
R E V I E W Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Geng et al. Journal of Ovarian Research          (2023) 16:149 
https://doi.org/10.1186/s13048-023-01236-9

Introduction
Polycystic ovary syndrome (PCOS) is a systematic endo-
crine disorder that negatively impacts the overall health 
of reproductive-aged females [1]. The incidence of PCOS 
varies from 6 to 10% worldwide according to different 
diagnostic criteria [2]. The characteristics of PCOS are 
featured as hyperandrogenism, ovulatory abnormalities, 
and morphologically polycystic ovary [3]. Although other 
pathological manifestations are excluded from the diag-
nosis criteria, the systemic metabolic dysfunction and 
chronic low-grade inflammatory state are predominant 
in PCOS patients, including insulin resistance (IR), dys-
lipidemia, central obesity and so on [4, 5]. There is accu-
mulating evidence that PCOS women have an increased 
risk of developing metabolic syndrome (MS), type 2 
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Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the 
reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic 
ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable 
challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in 
PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological 
dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the 
potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation 
of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing 
novel strategies in clinical practice.
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diabetes mellitus (T2DM), and cardiovascular diseases 
[6]. PCOS is considered the leading cause of infertil-
ity due to anovulation [7]. And it poses a great threat to 
women’s long-term physical and mental health [8–10].

Due to the complicated etiology and pathogenesis 
of the endocrine-metabolic disorders behind PCOS, a 
more effective treatment has yet to be developed [11, 12]. 
Despite that lifestyle intervention has been suggested as 
the primary line of therapy for PCOS, it appears inad-
equate and unsatisfactory when it comes to the involve-
ment, compliance, and constancy [3]. Generally, the 
assisted pharmacological treatment of PCOS includes 
combined oral contraceptive pills (COCPs), insulin-
sensitizing agents, anti-androgen and anti-obesity phar-
macological agents [3]. Oral contraceptive (OC) therapy 
can ameliorate hyperandrogenism and restore menstrual 
patterns, however, it is not appropriate for patients with 
reproductive requirements [12, 13]. Long-term use of 
OC therapy will also bring side effects of circulatory 
disorders comprising venous thrombosis and hyperten-
sion [13–18]. Insulin-sensitizing agents, represented by 
metformin, are beneficial for alleviating insulin resis-
tance, menstrual irregularities, hirsutism, anovulation, 
and obesity [19]. Although it shows positive impacts in 
multiple aspects, the efficacy of metformin is still limited 
compared with the first-line management and the gastro-
intestinal adverse effects are common [20, 21]. Oral ovu-
lation induction agents including letrozole, clomiphene 
citrate, and metformin are prescribed to treat subfertile 
women with PCOS that are seeking pregnancy [3]. Other 
therapies are all effective to varying degrees but still have 
restrictions. Researchers have been dedicated to search-
ing for more effective substitutions. Recently, a cytokine 
called interleukin-22 (IL-22) has aroused attention by 
virtue of its advantages in multiple models of metabolic 
diseases [22–24]. The effects of IL-22 in modulating 
metabolism were initially identified in hepatic steatosis 
[25]. Subsequently, it has also been found to ameliorate 
symptoms in a number of classical metabolic diseases 
like T2DM, MS, and obesity [22, 23, 26]. Nowadays, the 
research of IL-22 has been further expanded to treat-
ments in PCOS models, which demonstrates regulatory 
functions in restoring hormones, ovarian morpholo-
gies, estrous cycles, and pup numbers in PCOS models 
[27–29]. Although certain extent of consensus has been 
established, there are conflicting and inconsistent find-
ings regarding IL-22 therapy in metabolic disorders. 
Therefore, this review will thus concentrate on the ben-
efits and contradictions of IL-22 in relation to metabolic 
and immune impairment in PCOS. We anticipate provid-
ing evidence for the future application in clinical practice 
and identifying difficulties that demand prompt solution.

