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Abstract
Background  Ovarian cancer (OC) is one of the most common malignancies in women. It has a poor prognosis 
owing to its recurrence and metastasis. Unfortunately, reliable markers for early diagnosis and prognosis of OC are 
lacking. Our research aimed to investigate the value of the six-transmembrane epithelial antigen of prostate family 
member 3 (STEAP3) as a prognostic predictor and therapeutic target in OC using bioinformatics analysis.

Methods  STEAP3 expression and clinical data were acquired from The Cancer Genome Atlas (TCGA), Genotype-
Tissue Expression (GTEx), and Gene Expression Omnibus (GEO). Unsupervised clustering was used to identify 
molecular subtypes. Prognosis, tumor immune microenvironment (TIME), stemness indexes, and functional 
enrichment analysis were compared between two definite clusters. Through the least absolute shrinkage and 
selection operator (LASSO) regression analysis, a STEAP3-based risk model was developed, and the predictive 
effectiveness of this signature was confirmed using GEO datasets. A nomogram was used to predict the survival 
possibility of patients. Additionally, TIME, tumor immune dysfunction and exclusion (TIDE), stemness indexes, somatic 
mutations, and drug sensitivity were evaluated in different risk groups with OC. STEAP3 protein expression was 
detected using immunohistochemistry (IHC).

Results  STEAP3 displayed marked overexpression in OC. STEAP3 is an independent risk factor for OC. Based on 
the mRNA levels of STEAP3-related genes (SRGs), two distinct clusters were identified. Patients in the cluster 2 (C2) 
subgroup had a considerably worse prognosis, higher immune cell infiltration, and lower stemness scores. Pathways 
involved in tumorigenesis and immunity were highly enriched in the C2 subgroup. A prognostic model based on 13 
SRGs was further developed. Kaplan-Meier analysis indicated that the overall survival (OS) of high-risk patients was 
poor. The risk score was significantly associated with TIME, TIDE, stemness indexes, tumor mutation burden (TMB), 
immunotherapy response, and drug sensitivity. Finally, IHC revealed that STEAP3 protein expression was noticeably 
elevated in OC, and overexpression of STEAP3 predicted poor OS and relapse-free survival (RFS) of patients.

Conclusion  In summary, this study revealed that STEAP3 reliably predicts patient prognosis and provides novel ideas 
for OC immunotherapy.

Keywords  Ovarian cancer, STEAP3, Prognostic signature, Immune infiltration

Identification of STEAP3-based molecular 
subtype and risk model in ovarian cancer
Zouyu Zhao1,2, Chongfeng Sun1,2, Jishuai Hou1,2, Panpan Yu1,2, Yan Wei1, Rui Bai1 and Ping Yang1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13048-023-01218-x&domain=pdf&date_stamp=2023-6-28


Page 2 of 15Zhao et al. Journal of Ovarian Research          (2023) 16:126 

Introduction
Ovarian cancer (OC) is one of the deadliest gynecologi-
cal malignancies owing to its high recurrence rate and 
chemoresistance [1]. OC has three different histologic 
types: epithelial, the most prevalent subtype; germ cell 
origin; and sex cord-stromal. OC incidence and mortal-
ity have decreased significantly in recent decades due 
to improvements in medical and surgical treatment and 
the introduction of immune therapeutics [2, 3]. The five-
year survival rate is still < 50% in OC [4, 5]. A previous 
study showed approximately 19,880 new OC cases in 
the United States in 2022, with 12,810 new OC deaths, 
accounting for 2.1% and 4% of all new cancer cases and 
cancer deaths, respectively [1]. Owing to the insidious 
onset, being prone to invasion and metastasis, and diffi-
culty in early diagnosis, the most majority of OC patients 
are at an advanced stage when diagnosed [6]. Despite 
constant advancements in detection and treatment, OC 
poses a substantial risk to women’s health and is a major 
societal issue [7]. At present, some widespread blood bio-
markers, such as AFP [8], CEA [9], CA199 [10], CA125 
[11], HE4 [12], and BRAC1 [13], are employed as diag-
nostic tools for OC. However, these indicators have not 
been demonstrated to be the best for precisely determin-
ing each patient’s prognosis and curative efficacy [14]. 
Therefore, identifying specific biomarkers of OC to bet-
ter understand its progression and develop novel thera-
peutic targets is essential and urgent.

The six-transmembrane epithelial antigen of pros-
tate family member 3 (STEAP3) was first discovered in 
prostate tissues as a potential target for prostate cancer 
immunotherapy [15], also known as tumor suppressor 
activated pathway-6 (TSAP6). STEAP3 plays a crucial 
regulatory role in ferroptosis by mediating iron metabo-
lism [16].

A high level of STEAP3 expression supports the pro-
liferation of numerous cancer cells by stimulating iron 
uptake and preserving iron storage, including glioblas-
toma [17], hepatocellular carcinoma [18], bladder cancer 
[19], colorectal cancer [20], etc. Despite the significance 
of the STEAP gene family in tumorigenesis and devel-
opment, comprehensive analyses of the importance of 
STEAP3 in OC remain insufficient.

We performed detailed analyses of STEAP3 in this 
study in order to clarify its functions and potential mech-
anisms of action. It has been shown that STEAP3 affected 
the progression and prognosis of OC, based on several 
open databases. Through unsupervised clustering and 
least absolute shrinkage and selection operator (LASSO) 
regression analysis, molecular typing and prognostic 
models were constructed based on prognosis-associated 
STEAP3-related genes (SRGs). We then described the 
association of risk signatures with tumor immune micro-
environment (TIME), tumor immune dysfunction and 

exclusion (TIDE), stemness indexes, and tumor mutation 
burden (TMB). Furthermore, the relationship between 
STEAP3 and the pharmacogenomic features of OC was 
explored. Finally, we verified the correlation between 
STEAP3 protein level and prognosis by immunohisto-
chemistry (IHC).

