-risk group in accordance with 
the risk-related lncRNA.

Nomogram
Place clinical variables like status, age, and risk into the 
nomogram model to forecast the likelihood that OC 
patients would survive at 1, 3, and 5 years. (Fig. 5a). It was 
demonstrated that the relevant calibration curves would 
make a recent prediction of the findings at 1, 3, and 
5 years (Fig. 5b). As a result, the nomogram that included 
clinical characteristics and risk was reliable and accurate, 
and it could be used in predicting the OC patients’ 5-year 
OS rate. The AUC of ROC curve for the nomogram at 
1,3,5 year are 0.78, 0.74, and 0.79, demonstrating the pre-
dictive effect of nomogram.

Gene Set Enrichment Analysis (GSEA)
To investigate the functional characteristics of the risk 
model, this study performed the hallmark pathway, 
GO enrichment, and KEGG pathway analyses between 
the two risk subgroups by the GSEA. The top five hall-
mark pathways that are more prevalent in the high-risk 
group (Fig. 6a-e) include apical junction, hypoxia, estro-
gen response early, adipogenesis, and mitotic spindle, 
while e2f targets, interferon alpha response, MYC tar-
gets v1, spermatogenesis, and oxidative phosphorylation 
enriched in the low-risk group (Fig.  6f-j). Go analysis 
showed that the DEGs enriched in multiple GO gene sets 
including Biological Process (BP), Cellular Component 
(CC), and Molecular Function (MF), such as activation 
of GTPase activity, mitochondrial large ribosomal subu-
nit, GTPase activator activity, and so on(Fig. 6k-l). KEGG 
analysis also significantly enriched the ERBB signaling 
pathway, insulin signaling pathway, and MTOR signaling 
pathway, among others(Fig. 6m-n). These findings dem-
onstrated that distinct signaling pathways exist between 
the two groups, which may help to explain why there was 
a significant variation in prognosis between groupings.

Correlation Between Immune Landscape and Risk 
Model.ssGSEA analysis showed that ADCs, T helper 
cells, and macrophages differed between the two 
groups while the others did not (Fig.  7a). The scale of 
22 different immune cell infiltration scores in the two 
groups was shown in a boxplot.The high-risk group was 
closely correlated with T cells follicular helper, T cells 

Table 2 The HR values and coefficient values of risk model-
related lncRNA

id HR HR.95L HR.95H pvalue coefficient

AC005562.1 6.400524 1.041513 39.33384 0.045084 2.097107

AC036103.1 3.095322 1.129352 8.483647 0.028061 1.016992

AC074029.3 1.674854 1.078993 2.599771 0.021513 0.355

AL139815.1 0.357883 0.136028 0.941573 0.037348 -1.21116

AL590652.1 0.808167 0.630557 1.035804 0.092543 -0.47768

CACNA1C-AS1 1.761052 1.004222 3.088267 0.048306 0.618166

LNC-LBCS 0.653078 0.440592 0.96804 0.033861 -0.43103

MIR600HG 1.275899 1.029058 1.581949 0.026346 0.479378

WAC-AS1 0.647499 0.470059 0.891919 0.007815 -0.51962
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Fig. 3 Prognostic value of the risk model. a-c Kaplan–Meier(KM) curve analysis of the training, testing, and entire set, in each group, the prognosis 
was better in the low-risk group than in the high-risk group. d,f,h The survival status for each OC patient in the training, testing, and entire set. e,g, i 
Risk score distribution for each OC patient in the training, testing, and entire set. j Model-related lncRNA expression heatmap. k The ROC curve, AUC 
at 1,3,5 year are 0.69, 0.68, and 0.72
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Fig. 4 Prognostic and Predict Value of Risk Modle. Patient OS K-M curves, categorized by (a,b) age, (c,d) stage, and (e,f) dimension. All clinical 
subtypes showed significant differences (p < 0.05).The risk model has good predictive power in different situations. OS of OC patients: univariate 
and multivariate analysis in entire set (g, h) to determine whether the risk score is a separate risk factor. Comparison of PCA between two groups in 
entire set using (i) all genes, (j) m5c gene, (k) m5C-related lncRNA, and (l) risk model-related lncRNA
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Fig. 5 Nomogram. a The Nomogram model to forecast the likelihood that OC patients would survive at 1, 3, and 5 years. b The Nomogram model 
relevant calibration curves, the gray diagonal line indicates the ideal column line diagram, the green and blue red lines represent the predicted 
1-year, 3-year, and 5-year overall survival of the patients, respectively. c The ROC curve for the nomogram, the AUC at 1,3,5 year are 0.78, 0.74, and 
0.79
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gamma delta, NK cells activated, and Macrophages 
M1, otherwise, showed a decreased infiltration of NK 
cells resting, Macrophages M0, and Mast cells activated 
(Fig.  7b), which confirmed significant differences in 
immune infiltration across risk subgroups