Overview of IL-22
IL-22 is a member of the IL-10 family of cytokines, along 
with IL-19, IL-20, IL-24, IL-26, type III interferon (IFN) 
group, and others. [30, 31] It is a cytokine with an alpha 
helix that is specifically generated by lymphoid lineage 
cells, such as T cells, natural killer T (NKT) cells, and 
innate lymphocyte cells (ILCs) [32]. T-helper 17 (Th17) 
cells are the predominant generator of IL-22 in rodents, 
whereas T-helper 22 (Th22) cells are the primary source 
in humans [33–35]. The IL-22 receptor (IL-22R) is com-
posed of two distinct subunits, IL-10R2 and IL-22R1, 
which are responsible for transmitting signals from IL-22 
[32, 36]. On account of the ubiquitous expression of IL-
10R2, the cellular sensitivity to IL-22 is mostly depen-
dent on the IL-22R1 expression [37]. IL-22R1 is highly 
detected in multiple tissues and organs including epi-
dermis, liver, kidney, gastrointestinal and respiratory 
systems but except immune cells [37]. IL-22-binding 
protein (IL-22BP) is another receptor that competitively 
inhibits IL-22 from interacting with IL-22R complex thus 
neutralizing its activity [38]. In inflammatory diseases, 
IL-22 may either contribute to the development or act as 
a buffer against their progression [39]. On the one hand, 
it has the potential to transduce inflammatory signals 
in inflamed tissues and stimulate the synthesis of pro-
inflammatory effectors [40]. On the other hand, it takes 
part in antimicrobial defense, injury repairment and tis-
sue regeneration [41, 42]. With the advancement of the 
research, the function of IL-22 has expanded beyond 
inflammatory and auto-immune diseases and spawned a 
new surge in endocrine-metabolic disorders [22, 26].

Core pathogenesis of PCOS
Although environment and genetics are implicated in 
the incidence of PCOS, hyperandrogenemia, IR, and adi-
pose tissue dysfunction are central to the progression of 
PCOS [43] (Fig.  1). Androgen excess is considered as a 
critical feature in a majority of PCOS women [44], which 
will contribute to masculinizing features and follicular 
arrest [45]. IR is another significant manifestation which 
exists in approximately 50% PCOS patients regardless 
of obesity [46, 47]. IR exacerbates hyperandrogenism by 
stimulating androgen synthesis and inhibiting sex hor-
mone-binding globulin (SHBG) [48, 49]. The interaction 
between IR and hyperandrogenism compromises ovum 
growth, endometrial receptivity, the neuroendocrine of 
adrenal glands and ovaries [50]. Apart from the repro-
ductive failure, IR also affects lipid metabolism in PCOS 
[51]. Visceral obesity increases the likelihood of meta-
bolic aberrations and reproductive abnormalities [52]. It 
can also result in oxidative stress and chronic inflamma-
tion in general and in specific tissues [53, 54]. According 
to the available data, the level of inflammatory media-
tors rises in PCOS patients which also leads to ovarian 
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dysfunction [55]. Recently, gut microbiota alteration has 
also been confirmed as closely relevant to PCOS accom-
panying the increasing epithelial permeability and leak-
age of inflammatory cytokines to circulation which will 
promote the inflammatory status [56–61]. Nonalcoholic 
fatty liver disease (NAFLD), another metabolic complica-
tion, has been indicated an interplay with PCOS in depth. 
NAFLD encompasses a spectrum of pathological mani-
festations, ranging from common hepatic fat deposition 
to nonalcoholic steatohepatitis (NASH), which might 
further progress to cirrhosis [62]. It shares many patho-
physiologic mechanisms with PCOS, of which the most 
significant is IR and hyperandrogenism [63].

Hyperandrogenemia is a significant hallmark in PCOS 
individuals which will exacerbate the reproductive plight. 
IR could interact with excess androgen and impact lipid 
metabolism, thus further impairing the fertile capacity. 
The inflamed central adiposity contributes to systemic 
inflammation and ovarian dysfunction. Alterations in 
gastrointestinal microbiota and NAFLD have also been 

associated with PCOS, promoting inflammation and IR 
correspondingly.

IL-22 and IR
Insulin, an indispensable hormone generated by pancre-
atic beta cells, signals through transmembrane receptor 
in response to the elevation of glucose in plasma [64, 65]. 
Women with PCOS have been observed impaired insu-
lin sensitivity in peripheral tissue compared to normal 
females [66]. Hyperinsulinemia is a follow-up adaptive 
regulation to ensure the maintenance of normoglycemia 
[67]. The underlying mechanism of insulin resistance 
is still uncertain, but skeletal muscle and adipose tis-
sue have been shown to display insulin signaling defects 
[68, 69]. Reduced expression of glucose transporter 
type 4 (GLUT-4) in lipocytes might also be a reason of 
impaired insulin responsiveness [66, 70]. β-cell dysfunc-
tion is another culprit of IR which militates against pro-
insulin maturation and insulin secretion [71]. However, 
as IR has a genetic predisposition in PCOS, it remains 
dubious whether the defects in β-cell function precede 