Materials and methods
Data download
Gene expression matrix (FPKM), somatic mutation 
data, and clinical information for OC (n = 378) and nor-
mal samples (n = 88) were obtained from the Cancer 
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) 
and Genotype-Tissue Expression (GTEx, http://gtex-
portal.org/) databases. Moreover, GSE18520, which 
contained 53 OC samples and 10 normal ovarian tissue 
samples; GSE19829, which included 28 OC samples; 
and GSE63885, which consisted of 101OC tissue sam-
ples; were obtained from the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. The 
annotation platform for three datasets was GPL570. The 
“sva” package was utilized to batch-normalize the expres-
sion matrix from the three independent datasets [21].

Screening SRGs
Patients with OC were divided into two groups accord-
ing to the median value of the STEAP3 expression. The 
SRGs between the two groups were determined using the 
“limma” package. The cutoff criteria were set as |log2 fold 
change (FC) | > 1.5 and false discovery rate (FDR) < 0.01.

Cluster analysis
Univariate Cox regression analysis was used to screen out 
prognosis-related SRGs (p < 0.05). STEAP3-related mol-
ecule subtypes were identified by cluster analysis using 
package “ConsensusClusterPlus” based on the expres-
sion of prognosis-related SRGs. Survival analysis was 
performed to compare the prognosis between the two 
clusters.

Immune landscape analysis
Immune cell and immune function activity scores 
were calculated using single-sample Gene Set Enrich-
ment Analysis (ssGSEA) via “Gene set variation analysis 
(GSVA)” package. Table S1 described the marker genes 
and their functions for different immune cells from pre-
vious studies [22, 23]. Two immune-related algorithms, 
including Estimation of stromal and immune cells in 
malignant tumor tissues using expression data (ESTI-
MATE) and Cell type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT), were utilized 
to analyze the immunological characteristics between 
cluster 1 (C1) and cluster 2 (C2) by package “IOBR”[24].

https://portal.gdc.cancer.gov/
http://gtexportal.org/
http://gtexportal.org/
https://www.ncbi.nlm.nih.gov/geo/
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Tumor stemness indexes
The one-class logistic regression (OCLR) algorithm was 
used to calculate the messenger RNA stemness index 
(mRNAsi) and epigenetically regulated messenger RNA 
stemness index (EREG mRNAsi) of each patient with OC 
based on RNA-seq data of pluripotent stem cell samples 
from the Progenitor Cell Biology Consortium (PCBC) 
database [25].

Enrichment analysis
GSEA was conducted to investigate the differences in 
signaling pathways activated with the hallmark gene 
sets and c2kegg gene sets as the reference using GSEA 
software (version 4.2.3). Annotated gene sets were col-
lected from the Molecular Signatures Database (MSigDB, 
https://www.gsea-msigdb.org/gsea). The filter criteria 
were |Normalized enrichment score (NES)|>1, p < 0.05 
and FDR < 0.25.

Construction of the STEAP3-based risk model
LASSO Cox regression was used to identify the potential 
prognostic SRGs by “glmnet” package [26]. Multivariate 
Cox analysis was used to determine the optimized risk 
signature. The formula of the risk model was as follows: 
risk score = 

∑n
k−1coefi ∗ Expi , in which coefi indicates 

the regression coefficients of prognostic SRGs and Expi 
indicates the expression of genes. Thereafter, on the basis 
of the median risk score, patients with OC were catego-
rized into high- and low-risk groups. The relationship 
between the risk score and overall survival (OS) were 
analyzed using Kaplan-Meier (KM) curves and log-rank 
test by “survival” package. The prognostic value of the 
signature was assessed using receiver operating char-
acteristic (ROC) curves and the area under the curve 
(AUC) through package “timeROC”. Additionally, the 
risk signature was externally validated using the GEO 
database.

Establishment of a nomogram
The independence of risk score was determine using uni-
variate and multivariate Cox analyses combing clinical 
features, including age, stage, grade, and treatment (phar-
maceutical therapy and radiation therapy). The nomo-
gram was established by using package “rms”. Calibration 
curves, concordance index (C-index) curves and ROC 
curves were conducted to evaluate the prognostic value 
of the nomogram for predicting OS [27].

Immunotherapy response and drug sensitivity
TIDE scores were used to assess each patient’s response 
to OC immunotherapy [28, 29]. We calculated TIDE 
related scores on predicting anti-PD1 and anti-CTLA4 
response based on the expression matrix of OC (http://
tide.dfci.harvard.edu/). In addition, the drug sensitivity of 

each patient with OC was predicted using the Genomics 
of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/). The package “oncopredict” was 
utilized to calculate the half-maximal inhibitory concen-
tration (IC50) [30].

Somatic mutations analysis
The package “maftools” was used to calculate the TMB 
of each patient based on somatic mutation data of OC 
patients [31]. We then assessed the correlation between 
the risk score and TMB. KM curve was utilized to com-
pare the differences of OS among different TMB and risk 
scores groups.

Human tissue samples
A total of 111 OC and 30 normal fallopian tube epithe-
lial tissue samples were collected from the First Affiliated 
Hospital of Shihezi University from 2010 to 2022. None of 
the patients had received chemotherapy, immunotherapy, 
or radiotherapy prior to specimen collection. All patients 
had complete clinical and prognostic information. This 
study was approved by the First Affiliated Hospital of Shi-
hezi University, Shihezi, China (KJX-2021-111-02).

IHC
First, paraffin-embedded tissue sections were de-waxed 
in xylene three times for 5 minutes each and rehydrated 
in graded alcohol. Then these sections were boiled in 
sodium citrate buffer for antigen retrieval for 8 minutes. 
The sections were then incubated with 3% hydrogen 
peroxide for 10 minutes protected from light to block 
endogenous peroxidase and non-specific binding sites. 
Tissue sections were incubated with anti-STEAP3 poly-
clonal antibody (1:100 dilution, Rabbit, Thermo Fisher 
Scientific) at 4 ℃ overnight. The tissue sections were 
incubated with biotin-labeled anti-rabbit secondary anti-
body for 30 minutes at 37 ℃. Finally, 3,3’-diaminobenzi-
dine (DAB) chromogenic solution was used to visualize 
for 3  min and hematoxylin was utilized to counterstain 
for 30 s. The staining intensity score (no staining = 0, light 
brown = 1, brown = 2, and dark brown = 3) and staining 
area (0–5% = 0, 6–25% = 1, 26–50% = 2, 51–75% = 3, and 
76–100% = 4) were multiplied to obtain an IHC score. 
The criteria used were as follows: 0–6 = weak positive, 
and > 6 = strong positive.