Response to chemotherapeutic drugs
We assessed how OC patients with various risk scores 
responded to 137 chemotherapy agents, of which 49 had 
significantly different sensitivities. In particular, patients’ 
sensitivity to camptothecin, cisplatin, etoposide, and vin-
blastine was higher in the low-risk group, which were 

Fig. 6 GSEA. The top five hallmark pathways that are more prevalent in the high-risk group (a-e) and low-risk group (f-j). The top ten GO enriched 
in the high-risk group (k) and low-risk group (l). The top ten KEGG pathways enriched in the high-risk group (m) and low-risk group (n)



Page 11 of 16Wang et al. Journal of Ovarian Research           (2023) 16:96  

Fig. 7 Estimation of Tumor-Infiltrating Immune Cells and ssGSEA (a) ssGSEA analysis for 29 immune gene sets. *p < 0.05, **p < 0.01 (b) The scale of 
22 different immune cell infiltration scores calculated by CIBERSORT in the two groups. (ns) Non-significant, *p < 0.05, **p < 0.01, and ***p < 0.001
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commonly OC chemotherapeutic agents(Fig.  8a-d). 
Resistance to these drugs might be related to the survival 
risk in the high-risk group. In the high-risk group, we dis-
covered that 41 drugs had lower IC50 values(Figure S1), 
providing a reference for the selection of chemothera-
peutic agents in clinical practice.

CeRNA network construction
To further investigate the role played by m5c-related 
lncRNA in the construction of the prognostic model of 

OC, we created a ceRNA network using the WGCNA 
method and used PPI analysis to demonstrate the inter-
actions between the relevant mRNA-expressed proteins. 
The brown module shows an extremely high correlation 
with risk (Fig. 9a,b). Selected lncRNA within the module 
and predicted miRNA sponged by lncRNAs. miRDB for 
predicting miRNA-mRNA relationships. We show the 
specific regulation mechanism through the ceRNA net-
work ((Fig.  9c). The PPI network demonstrated the role 
of the target mRNA (Figure S2a). GO analysis revealed 

Fig. 8 Patients’ sensitivity to OC chemotherapeutic agents, calculated by the R package “pRRophetic”. a Camptothecin. (p = 0.002) (b) Cisplatin. 
(p = 0.00044) (c) Etoposide. (p = 0.027) (d) vinblastine. (p = 0.0017)
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Fig. 9 WGCNA and ceRNA network. a The relationship between risk subgroups and the module eigengenes, intensity and direction of correlations 
are indicated on the right side of the heatmap (red, positively correlated; green, negative correlated. b The module membership in the brown 
module. c The ceRNA network demonstrate the relationship between model-related lncRNA and miRNA-mRNA
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targeted mRNA enriched in several functions and pro-
cess (Figure S2b,c).

In Vitro experiments
By using rt-qPCR, it was determined that the three OC 
cell lines had much greater levels of AC005562.1 expres-
sion than normal ovarian epithelial cells (Figure S3a). 
siRNA knockdown efficiency was also verified by rt-
qPCR (Figure S3b,c). As shown in the Figure (Figure 
S3b,c), we chose to select the two combinations with the 
highest knockdown efficiency for cell proliferation assays 
separately. The CCK-8 results demonstrated that lncRNA 
knockdown prevented OC cell proliferation (Figure 
S3d,e).

Discussion
OC is a high-mortality gynecologic malignancy [21], and 
effective prognostic assessment methods are beneficial 
for the timely identification of patients. The prognostic 
predictive power of m5c-related lncRNAs has been dem-
onstrated in many tumors, but there are limited reports 
in OC. The purpose of this study was to develop an m5c 
lncRNA prognostic model for OC.