Fig. 1  PCOS related metabolic disorders and immunity impairments
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IR or develop after it [72–74]. Furthermore, the interior 
milieu of PCOS contributes to the aggravation of IR, 
especially the excess androgens. Androgen, for one thing, 
can modify the secretion of adipokines and promote vis-
ceral fat accumulation hence inhibiting insulin sensitivity 
in adipose tissue and skeletal muscles [75]. For another 
thing, excessive insulin inhibits SHBG formation in the 
liver and promotes androgen release, thus resulting in the 
elevation of free testosterone (T) [76, 77]. The reciproc-
ity between IR and hyperandrogenemia forms a vicious 
circle, leading to the aggravation of PCOS [78–80].

The innerpancreatic effects of IL-22
According to recent research, the entire pancreas con-
tains IL-22-producing cells [81]. Hasnain et al. declared 
that islets from mice given a high fat diet (HFD) dis-
played more severe endoplasmic reticulum (ER) stress 
and oxidative stress than islets from mice of normal chow 
[23] (Fig. 2). The findings in human beta cells were iden-
tical to those observed in vivo when IL-22 was supple-
mented [23]. Specifically, IL-22 inhibited the apoptosis 
of β cells, thus restoring insulin secretion and improving 
insulin sensitivity in obese mice [22, 23]. IL-22 took effect 
by upregulating antioxidant genes and inhibiting oxida-
tive stress-inducing genes mediated by signal transducer 
and activator of transcription 1 (STAT1) and STAT3 [23]. 
They also indicated that IL-22 might alternatively signal 
through IL-22R1 ligand as the blockade of IL-22R1 sig-
naling elicited ER stress in β cells [23]. Wang et al. con-
firmed that IL-22R1-deficient mice developed severe 

adiposity and insulin resistance while no differences were 
observed in IL-22-deficient mice. Another new study 
also found enhanced serous IL-22 triggered IL-22R1/
Janus kinase 1 (JAK1) /STAT3 signaling pathway in islets, 
which improved insulin resistance in PCOS rats [29].In 
addition, Park et al. set a cohort of transgenic mice IL-
22TG6 with serous IL-22 at a moderate level (~ 600 pg/
ml) to mimic the treatment of IL-22 [82]. However, they 
argued that wildtype and IL-22TG6 mice showed no 
appreciable variations in either glucose tolerance or insu-
lin sensitivity with normal diet or HFD. In parallel, they 
observed no improvement in insulin resistance in HFD 
mice following a long-term and low-dose administration 
of recombinant mouse IL-22 (rmIL-22). This result is cor-
responding with the findings of Yang et al. but contrary 
to the findings of Hasnain’s study, despite using the same 
agentia [23, 25, 82]. Surprisingly, Park et al. also contra-
dicted the notion that the strong STAT3 phosphorylation 
occurred in acinar cells rather than β cells in acute pan-
creas injury models [82]. These opinions are provocative 
and the role of IL-22, including its target in the pancreas, 
an appropriate administration dosage, and other mecha-
nisms of its efficacy, needs to be elucidated in detail.

The extrapancreatic effects of IL-22
IL-22 promotes adipose tissue browning
Over the last decades, emphasis has been placed on the 
role of brown adipose tissue (BAT) in increasing the 
metabolic rate and alleviating IR [83–85]. The transplan-
tation of BAT to rodents with PCOS has been shown to 

Fig. 2  IL-22 may alleviate PCOS-related metabolic disorders and immunity impairments
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improve critical characteristics [86]. Qi et al. pointed out 
that IL-22 was capable of promoting white fat browning 
in PCOS mice, accompanied by a dramatical elevation of 
the thermogenic markers in subcutaneous adipose and 
brown adipose [27, 28]. They proposed that the promo-
tion of adipose tissue browning represented a potential 
mechanism by which IL-22 facilitates IR in PCOS [27, 
28]. Hasnain et al. also found a greater distribution of 
brown fat in obese rodents treated with IL-22 [23].