Statistical analysis
Statistical analyses were performed using R software 
(4.2.1). Wilcoxon test was used to compare differences 
of means between the two groups. The chi-squared test 
was used to analyze the correlation between STEAP3 
levels and clinical parameters and the relationship 
between immunotherapy response and risk scores. KM 
curves and log-rank tests were used for survival analysis. 

https://www.gsea-msigdb.org/gsea
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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Calibration curves, C-index curves and ROC curves were 
used to evaluate the predictive accuracy of risk mod-
els and nomogram models. Univariate and multivariate 
Cox analyses were performed to assess whether STEAP3 
is an independent prognostic factor for OS and relapse-
free survival (RFS). P < 0.05 was significant differences. 
*p < 0.05; **p < 0.01; ***p < 0.001.

Results
Expression and prognostic value of STEAP3 in OC
In the Gene Expression database of Normal and Tumor 
tissues (GENT2) database, STEAP3 mRNA expression 
was remarkably elevated in most malignancies compared 
to matched normal tissues containing OC (Fig.  1A). 
STEAP3 was also significantly upregulated in OC from 

Fig. 1  The expression and prognosis of STEAP3 in OC. (A) GENT2 database explored differential expression of STEAP3 between multiple cancers and 
matched normal samples. (B) The overexpression of STEAP3 in OC (n = 378) compared with normal group (n = 88) for TCGA and GTEx databases. (C) Diag-
nostic ROC curve of STEAP3. (D) KM analysis of OS between two groups. Correlation between OS and clinical parameters including STEAP3 in OC by (E) 
univariate and (F) multivariate cox analysis. *p < 0.05; **p < 0.01; ***p < 0.001

 



Page 5 of 15Zhao et al. Journal of Ovarian Research          (2023) 16:126 

TCGA and GTEx databases (Fig. 1B). The diagnostic effi-
ciency of STEAP3 was evaluated using ROC curves. As 
shown in Fig. 1C, STEAP3 showed preferable diagnostic 
performance in distinguishing OC samples from nor-
mal samples (AUC: 0.895). KM analysis revealed a worse 
outcome for patients with high STEAP3 expression 
(Fig.  1D). STEAP3, age stage and treatment were inde-
pendent prognostic markers for OC through multivariate 
Cox analyses (Fig. 1E, F).

Correlation of molecular subtypes based on prognosis-
related SRGs with TIME and stemness
We identified 1327 SRGs between the different STEAP3 
expression groups (Table S2). In total, 222 SRGs were 
identified to be the prognostic factors influencing the 
outcomes of patients with OC from the TCGA database 
(Table S3). These prognosis-related SRGs were then sub-
jected to clustering analysis. Unsupervised clustering 
was utilized to classify patients with OC into two dis-
tinct subtypes (C1 and C2) using the “ConsensusCluster-
Plus” package (Fig. 2A-C). KM survival analysis revealed 
a worse prognosis of C2 than C1 (Fig.  2D). In addition, 
the TIME landscape was determined using various algo-
rithms for the two clusters. Significant differences in 
the immune cells and immune functions were observed 
(Fig. 2E). The results of the ESTIMATE algorithm showed 
that C2 had higher immune, stromal, and ESTIMATE 
scores (Fig.  2F). As shown in Fig.  2G, the CIBERSORT 
algorithm revealed that C1 was significantly enriched in 
several anti-tumor immune cells, such as CD8 T cells, 
activated natural killer (NK) cells, and T follicular helper 
(Tfh) cells. These immune cells could inhibit the growth 
of tumor cells and increase sensitivity to immune check-
point blockade (ICB) therapy [32]. Immunosuppressive 
cells, such as resting CD4 memory T cells, resting NK 
cells, and M2 macrophages, were strongly enriched in 
the C2 subgroup. M2 macrophages directly promoted 
the metastasis and chemoresistance of OC cells through 
secreting a variety of cytokines, chemokines, enzymes, 
and exosomes [33].

Next, the stemness indexes between C1 and C2 sub-
types were compared. The results revealed that the 
mRNAsi and EREG mRNAsi scores in C1 were remark-
ably higher (Fig.  2H). This suggests that patients with 
C1 had a higher proportion of stem cells. Nevertheless, 
some studies demonstrated that higher stemness was 
positively correlated with poor prognosis; therefore, 
further research is needed. Using GSEA enrichment 
analysis, we explored the biological differences between 
the two molecular subtypes. The results revealed that 
immune-related biological processes (B cell receptor 
signaling pathway, chemokine signaling pathway, and T 
cell receptor signaling pathway.) and tumorigenic path-
ways (epithelial-mesenchymal transition, TNFA signaling 

via NF-kB and notch signaling pathway.) were enriched 
in the C2 subtype (Fig. 2I). Lin et al. revealed that peri-
ostin (POSTN) enhanced M2 macrophages through 
integrin-mediated NF-κB singling to promote OC metas-
tasis [34]. Special AT-rich sequence-binding protein 1 
(Satb1) derived cancer-associated dendritic cells (DCs) 
differentiation by activating NOTCH1 signaling to regu-
late major histocompatibility complex class II (MHC II) 
expression [35].

Construction and validation of STEAP3-based risk 
signature for OC prognosis
First, the LASSO algorithm was implemented to select 
important candidate genes of the risk signature (Fig. 3A, 
B). The model achieved optimum performance when 
λ = 0.01731. The forest plot of multivariate analysis was 
displayed in Fig.  3C. Finally, the STEAP3-based risk 
signature was constructed by selecting 13 prognosis-
related SRGs. The formula for risk signature was as fol-
lows: risk score = 0.181399814 * EPB41L2 + 0.205009036 
* PYGB + (-0.23965905) * MAGED2 + 0.075209836 * 
STAC2 + (-0.15368987) * OCIAD2 + 0.297560054 * 
PTDSS1 + 0.206376774 * PLEKHF1 + (-0.345589371) * 
TAP1 + 0.185644738 * GAS1 + (-0.284750657) * GLRX5 
+ (-0.113831054) * C2orf88 + 0.231985638 * PIM3 + 
(-0.069014815) * PRSS2. The coefficients of the SRGs 
are shown in Fig. 3D. A comparison of the expression of 
these genes in OC and normal tissues can be seen in Fig-
ure S1.