In this study, we identified 340 m5c-related lncRNA in 
the TCGA dataset, and 9 lncRNAs were identified and 
prognostic modeled by lasso regression and multifacto-
rial cox analysis. A novel prognostic signature of m5c-
related lncRNA could precisely distinguish the OS of OC 
patients. The training and validation set tested the clas-
sification ability of the risk model. The m5C methylation 
affects the survival risk associated with many tumors, and 
in hepatocellular carcinoma, high expression of NSUN4 
was significantly associated with survival outcomes [22], 
NSUN4 was also associated with increased risk of breast, 
ovarian, and prostate cancers [23]. The expression of 
NSUN2 is upregulated in major gynecologic neoplas-
tic diseases [24], it is also elevated in breast cancer and 
head and neck neoplasms [25, 26]. Risk scores based on 
m5c-related lncRNA characteristics were determined to 
be an independent predictor when controlling for clini-
cal variables by univariate and multivariate regression. 
Moreover, the prognostic model has good predictive 
power of OS in subgroups of patients with different clini-
cal features.

We also created a nomogram where the observed rates 
for the 1-, 3-, and 5-year operating systems show perfect 
agreement with the predicted rates in the correlation 
chart. This nomogram will provide a reference for clini-
cians to assess the prognosis of OC patients.

It has been demonstrated that lncRNA is crucial to 
the development and progression of OC. 9 m5c-related 
lncRNA were obtained in our study, and in  vitro assay 
proved lncRNA AC005562.1 function in OC cells. All 

but AC074029.3 and AL139815.1 of prognostic m5c-
related lncRNA have been studied in cancer. WAC-AS1 
was shown to promote glycolytic efficiency and prolif-
eration in hepatocellular carcinoma cells [27]. It was 
also included in another predictive model for OS in 
OC patients [28]. Lnc-LBCS serves a tumor-suppres-
sive effect in bladder cancer stem cells, which is tightly 
related to prognosis, treatment response, and clinical 
stage [29]. Expression of CACNA1C is indirectly affected 
by the hemimethylated of CACNA1C-AS1 CPG codon 
[30], which is considered the master gene of intestinal-
type adenocarcinomas [31]. Interestingly, Zhu et  al. 
used AL590652.1 [32] as one of the necroptosis-related 
lncRNA signatures in OC patients while AC036103.1 
[33] is actively engaged in creating risk signatures for 
gastric adenocarcinoma. MIR600HG acts as an antican-
cer agent by inhibiting colorectal cancer cell stemness 
[34]. However, Liu et  al. [35] found a carcinogenic role 
for MIR600HG in the development of oral squamous cell 
carcinoma cells. Therefore, the precise mechanisms of 
this lncRNA in cancer need to be further explored.

What ‘s more, GSEA analysis further revealed the bio-
logical functions that may be involved in risk model. 
Hypoxia was enriched in the high-risk group through 
HALLMARK analysis, while oxidative phosphorylation 
was enriched in the low-risk group. Metabolic is essential 
for cancer cell growth, survival, and proliferation [36]. In 
OC cells, an enhanced glycolytic phenotype was observed 
[37, 38], and PI3K/AKT, Myc, or hypoxia-inducible factor 
(HIF) was found to be involved in the glycolytic process 
[39]. In GO and KEGG analysis, they also enriched in 
glycolytic pathways such as KEGG INSULIN SIGNAL-
ING PATHWAY, GOBP ADP METABOLIC PROCESS. 
Focusing on the glycolytic may assist the management 
of OC. OC has been shown to possess immunogenicity 
[40], and immunotherapy for OC is receiving increasing 
attention [41]. An increase in immune infiltration was 
observed in the high-risk group, which would lead to a 
negative prognosis. The high recurrence rate of OC is 
frequently linked to chemotherapy resistance [42], which 
is one of the main causes of the poor survival rate of 
OC [43]. By predicting sensitivity to chemotherapeutic 
agents, we found that some OC chemotherapeutic agents 
were resistant in the high-risk group, this might be a pre-
dictive risk factor for individuals in the high-risk group. 
Additionally, we discovered that patients in the high-risk 
group were more sensitive to 41 drugs, and these find-
ings will direct how clinical pharmaceuticals are used. 
WGCNA analysis further explored the possible mecha-
nism and role of m5c-related lncRNA in OC, and the new 
biomarkers identified could be used for future studies.

However, there are some limitations of the study. In the 
beginning, we used only the TCGA dataset as a single 
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source of data, lacking additional cohorts to validate the 
results. Secondly, although we experimentally validated 
the model with the highest coefficients of lncRNA, the 
confirmation of our results is required by more compre-
hensive in  vivo and in  vitro experiments. Last but not 
least, it’s necessary to evaluate the prognostic features in 
a real-world setting.

Conclusions
In conclusion, we have developed a reliable m5c-related 
prediction model and performed systematic validation 
and exploration of various aspects. These results can be 
used for the assessment of OC prognosis and the discov-
ery of novel biomarkers.
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