By promoting white fat browning and reducing oxida-
tive and ER stress in β cells, IL-22 may be able to enhance 
insulin sensitivity and secretion. In addition, IL-22 ther-
apy modulates chronic low-grade inflammation through 
ameliorating obesity and attenuating local inflammatory 
state in granulosa cells. Furthermore, exogenous IL-22 
may alter the gut flora community via reinforcement of 
gut mucosal barrier and decrease of LPS leakage. Gut-
brain axis may also be involved in the regulation of body 
weight. IL-22 significantly activates the STAT3 pathway, 
which prevents the hepatic lipogenesis and gluconeogen-
esis. Furthermore, IL-22 upregulates MT1 and MT2 to 
reduce oxidative stress in hepatocytes. High blood levels 
of IL-22, however, appear to have negative consequences 
such as cachexia and IR.

Does IL-22 induce IR in peripheral organization?
After administration with IL-22 fragment crystallizable 
(IL-22Fc), Wang et al. found that increased protein kinase 
B (AKT) phosphorylation of insulin-targeted periph-
eral organization in diet-induced obese (DIO) mice was 
in support of improved insulin responsiveness [22]. In 
contrast, a study demonstrated that IL-22 inhibited insu-
lin from stimulating glucose absorption in vitro incuba-
tion of rats’ muscles [87]. Similar effects were observed 
in human hepatocytes, displaying a decreased level of 
AKT phosphorylation and an attenuated glucose metab-
olism in response of insulin challenge [87]. Fabbrini 
et al. showed that pretreatment with IL-22 enhanced 
c-Jun kinase (JNK) phosphorylation which presum-
ably explained the suppressive effect of insulin by IL-22 
[87, 88]. Furthermore, they noticed that obese individu-
als with insulin resistance exhibited greater polarization 
and infiltration of CD4+ T cells that generated IL-22 in 
the subcutaneous adipose tissue [87]. Nevertheless, the 
culture condition in vitro deserves our attention, which 
respectively set a 7.5 ng/mL of IL-22 for hepatocytes and 
100 ng/mL of IL-22 for skeletal muscles [87]. As Hasnain 
et al. argued, it was unlikely to reach such high concen-
tration in muscles in vivo [23], the hepatocytes probably 
likewise. This dosage is inapplicable as Park et al. dem-
onstrated that exorbitant IL-22 in plasma may drive the 
situation to unfavorable consequences [82].

IL-22 and inflammation
Accumulating evidence uncovers that the sustaining 
status of chronic low-grade inflammation is a critical 
manipulator for the disturbance of PCOS where obesity 
serves as a primary trigger [89]. With a high prevalence 
up to 38-88% in PCOS, obesity, especially abdominal 
type, will promote the burden of inflammation, boost-
ing the level of oxidative stress and various inflammatory 
markers [5]. By enhancing the inflammatory cytokines 
and recruiting immune cells, the inflamed adipose tis-
sue sustains the state of inflammation [90]. Representa-
tive inflammatory mediators are higher in circulation, 
including tumor necrosis factor-α (TNF-α), IL-6, and 
C-reactive protein (CRP) [91–94]. These inflammatory 
cytokines lead to the aggregation of IR and stimulation 
of androgen production [54]. In addition to the systemic 
inflammatory state, ovarian tissue is also confronted with 
inflammation accompanied by increased macrophages 
and lymphocytes infiltration [92].

Park et al. illustrated that the level of IL-22 is consid-
erably low in serum despite consuming HFD in absence 
of exogenous inflammatory stimulation [82]. How-
ever, Wang and colleagues found a remarkable increase 
of IL-22 in HFD-fed mice [22]. Moreover, in T2DM 
patients, the frequency of Th-22 cells is higher than con-
trol individuals which is also positively correlated with 
blood concentration of IL-22 [95, 96]. In metabolically 
abnormal subjects of obesity, Fabbrini also provided evi-
dence that increased IL-22 in serum and CD4+ T cells 
which produced IL-22 in adipose tissue might be related 
with the stimulation of cytokines such as IL-1β [87, 97]. 
Sabat has indicated that the difference between rodents 
and humans in IL-22 level is due to the fact that humans 
are exposed to a variety of stressors over the long lifespan 
[98]. Consequently, the state of inflammation is distinct 
from that of the rodents in the experimental environ-
ment. This clarification appears plausible but may not 
apply to all the metabolic disorders. Two independent 
groups observed deficient secretion of IL-22 was both 
observed in PCOS patients and PCOS-like murine mod-
els [28, 99]. This result might pave a way for the IL-22 
therapy in experimental studies and clinical trials of 
PCOS, while a new clinical study observed no differences 
in the circulating concentrations of IL-22 and IL-22BP 
between PCOS individuals and healthy controls [100]. 
Therefore, we need more clinical studies and observa-
tions to confirm the alterations in IL-22 levels in patients 
with PCOS, as well as more effort to investigate the 
underlying mechanisms of the differences in IL-22 levels 
among various metabolic diseases.