In the TCGA cohort, patients with OC were classi-
fied into two groups (high-risk and low-risk groups) 
with a medium risk score value. There was a significant 
increase in mortality risk among patients in the high-
risk group compared to patients in the low-risk group 
(Fig. 3E). According to the KM survival analysis, patients 
at high risk had shorter survival times than those at low 
risk (Fig.  3F). Time-dependent ROC curve analysis was 
used to evaluate the predictive power of the risk score in 
the TCGA cohort (Fig.  3G). The overall predictive abil-
ity and accuracy were quite satisfactory (AUC > 0.65); in 
particular, the 10-year survival rate showed the greatest 
predictability and accuracy (AUC: 0.912). Therefore, the 
risk score is more accurate for predicting long-term out-
comes in patients with OC. To verify the predictive per-
formance of the signature, we tested this model using the 
GEO database (Fig.  3H-J). This result indicates that we 
constructed an excellent risk model for OC prognosis.

Establishment of a nomogram combined with clinical 
parameters
Univariate analysis revealed a remarkable association 
between age, stage, grade, treatment, and STEAP3-
based risk score and OS in OC (Fig. 4A). Among them, 
age, stage, treatment, and risk score were independent 
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Fig. 2  Correlation of molecular subtypes with TIME and stemness. (A) Consensus clustering matrix when k = 2. (B) Consensus clustering CDF with k 
valued 2 to 9. (C) CDF delta area curve for k = 2. (D) Survival curve of OS between two clusters. (E) Immune cells infiltration of distinct subtypes by ssGSEA 
algorithm. (F) Differences of immune, stromal and ESTIMATE scores of two subtypes. (G) Immune cells components in different subtypes through CIBER-
SORT. (H) Differences of stemness index between two clusters. (I) GSEA analyses for SRGs of two clusters. *p < 0.05; **p < 0.01; ***p < 0.001
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prognostic factors for OC (Fig. 4B). To broaden the clini-
cal application and usability of the STEAP3-based risk 
model, a nomogram was constructed combing with com-
mon clinical parameters that could easily predict survival 
outcomes of patients with OC (Fig. 4C). The calibration 
curves suggested that the nomogram performed well 
(Fig. 4D). In addition, the C-index curve showed that the 
nomogram had desirable efficacy for predicting patient 
outcomes (Fig.  4E). By comparing the nomogram, risk 
score, and clinical parameters, we found that the nomo-
grams were more effective in predicting short-term 

prognosis (less than 5 years) of patients with OC (Fig. 4F, 
G). However, the predictive efficiency of the risk score for 
long‐term outcomes (5- and 10-year) was slightly better 
compared with the nomogram (Fig. 4H, I).

Analysis of immune landscape and chemotherapy 
sensitivity between different risk groups
We further explored the correlation between the risk 
model and TIME, and the abundances of 22 immune 
cells were calculated using the CIBERSORT algorithm. 
As shown in Fig.  5A, several immunosuppressive cells, 

Fig. 3  Risk signature based on prognosis-related SRGs. (A, B) LASSO cox regression analysis of TCGA dataset. (C) Multivariate cox regression analysis of 
thirteen SRGs. (D) Coefficients of the 13-gene signature. Distribution of the risk score, survival time and status for (E) TCGA cohort and (H) GEO cohort. KM 
curves for (F) TCGA cohort and (I) GEO cohort. ROC analysis of the risk signature for (G) TCGA cohort and (J) GEO cohort
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including resting CD4 memory T cells and M2 mac-
rophages, were activated in the high-risk group. The 
abundances of Tfh cells, gamma delta T cells, M1 mac-
rophages, and activated dendritic cells in the low-
risk group were significantly higher than those in the 

high-risk group. The results of the ESTIMATE analysis 
revealed that the stromal and ESTIMATE scores were 
observably higher in the high-risk group than in the low-
risk group, while the immune score between the two risk 
groups was not significantly different (Fig. 5B). Next, we 

Fig. 4  Nomogram model combined with risk score and clinical parameters. (A) Univariate and (B) multivariate cox regression analysis. (C) Nomogram 
integrated the age, stage, grade, treatment, and risk score. (D) Calibration curves of nomogram. (E) C-index curve of the nomogram. ROC curves for pre-
dicting (F) 1-, (G) 3-, (H) 5-, and (I) 10-year OS. *p < 0.05; **p < 0.01; ***p < 0.001
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investigated the relationships between the risk model 
and molecular subtypes in OC. A higher risk score was 
observed for the C2 subtype (Fig. 5C). Subsequently, we 
used TIDE to evaluate the potential clinical efficacy of 

the immunotherapy. In the TCGA cohort, TIDE, T cell 
dysfunction, and T cell exclusion scores in the high-risk 
group were markedly higher than those in the low-risk 
group (Fig.  5D). These results indicated that high-risk 

Fig. 5  Analysis of immune landscape and chemotherapy sensitivity in different risk groups. (A) Comparisons of immune cell infiltration between two 
risk groups. (B) Differences of immune, stromal and ESTIMATE scores of high- and low-risk groups. (C) Relationship between the risk score and molecular 
subtypes. (D) Differences of TIDE, T cell dysfunction and T cell exclusion scores in distinct risk groups. (E) Distributions of non-responder and responder 
to immunotherapy between different risk groups. (F) Differences of chemotherapy sensitivity between two risk groups. *p < 0.05; **p < 0.01; ***p < 0.001
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patients were less likely to benefit from immunotherapy. 
Furthermore, 42.3% of patients in the high-risk group 
were estimated to benefit from immunotherapy, which 
was lower than the low-risk group (53.4%) (Fig. 5E). Sur-
gery and standard chemotherapy combined with carbo-
platin and paclitaxel are the basic treatment strategies 
for primary OC [36]. Thus, the IC50 values of the top ten 
chemotherapy drugs that associated with the risk score 
were calculated (Fig. 5F). High-risk patients had greater 
sensitivity to AZD1332, BMS-754,807, Doramapimod, 
BMS-536,924, NVP-ADW742, JAK_8517, Foretinib, 

ERK_2440, and taselisib, suggesting that the risk score 
could be regarded as a potential predictor of chemical 
sensitivity. Overall, this result demonstrates why patients 
in the high-risk group have a poor prognosis and a poor 
response to immunotherapy.

Correlation of risk score with stemness and TMB
We compared the differences of stemness indexes 
between the two risk subgroups and discovered that 
the mRNAsi and EREG mRNAsi scores were markedly 
higher in the low-risk subgroup (Fig. 6A) and negatively 

Fig. 6  Correlation of risk score with stemness and TMB. (A) Differences of stemness index in distinct risk groups. (B) Correlation between risk score and 
stemness index. (C) Waterfall maps of the somatic mutations in high- and low-risk groups. (D) Differences of TMB between the two groups. (E) Survival 
curve between high and low TMB groups. (F) Survival curve based on risk score and TMB.
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associated with the risk score (Fig.  6B). In addition, 
waterfall plots depicted the frequency of mutations in 
the top 20 genes in the distinct risk groups (Fig. 6C). For 
instance, TP53 was the most frequently mutated gene in 
both groups. Somatic mutation analysis indicated that 
the higher TMB was discovered in the low-risk sub-
group (Fig.  6D). Nevertheless, survival analysis showed 
no obvious differences between the two groups (Fig. 6E). 
Patients with OC were divided into four groups based on 
risk score and TMB for further survival analysis. Patients 
with high TMB or high risk had shorter OS than those 
with low TMB and low risk (Fig. 6F).

Correlation between STEAP3 protein level and clinical 
features
The STEAP3 protein expression in 111 OC and 30 nor-
mal samples was detected using IHC (Fig. 7A). The find-
ings demonstrated that STEAP3 was upregulated in OC 
tissues (p = 1.8e-11; Fig. 7B). The ROC curve showed that 
STEAP3 had a significant diagnostic performance for OC 
(AUC: 0.896, Fig. 7C). We then explored the correlation 
between STEAP3 expression and the clinicopathologi-
cal features of OC (Table  1). STEAP3 was significantly 
associated with age, stage, grade, lymphovascular space 
invasion (LVSI), and lymph node metastasis (LNM) in 
patients with OC. Furthermore, KM curve was utilized to 
investigate the predictive value of STEAP3 for prognosis 
in OC. The results demonstrated that with an increase in 
STEAP3 expression, the probability of OS and RFS for 
patients with OC decreased (Fig.  7D, E). STEAP3 was 
found to be an independent risk factor by comparing age, 
stage, type, grade, LVSI, and LNM for OS (Fig.  7F) and 
RFS (Fig. 7H) of OC according to multivariate analysis.

Discussion
It has been proven that STEAP3 overexpression is 
involved in tumor progression and predicts poor out-
comes in several types of cancer [18, 37, 38]. How-
ever, the molecular mechanisms and oncogenic roles of 
STEAP3 remain unclear. This study comprehensively 
analyzed the prognostic values, immune infiltration pat-
terns, and therapeutic responses of STEAP3 across OC. 
Our findings demonstrated that STEAP3 expression 
was noticeably upregulated in OC. STEAP3 overex-
pression predicted poor outcomes in patients with OC. 
Furthermore, STEAP3 was an independent prognostic 
biomarker for OC using multivariate analysis.

Precise molecular subtyping could be a novel strategy 
to guide more effective patient-specific treatments. The 
C2 subtype in this study was characterized by aberrant 
enrichment of prognosis-related SRGs with poorer prog-
nosis and higher tumor-promoting cell infiltration, such 
as resting memory CD4 T cells, resting NK cells, and M2 
macrophages, and higher immune and stromal scores. 

The results of ssGSEA showed that C2 subtype had the 
higher abundance of NK cells and lower abundance of 
Tfh cells. NK cells detected the loss of Human Leukocyte 
Antigen (HLA) by killing targets through antigen-inde-
pendent pathways, exhibiting anti-tumor immune eva-
sion and recurrence functions [39]. The silencing of Stab1 
promoted Tfh cells differentiation and resulting the gen-
eration of tertiary lymphoid structures (TILs), which was 
correlated with positive prognosis [40].

GSEA indicated that immune-related and tumorigen-
esis-related pathways, including epithelial-mesenchymal 
transition (EMT) and Wnt beta-catenin signaling, were 
significantly enriched in the C2 group. Recent stud-
ies revealed that Wnt activity is an important regulator 
of EMT [41] and exerts a remarkable role in regulating 
tumor stemness and chemoresistance in OC [42–44]. 
These findings partially explain the poor prognosis in the 
C2 subgroup.

We constructed a STEAP3-based risk model compris-
ing 13 SRGs to determine the prognosis of OC. Several 
genes in this risk model have been investigated in previ-
ous studies. Menyhárt et al. found that EPB41L2 was a 
biomarker of poor prognosis and topotecan resistance in 
OC [45]. In triple-negative breast cancer, NOTCH4 tran-
scriptionally upregulated SLUG and GAS1 to maintain 
mesenchymal-like characteristics of breast cancer stem 
cells [46]. GAS1, a stemness-related gene, was strongly 
expressed and predicted poor outcomes in patients with 
OC [47]. PIM3 was overexpressed, promoting the prolif-
eration and migration in OC [48]. In addition, the clinical 
outcomes of OC patients were predicted more power-
fully and accurately using a nomogram. Consistently, the 
C2 subgroup had a higher risk score, which was positively 
related to poorer prognosis for patients with OC.