Furthermore, Wang et al. found IL-22 regulated lipid 
metabolism by directly activating STAT3 in adipose tis-
sue [22]. After high doses of IL-22-Fc administration (50–
100 µg/mouse, twice weekly), the obesity was remarkably 
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improved in DIO and db/db mice [22]. Besides, IL-22Fc 
increased the expression of genes involved in triglycer-
ide lipolysis and fatty acid β-oxidation, while decreasing 
the pro-inflammatory gene expressions involved in obe-
sity [22, 101, 102]. However, Park et al. found that con-
siderable high concentration of IL-22 (4000–7000 pg/
ml) might cause cachexia, manifesting an abnormally 
thin phenotype [82]. Yang et al. revealed that long-term 
therapy with rmIL-22 (300 ng/g, daily for 36 days) did not 
impact body weight, corroborating the Park’s findings 
that a relatively high level did not affect obesity [25, 82]. 
However, another study still concluded that the low-dose 
treatment (20 ng/g or 100 ng/g, twice weekly for 4 weeks) 
could ameliorate obesity [23]. Taken together, ambiguity 
and uncertainty enrich the efficacy and administration 
scheme of IL-22 in treating obesity, making it imperative 
to conduct additional studies concentrating on the mech-
anism and safety.

Ovarian local inflammation is also an important com-
ponent of the systemic inflammatory situation in PCOS. 
IL-22 administration markedly decreased inflammatory 
cytokines and their gene expressions in granulosa cells 
from PCOS patients [28]. Qi et al. implied that IL-22 
might activate STAT3, resulting in an increase of adenos-
ine monophosphate kinase and a reduction in the inflam-
matory state of macrophages [28]. Therefore, modulation 
of local inflammation by IL-22 also provides mechanistic 
insight into regulating ovarian dysfunction.

IL-22 and gut
Recent studies have put an emphasis on the interac-
tion between gut microbiota dysbiosis and PCOS [57, 
58, 103–105]. Several leading studies have highlighted a 
reduction of α diversity and an alteration of β diversity, 
the former of which is a causal factor for obesity [57, 58, 
106, 107]. The variation of intestinal microbial composi-
tion was initially confirmed by Kelly et al. in letrozole-
induced PCOS rats, typifying decreased Bacteroides and 
increased Firmicutes [56]. The elevation of Firmicutes 
has been found closely connected with the occurrence 
of classical metabolic diseases such as obesity, T2DM, 
and MS [108]. In addition, the proportion of probiotics 
declined both in PCOS models and individuals, such as 
those in charge of maintaining intestinal integrity by pro-
ducing short-chain free fatty acids (SCFAs) [109]. These 
changes tend to trigger the destruction of gut epithelial 
barrier and the increase in intestinal permeability which 
contributes to systemic endotoxemia and host immunity 
activation [78]. Thus, the increased circulating lipopoly-
saccharide (LPS) will be recognized by toll-like receptor 
of immune cells, inducing inflammation and interfer-
ing with insulin receptor function [110]. Apart from it, 
Qi et al. demonstrated that bile acid metabolism was 
also involved in the gut microbiota alterations of PCOS 

individuals, as shown by an increase in Bacteroides vulga-
tus and a decrease in certain bile acids [28]. The brain-gut 
axis may be another potential two-way communication 
pathway between the gastrointestinal system and the 
central nervous system in PCOS that regulates appetite 
and energy metabolism [103, 111]. Liu et al. reported 
that several gut-brain peptides declined in PCOS patients 
when compared to healthy population, which displayed a 
negative correlation with clinical parameters [103]. Some 
researchers concurred with their conclusions while some 
other studies considered there were no differences in 
ghrelin levels between the PCOS group and the controls 
[112–114]. Although the current studies are still not suf-
ficient and explicit, these gastrointestinal hormones are 
likely to be a link during the development of PCOS.