TIME is closely correlated with tumorigenesis, recur-
rence, and metastasis [49, 50]. Tumors can shape the 
TIME into an immunosuppressive state to evade immune 
surveillance [51]. Therefore, understanding the TIME 
is crucial for evaluating the effects of immunotherapy. 
By immune infiltration analysis, we observed that some 
anti-tumor immune cells, like Tfh cells, gamma delta T 
cells, M1 macrophages, and activated dendritic cells, 
were strongly enriched in the low-risk subgroup, whereas 
tumor-promoting cells, such as M2 macrophages and 
resting CD4 memory T cells, were more prevalent in 
the high-risk subgroup. Previous researches shown that 
lower levels of M1 macrophages or higher levels of M2 
macrophages are prognostic risk factors for patients 
with OC [52, 53]. Macrophages promoted the expression 
of CXC chemokine ligand 9 (CXCL9) and M1 pheno-
type via activating the NF-κB signaling pathway, thereby 
increasing cytotoxic T cell infiltration, and inhibiting 
the progression of epithelial ovarian cancer [54]. Previ-
ous studies showed that tumor association macrophage 
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Fig. 7  High expression of STEAP3 is correlated with poor outcomes in OC patients. (A) The expression of STEAP3 in normal (n = 30) and OC (n = 111) sam-
ples were detected by IHC. (B) The STEAP3 IRS in normal tissues and OC. (C) Diagnostic ROC curve of STEAP3. KM curves for (D) OS and (E) RFS between 
different STEAP3 groups. Univariate and multivariate cox analysis of STEAP3 expression and clinical parameters for (F) OS and (G) RFS in OC.
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(TAM) was an important driver tumor metastasis and 
played a key role in regulating EMT [55]. Gamma delta 
T cells can eliminate OC cells [56] proliferation, reduce 
tumor burden, and increase the sensitivity of SKOV3 
sphere cells to chemotherapeutic agents by promoting 
IL17 production [57]. The differences in TIME in distinct 
risk subgroups might reflect the different benefits of ICB 
treatment by the TIDE algorithm. The TIDE signature 
integrates T-cell dysfunction in CTL-high tumors and 
T-cell exclusion in CTL-low tumors, which model two 
mechanisms of immune escape [29]. A high TIDE score 
is correlated with poor immunotherapy response and 
short survival time of patients. This is consistent with our 
findings. Patients in high-risk subgroup had a high TIDE 
score and a poor prognosis, indicating that high-risk 
individuals benefited less from immunotherapy.

Cancer stem cells are key to tumor initiation, progres-
sion, recurrence, metastasis, and drug resistance [58]. 
The stemness indexes (mRNAsi and EREG mRNAsi) are 
measures of stem cell characteristics. Our study demon-
strated that mRNAsi score was negatively related to risk 
score, which contradicts our results and requires fur-
ther study. TMB, a biomarker of immunotherapy, may 
predict patient survival after ICB treatment [59, 60]. 
TMB was significantly higher in the low-risk group than 
the high-risk group. The survival time for the two TMB 
groups did not differ significantly. TMB, combined with 
a risk model, could result in greater predictive power for 
patient survival.

Our study has several limitations. First, the expression 
matrix and clinical information were downloaded from 

public databases. We needed a prospective clinical trial 
cohort to verify the accuracy of the risk model. Second, 
further functional assays and molecular mechanisms 
are required to detect the 13 prognosis-related genes. 
Third, more clinical information is needed regarding the 
accuracy of the risk score in predicting the response to 
immunotherapy. Finally, the functional role of STEAP3 
in tumor immunity requires in-depth experimental 
verification.

Conclusion
In summary, our results demonstrate that STEAP3 
could be used as a reliable biomarker for prognosis and 
immunotherapy.
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Table 1  Relationship between clinicopathologic characteristics 
and STEAP3 protein expression in OC.
Characteristics N STEAP3, n (%) χ2 P 

valueLow High
Age (year)

≤ 52 60 36 (60.0) 24 (40.0) 3.910 0.048

> 52 51 21 (41.2) 30 (58.8)

Stage

I-II 52 37 (71.2) 15 (28.8) 15.356 < 0.001

III-IV 59 20 (33.9) 39 (66.1)

Grade

Low 30 20 (66.6) 10 (33.3) 3.860 0.049

High 81 37 (45.7) 44 (54.3)

Type

Serous carcinoma 78 38 (48.7) 40 (51.3) 0.728 0.393

Others 33 19 (57.6) 14 (42.4)

LVSI

Negative 84 49 (58.3) 35 (41.7) 6.739 0.009

Positive 27 8 (29.6) 19 (70.4)

LNM

Negative 80 49 (61.3) 31 (38.8) 11.235 0.001

Positive 31 8 (25.8) 23 (74.2)
LVSI, lymphovascular space invasion; LNM, lymph node metastasis.

http://dx.doi.org/10.1186/s13048-023-01218-x
http://dx.doi.org/10.1186/s13048-023-01218-x


Page 14 of 15Zhao et al. Journal of Ovarian Research          (2023) 16:126 

References
1.	 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J 

Clin. 2022;72:7–33.
2.	 Kurnit KC, Fleming GF, Lengyel E. Updates and New Options in Advanced 

Epithelial Ovarian Cancer Treatment. Obstet Gynecol. 2021;137:108–21.
3.	 Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian 

Cancer Immunotherapy and Personalized Medicine. Int J Mol Sci 2021;22.
4.	 Yang C, Xia BR, Zhang ZC, Zhang YJ, Lou G, et al. Immunotherapy for 

Ovarian Cancer: adjuvant, combination, and Neoadjuvant. Front Immunol. 
2020;11:577869.

5.	 Baldwin LA, Huang B, Miller RW, Tucker T, Goodrich ST, et al. Ten-year relative 
survival for epithelial ovarian cancer. Obstet Gynecol. 2012;120:612–8.

6.	 Wang H, Liu J, Yang J, Wang Z, Zhang Z, et al. A novel tumor mutational 
burden-based risk model predicts prognosis and correlates with immune 
infiltration in ovarian cancer. Front Immunol. 2022;13:943389.

7.	 Eisenhauer EA. Real-world evidence in the treatment of ovarian cancer. Ann 
Oncol. 2017;28:viii61–5.

8.	 Zhang F, Zhang Z-l. The diagnostic value of Transvaginal Sonograph (TVS), 
Color Doppler, and serum tumor marker CA125, CEA, and AFP in Ovarian 
Cancer. Cell Biochem Biophys. 2015;72:353–7.

9.	 Lu M, Fan Z, Xu B, Chen L, Zheng X, et al. Using machine learning to predict 
ovarian cancer. Int J Med Inform. 2020;141:104195.

10.	 Lertkhachonsuk AA, Buranawongtrakoon S, Lekskul N, Rermluk N, Wee-Stekly 
WW, et al. Serum CA19-9, CA-125 and CEA as tumor markers for mucinous 
ovarian tumors. J Obstet Gynaecol Res. 2020;46:2287–91.

11.	 Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Patankar MS. MUC16 
(CA125): Tumor biomarker to cancer therapy, a work in progress. Mol Cancer. 
2014;13:129.

12.	 Lakshmanan M, Kumar V, Chaturvedi A, Misra S, Gupta S, et al. Role of serum 
HE4 as a prognostic marker in carcinoma of the ovary. Indian J Cancer. 
2019;56:216–21.

13.	 Arend R, Martinez A, Szul T, Birrer MJ. Biomarkers in ovarian cancer: to be or 
not to be. Cancer. 2019;125:4563–72.

14.	 Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, et al. Biomarkers and algo-
rithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J 
Ovarian Res. 2019;12:28.

15.	 Machlenkin A, Paz A, Bar Haim E, Goldberger O, Finkel E, et al. Human CTL 
epitopes prostatic acid phosphatase-3 and six-transmembrane epithelial 
antigen of prostate-3 as candidates for prostate cancer immunotherapy. 
Cancer Res. 2005;65:6435–42.

16.	 Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, et al. Ferroptosis: past, present and future. 
Cell Death Dis. 2020;11:88.

17.	 Chen H, Xu C, Yu Q, Zhong C, Peng Y, et al. Comprehensive landscape of 
STEAP family functions and prognostic prediction value in glioblastoma. J 
Cell Physiol. 2021;236:2988–3000.

18.	 Wang LL, Luo J, He ZH, Liu YQ, Li HG, et al. STEAP3 promotes cancer cell prolif-
eration by facilitating nuclear trafficking of EGFR to enhance RAC1-ERK-STAT3 
signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:1052.

19.	 Kim SH, Ho JN, Jin H, Lee SC, Lee SE, et al. Upregulated expression of BCL2, 
MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human 
bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant 
bladder cancer cell lines. Investig Clin Urol. 2016;57:63–72.

20.	 Zhou L, Jiang J, Huang Z, Jin P, Peng L, et al. Hypoxia-induced lncRNA 
STEAP3-AS1 activates Wnt/beta-catenin signaling to promote colorectal 
cancer progression by preventing m(6)A-mediated degradation of STEAP3 
mRNA. Mol Cancer. 2022;21:168.

21.	 Yu L, Shen H, Ren X, Wang A, Zhu S, et al. Multi-omics analysis reveals the 
interaction between the complement system and the coagulation cascade 
in the development of endometriosis. Sci Rep. 2021;11:11926.

22.	 Ma B, Wang K, Liang Y, Meng Q, Li Y. Molecular characteristics, oncogenic 
roles, and relevant Immune and Pharmacogenomic features of EVA1B in 
Colorectal Cancer. Front Immunol. 2022;13:809837.

23.	 Qiu C, Shi W, Wu H, Zou S, Li J, et al. Identification of Molecular Subtypes 
and a prognostic signature based on inflammation-related genes in Colon 
adenocarcinoma. Front Immunol. 2021;12:769685.

24.	 Zeng D, Ye Z, Shen R, Yu G, Wu J, et al. IOBR: Multi-Omics Immuno-Oncology 
Biological Research to Decode Tumor Microenvironment and Signatures. 
Front Immunol. 2021;12:687975.

25.	 Liu Y, Wang J, Li L, Qin H, Wei Y, et al. AC010973.2 promotes cell proliferation 
and is one of six stemness-related genes that predict overall survival of renal 
clear cell carcinoma. Sci Rep. 2022;12:4272.

26.	 Wu D, Yin Z, Ji Y, Li L, Li Y, et al. Identification of novel autophagy-related 
lncRNAs associated with a poor prognosis of colon adenocarcinoma through 
bioinformatics analysis. Sci Rep. 2021;11:8069.

27.	 Jiang S, Ren X, Liu S, Lu Z, Xu A, et al. Integrated Analysis of the Prognosis-
Associated RNA-Binding protein genes and candidate drugs in renal papillary 
cell carcinoma. Front Genet. 2021;12:627508.

28.	 Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28:1747–56.

29.	 Jiang P, Gu S, Pan D, Fu J, Sahu A, et al. Signatures of T cell dysfunc-
tion and exclusion predict cancer immunotherapy response. Nat Med. 
2018;24:1550–8.

30.	 Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in 
vivo or cancer patient drug response and biomarkers from cell line screening 
data. Brief Bioinform 2021;22.

31.	 Fu J, Li K, Zhang W, Wan C, Zhang J et al. Large-scale public data reuse to 
model immunotherapy response and resistance. Genome Med 2020;12.

32.	 Luo X, Xu J, Yu J, Yi P. Shaping Immune responses in the Tumor Microenviron-
ment of Ovarian Cancer. Front Immunol. 2021;12:692360.

33.	 Nowak M, Klink M. The role of Tumor-Associated Macrophages in the Progres-
sion and Chemoresistance of Ovarian Cancer. Cells 2020;9.

34.	 Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, et al. Periostin promotes ovarian 
cancer metastasis by enhancing M2 macrophages and cancer-associated 
fibroblasts via integrin-mediated NF-kappaB and TGF-beta2 signaling. J 
Biomed Sci. 2022;29:109.

35.	 Tesone AJ, Rutkowski MR, Brencicova E, Svoronos N, Perales-Puchalt A, et al. 
Satb1 overexpression drives tumor-promoting activities in Cancer-Associated 
dendritic cells. Cell Rep. 2016;14:1774–86.

36.	 Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, et al. Epigenetic 
therapy for ovarian cancer: promise and progress. Clin Epigenetics. 2019;11:7.

37.	 Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, et al. Regulatory Roles of Six-
Transmembrane Epithelial Antigen of the prostate family members in the 
occurrence and development of malignant tumors. Front Cell Dev Biol. 
2021;9:752426.

38.	 Han M, Xu R, Wang S, Yang N, Ni S, et al. Six-transmembrane Epithelial 
Antigen of prostate 3 predicts poor prognosis and promotes Glioblastoma 
Growth and Invasion. Neoplasia. 2018;20:543–54.

39.	 Nersesian S, Glazebrook H, Toulany J, Grantham SR, Boudreau JE. Naturally kill-
ing the Silent Killer: NK Cell-Based immunotherapy for ovarian Cancer. Front 
Immunol. 2019;10:1782.