IL-22 and gut mucosal immunity
Studies have elucidated that IL-22 exhibits unique prop-
erties of enhancing antimicrobial defense and tissue 
regeneration in different epithelial cells [41]. Deteriora-
tion of mucosal defense often occurs in obese mice, in 
turn, mice with mucosal immune deficiency also develop 
metabolic complications [115, 116]. For the lack of IL-22 
induction, obese mice underperformed in response 
to infection and immune challenge, manifesting more 
severe gut barrier impairment, systemic infection and 
higher mortality [22]. And treatment with exogenous 
IL‑22 had the capacity to rescue the features. The same 
team also found the deficiency in IL-22 induction was 
due to the failure of the ILC activation mediated by IL-23 
[22]. Although the specific mechanism is still unclear, it 
implies that IL-22 plays a key role in the preservation of 
intestinal epithelial barrier, thus preventing the leakage of 
LPS into circulation.

IL-22 and gut microbiota
Expanding studies have supported a regulatory func-
tion for IL-22 in the gut microbiota and commensals 
but primarily in inflammatory and autoimmune diseases 
[117–119]. Wang et al. found IL-22-Fc administration in 
DIO mice noticeably reversed the decreased ratio of Bac-
teroidetes to Firmicutes that was found in obese models 
[22, 120]. However, the modification of bacterial com-
positions cannot be transferred to HFD mice in the co-
housing experiment. [22] Wang et al. inferred that that 
IL-22 might not directly modify the microbiota in obese 
mice, and the positive outcomes were probably the con-
sequence of comprehensive modulation of the systemic 
metabolic syndrome [22]. A new study demonstrated 
that IL-22 was associated with multiple gut microbiota, 
metabolites, and sexual hormones [99]. Moreover, they 
revealed that intervention with an engineered probiotic 
microbe could restore the decreased serum IL-22 lev-
els in mice with PCOS, indicating that IL-22 might act 
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as a crucial role of communication between the gut and 
ovary. This effect was further confirmed by administrat-
ing IL-22 inhibitor, αIL-22 [99]. αIL-22 exacerbated a 
number of symptoms and induced mitochondrial injury 
in granulosa cells of PCOS mice, which could be partially 
reversed by fecal transplantation of engineered probiot-
ics [99].

IL-22 and bile acid
Qi et al. reported that transplanting gut microbiota from 
PCOS patients, particularly Bacteroides vulgatus, could 
establish the PCOS-like phenotypes in mice coupled with 
the decrease in IL-22 whereas IL-22 administration could 
improve the symptoms [28]. Additionally, the bile acid 
metabolism pathway also regulated the IL-22 production 
in PCOS-like rodents. After administration of certain bile 
acid, the intestinal and serous IL-22 levels both elevated. 
Correspondingly, the benefits of bile acids diminished in 
mice lacking IL-22R [28]. Gao et al. also confirmed that 
the upregulation of bile acid profiles correlated positively 
with the enhance of serous IL-22 concentration in PCOS 
rats [29]. Another recent study reported that supplemen-
tation of a sort of yogurt could modulate IL-22 level in 
serum, alter microbial composition, and modify the pro-
file of bile acid [121]. Mechanistically, Qi et al. reported 
that glycodeoxycholic acid (GDCA) could promote ILC 
development and IL-22 production through enhancing 
GATA3 pathway [28]. In summary, a growing corpus of 
research has illustrated that orienting the bile acid-IL-22 
axis may represent a promising strategy for the treatment 
of PCOS. The work of Qi et al. has taken the initiative to 
shed light on the relationship between bile acid and IL-22 
and left a vast space for more exploration in this field.

IL-22 and gut-brain axis
Apart from gut mucosal protection and metabolic ben-
efits, IL-22Fc will multiply an anorectic gut hormone 
called peptide YY (PYY) which could be another way to 
regulate body weight [22]. Additionally, IL-22 corrected 
an altered context of oxidative and ER stress in intesti-
nal goblet cells and enteroendocrine cells which could 
secrete gut-brain peptides such as PYY [23]. However, in 
the pair-feeding experiment, restricted food consump-
tion did not play a role in improving obesity, which sug-
gested that reduced food intake might not be a primary 
impact on metabolism but rather an additional benefit.