40.	 Chaurio RA, Anadon CM, Lee Costich T, Payne KK, Biswas S, et al. TGF-beta-
mediated silencing of genomic organizer SATB1 promotes tfh cell differentia-
tion and formation of intra-tumoral tertiary lymphoid structures. Immunity. 
2022;55:115–28. e119.

41.	 Teeuwssen M, Fodde R. Wnt signaling in ovarian Cancer stemness, EMT, and 
Therapy Resistance. J Clin Med 2019;8.

42.	 Song Y, Pan S, Li K, Chen X, Wang ZP, et al. Insight into the role of multiple 
signaling pathways in regulating cancer stem cells of gynecologic cancers. 
Semin Cancer Biol. 2022;85:219–33.

43.	 Wang Y, Zhao G, Condello S, Huang H, Cardenas H, et al. Frizzled-7 identifies 
platinum-tolerant ovarian Cancer cells susceptible to ferroptosis. Cancer Res. 
2021;81:384–99.

44.	 Belur Nagaraj A, Knarr M, Sekhar S, Connor RS, Joseph P, et al. The miR-
181a-SFRP4 Axis regulates wnt activation to Drive Stemness and Platinum 
Resistance in Ovarian Cancer. Cancer Res. 2021;81:2044–55.

45.	 Menyhart O, Fekete JT, Gyorffy B. Gene expression indicates altered Immune 
Modulation and Signaling Pathway Activation in Ovarian Cancer Patients 
resistant to Topotecan. Int J Mol Sci 2019;20.

46.	 Zhou L, Wang D, Sheng D, Xu J, Chen W, et al. NOTCH4 maintains qui-
escent mesenchymal-like breast cancer stem cells via transcriptionally 
activating SLUG and GAS1 in triple-negative breast cancer. Theranostics. 
2020;10:2405–21.

47.	 Yuan H, Yu Q, Pang J, Chen Y, Sheng M et al. The value of the Stemness Index 
in Ovarian Cancer Prognosis. Genes (Basel) 2022;13.

48.	 Zhuang H, Zhao MY, Hei KW, Yang BC, Sun L, et al. Aberrant expression of 
pim-3 promotes proliferation and migration of ovarian cancer cells. Asian Pac 
J Cancer Prev. 2015;16:3325–31.

49.	 Zheng M, Long J, Chelariu-Raicu A, Mullikin H, Vilsmaier T et al. Identification 
of a Novel Tumor Microenvironment Prognostic signature for Advanced-
Stage Serous Ovarian Cancer. Cancers (Basel) 2021;13.



Page 15 of 15Zhao et al. Journal of Ovarian Research          (2023) 16:126 

50.	 Lei X, Lei Y, Li JK, Du WX, Li RG, et al. Immune cells within the tumor microen-
vironment: Biological functions and roles in cancer immunotherapy. Cancer 
Lett. 2020;470:126–33.

51.	 Lv B, Wang Y, Ma D, Cheng W, Liu J, et al. Immunotherapy: reshape the Tumor 
Immune Microenvironment. Front Immunol. 2022;13:844142.

52.	 Tan Q, Liu H, Xu J, Mo Y, Dai F. Integrated analysis of tumor-associated macro-
phage infiltration and prognosis in ovarian cancer. Aging. 2021;13:23210.

53.	 Miyamoto T, Murakami R, Hamanishi J, Tanigaki K, Hosoe Y, et al. B7-H3 
suppresses Antitumor Immunity via the CCL2-CCR2-M2 Macrophage 
Axis and contributes to ovarian Cancer Progression. Cancer Immunol Res. 
2022;10:56–69.

54.	 Huang X, Hao J, Tan YQ, Zhu T, Pandey V et al. CXC Chemokine Signaling in 
Progression of Epithelial Ovarian Cancer: theranostic perspectives. Int J Mol 
Sci 2022;23.

55.	 Wang N, Wang S, Wang X, Zheng Y, Yang B, et al. Research trends in pharma-
cological modulation of tumor-associated macrophages. Clin Transl Med. 
2021;11:e288.

56.	 Pawlowska A, Natochina Y, Zardzewialy W, Skiba W, Wlodarczyk K et al. 
Gammadelta T lymphocytes as a double-edged Sword-State of the art in 
Gynecological Diseases. Int J Mol Sci 2022;23.

57.	 Lai D, Wang F, Chen Y, Wang C, Liu S, et al. Human ovarian cancer stem-like 
cells can be efficiently killed by gammadelta T lymphocytes. Cancer Immunol 
Immunother. 2012;61:979–89.

58.	 Huang T, Song X, Xu D, Tiek D, Goenka A et al. Stem cell programs in 
cancer initiation, progression, and therapy resistance. Theranostics 
2020;10:8721–8743.

59.	 Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, et al. Tumor 
mutational load predicts survival after immunotherapy across multiple 
cancer types. Nat Genet. 2019;51:202–6.

60.	 Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, et al. Development 
of tumor mutation burden as an immunotherapy biomarker: utility for the 
oncology clinic. Ann Oncol. 2019;30:44–56.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿Identification of STEAP3-based molecular subtype and risk model in ovarian cancer
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Data download
	﻿Screening SRGs
	﻿Cluster analysis
	﻿Immune landscape analysis
	﻿Tumor stemness indexes
	﻿Enrichment analysis
	﻿Construction of the STEAP3-based risk model
	﻿Establishment of a nomogram
	﻿Immunotherapy response and drug sensitivity
	﻿Somatic mutations analysis
	﻿Human tissue samples
	﻿IHC
	﻿Statistical analysis

	﻿Results
	﻿Expression and prognostic value of STEAP3 in OC
	﻿Correlation of molecular subtypes based on prognosis-related SRGs with TIME and stemness
	﻿Construction and validation of STEAP3-based risk signature for OC prognosis
	﻿Establishment of a nomogram combined with clinical parameters
	﻿Analysis of immune landscape and chemotherapy sensitivity between different risk groups
	﻿Correlation of risk score with stemness and TMB
	﻿Correlation between STEAP3 protein level and clinical features

	﻿Discussion
	﻿Conclusion
	﻿References