IL-22 and hepatic steatosis
NAFLD, a prevalent chronic liver disease, affects a large 
proportion of the global population [122, 123]. The inci-
dence of NAFLD is 35-70% in PCOS patients, with a 
higher risk of more than two-fold relative to non-PCOS 
women [63, 124–127]. Comparatively, an elevated preva-
lence of PCOS has also been observed in NAFLD women 

of child-bearing age which implies the further interplay 
between the two diseases [128]. The simultaneous occur-
rence of the two diseases is not a mere coincidence as 
they share similar signs and symptoms like visceral obe-
sity, IR, chronic low-grade inflammation, and hyper-
androgenemia. The insulin-resistant adipose tissue in 
PCOS individuals can induce lipolysis and determine 
an increase of free fatty acids transportation to the liver, 
thus leading to hepatic fat accumulation [129]. Hyperan-
drogenemia not only exerts as a mediator between IR and 
NAFLD, but also promotes the formation of a steatogenic 
and proapoptotic environment which exacerbates the 
burden and damage of hepatocytes in PCOS [130–133]. 
Recently, accumulative evidence has also indicated that 
gut microbiome dysbiosis, which interacts closely with 
inflammation, may also be a link in the maintenance of 
PCOS and NAFLD [58, 134]. Other plausible mecha-
nisms involve the disturbance in adipocytokine secretion, 
mitochondrial dysfunction, and genetic susceptibility 
[135–144].

IL-22 activates STAT3 in the liver
According to the research, STAT3 signaling pathway 
plays an essential part in the pathophysiology of hepatic 
steatosis [145–147]. In the mice lack of hepatic STAT3, 
there was accumulation of triglyceride content and 
hepatic lipogenic gene expression [145]. Variants of 
human STAT3 genes were also relevant to NAFLD [147]. 
In both human hepatoma cell line HepG2 and in the 
mouse liver, Yang and colleagues found that the rmIL-
22 could strongly activate STAT3 signaling, depending 
on the STAT3-binding tyrosine residues in IL-22R1 [25]. 
Wang et al. showed similar outcomes when administrat-
ing IL-22Fc [22].

It has also been demonstrated that the activation of 
the STAT3 signaling pathway inhibits lipogenesis and 
gluconeogenesis in the liver [145]. Studies declared that 
short-term rmIL-22 supplementation downregulated the 
gene expression of lipogenesis including critical enzymes 
for cholesterol and triglyceride synthesis as well as lipo-
genic transcription factors in both HFD rats and even 
normal rats [22, 25]. Though the biomarkers level in 
serum showed no difference, the hepatic cholesterol and 
triglyceride were declined [25]. Park et al. have demon-
strated that IL-22 treatment dramatically suppressed 
gluconeogenic gene expression, which was also partially 
mediated by the activation of adenosine monophosphate-
activated protein kinase (AMPK) [82]. Besides, long term 
rmIL-22 administration also suppressed TNF-α signaling 
pathway and the expression of genes implicated in the 
development of hepatic steatosis [25]. Of note, the lev-
els of alanine transaminase (ALT) and aspartate amino-
transferase (AST) were improved by IL-22 treatment as 
well, suggesting that IL-22 has a hepatoprotective effect 
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[25]. However, in the mice with genetic overexpression of 
IL-22 (600pg/ml), Park et al. found no differences in lev-
els of serous ALT, hepatic triglyceride (TG), and hepatic 
steatosis when compared to controls [82].

IL-22 improves the oxidative stress in NAFLD
IL-22 is a potent up-regulator of antioxidant enzymes, 
such as metallothionein (MT)1 and MT2 [148]. In NASH 
mice, Hwang et al. illustrated that IL-22Fc decreased ROS 
levels and ROS-induced kinases phosphorylation, thus 
improving oxidative stress in hepatocytes [24]. Enhanc-
ing MT1 and MT2 also inhibited subsequent apoptotic 
signaling and the release of inflammatory extracellular 
vesicles (EVs) [24]. The absence of MT1 and MT2 weak-
ened anti-inflammatory and anti-fibrotic effects of IL-
22Fc in NASH mice models [24].

The balance of IL-17 and IL-22 in the liver
A recent study shows that the infiltration of activated 
CD4 + cells in the liver, specifically Th17 and Th22 cells, 
can have a significant impact on the development of 
NASH in mice [149]. This study pointed that IL-17 played 
as a culprit in exacerbating hepatocyte lipotoxicity via the 
activation of the JNK pathway whereas IL-22 rescued this 
toxic condition through PI3K-mediated inhibition of JNK 
[149]. However, they also demonstrated that IL-17 nulli-
fied the protective effect of IL-22 [149]. The NASH pro-
gression was suspended in vivo by Th22 cells infiltration 
only in the absence of IL-17, featuring less TG content, 
JNK suppression and AKT activation [149]. Furthermore, 
IL-22 promoted the recruitment of Th17 cells in the pres-
ence of IL-17, which may exacerbate hepatic fibrosis [149, 
150]. IL-22 seems to serve a dual function depending on 
the duration of inflammation and the intrahepatic milieu 
in vivo [151], however, the exogenous IL-22 as a thera-
peutic agent shows positive effects. It is still promising in 
NAFLD for its beneficial in inhibiting lipid accumulation, 
preserving liver function, and promoting hepatocyte pro-
liferation and survival [25, 151, 152].

Disscussion
Emerging advantages of IL-22 administration have been 
presented in different models including restoration of 
insulin sensitivity and glucose tolerance, resolution of 
inflammatory status and body weight, reconstruction of 
gut flora community and gut barrier, as well as reduc-
tion of hepatic fat deposition and stress injury [22, 23, 27, 
28]. Accumulating knowledge of IL-22 in the attempts of 
treating PCOS has been gained in recent years [22, 23, 
27, 28]. However, several questions are noteworthy.

First, endogenous IL-22 seems to show little effect on 
some diseases while it appears to have regulatory effects 
on PCOS. Two groups respectively demonstrated that 
endogenous IL-22 had no effect on the development 

of metabolic disorders in HFD mice [22, 82]. And IL-
22-deficient mice exhibited no differences of metabolic 
manifestations from wild-type littermates [22]. Even in 
vivo, the benefits will be neutralized by other cytokines 
or be overwhelmed by exogenous stressors [23, 149]. The 
reason may be that juvenile mice without inflammatory 
stimulation usually holds a low level of endogenous IL-22 
as Sabat concluded [98], or the efficacy of IL-22 may be 
restricted by the comprehensive microenvironment. 
However, in several studies of PCOS models, researchers 
have reported that various interventions can alleviate the 
typical symptoms by modulating the biological activity 
of endogenous IL-22 [28, 99, 100, 153]. Therefore, there 
may be disease-specificity and tissue-specificity in the 
role of IL-22, but the precise mechanism requires further 
investigation.

Second, the alteration of IL-22 levels is still confound-
ing in rodents and humans. A majority of existing data 
on PCOS models and individuals indicates a consistent 
decline in IL-22 level, which may serve as a solid foun-
dation for future study [27–29, 99, 121]. However, the 
IL-22 level varies in a number of obesity models and 
patients [22, 82, 95, 96]. Although illuminating explana-
tions for different inflammatory conditions have been 
presented, the doubts remain. To better develop novel 
treatment models, we require additional clinical data 
and fundamental research to comprehend the alterations 
and mechanisms of IL-22 in PCOS and other metabolic 
diseases.

Third, the precise concentration of IL-22 in sure 
of safety and effectiveness remains to be confirmed. 
Researchers have indicated that appropriate exogenous 
IL-22 concentrations could provide substantial protec-
tion. Whereas considerable high concentration of IL-22 
probably leads to cachexia and certain relatively high 
concentration appears to play no role in obese mice 
[82]. Besides, high local levels of IL-22 show pathologi-
cal effects in some other diseases. It can promote the 
psoriasis pathological progression, intestinal prolifera-
tion and even neoplasia [154, 155]. Despite not being the 
onset of liver cancer, IL-22 may stimulate the growth of 
existing hepatic tumors via STAT3 activation [148, 156, 
157]. Also, IL-22 indirectly promotes the progression 
of chronic viral hepatitis [150]. However, Hasnain et al. 
observed no changes in the histology or morphology of 
skin or gut with short-term and sporadic administration 
[23]. To assure the safety and efficacy of IL-22, it is still 
necessary to determine an optimal administration proto-
col. Before it can be implemented in clinical practice as 
an alternative approach for PCOS, further explorations in 
the field of regulating metabolism and immunity by IL-22 
remain to be consolidated.
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Conclusion
In conclusion, IL-22 tends to be a potential therapy 
method for PCOS patients in the future. However, we 
must take into account that the function of IL-22 varies 
depending on the administration dosage and the specific 
tissue. In order to mitigate the adverse effects, a suitable 
and targeted mode of delivery and dosage should be con-
sidered when developing novel medications for PCOS. 
Although the modulation of systemic metabolic disor-
ders and inflammation is crucial for PCOS patients, we 
should also investigate deeper into how IL-22 will regu-
late other typical phenotypes of PCOS.
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