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Abstract
Background Ovarian cancer (OC) is the most malignant tumor with the worst prognosis in female reproductive 
system. Mitophagy and long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis, development, and drug 
resistance. The effects of mitophagy-related lncRNAs on OC prognosis and therapeutic response remain unelucidated.

Methods We retrieved OC-related RNA sequence, copy number variation, somatic mutation, and clinicopathological 
information from The Cancer Genome Atlas database and mitophagy-related gene sets from the Reactome database. 
Pearson’s correlation analysis was used to distinguish mitophagy-related lncRNAs. A prognostic lncRNA signature 
was constructed using UniCox, LASSO, and forward stepwise regression analysis. Individuals with a risk score above 
or below the median were classified as high- or low-risk groups, respectively. The risk model was analyzed using 
the Kaplan–Meier estimator, receiver operating characteristic curve, decision curve analysis, and Cox regression 
analysis and validated using an internal dataset. LINC00174 was validated in clinical samples and OC cell lines. We 
also reviewed reports on the role of LINC00174 in cancer. Subsequently, a nomogram model was constructed. 
Furthermore, the Genomics of Drug Sensitivity in Cancer database was used to explore the relationship between the 
risk model and anti-tumor drug sensitivity. Gene set variation analysis was performed to assess potential differences in 
biological functions between the two groups. Finally, a lncRNA prognostic signature-related competing endogenous 
RNA (ceRNA) network was constructed.

Results The prognostic signature showed that patients in the high-risk group had a poorer prognosis. The 
nomogram exhibited satisfactory accuracy and predictive potential. LINC00174 mainly acts as an oncogene in cancer 
and is upregulated in OC; its knockdown inhibited the proliferation and migration, and promoted apoptosis of OC 
cells. High-risk patients were more insensitive to cisplatin and olaparib than low-risk patients. The ceRNA network may 
help explore the potential regulatory mechanisms of lncRNAs.

Conclusion The mitophagy-related lncRNA signature can help estimate the survival and drug sensitivity, the ceRNA 
network may provide novel therapeutic targets for patients with OC.
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Background
Ovarian cancer (OC) is a heterogeneous tumor with the 
highest mortality rate and worst prognosis among gyne-
cological malignancies [1]. There were 313,959 new cases 
and 207,252 deaths globally in 2020 [2]. The onset of 
OC is hidden. Patients often have no obvious symptoms 
in the early stage, and are often diagnosed when symp-
toms such as abdominal distension, abdominal pain, and 
weight loss appear in the late stage. Despite advances in 
diagnostic techniques and therapeutic strategies in recent 
years, the long-term survival of OC patients remains 
unsatisfactory [3]. Most patients with advanced-stage 
disease relapse and develop chemoresistance within a few 
years [4, 5]. Therefore, there is an urgent need to iden-
tify potential tumor prognostic markers and new thera-
peutic targets to guide treatment decisions and improve 
prognosis.

Mitophagy, the selective engulfment of dysfunctional 
or redundant mitochondria by autophagosomes and sub-
sequent degradation in lysosomes, has been established 
as a major mechanism of mitochondrial quality control 
[6]. Abnormal mitophagy is associated with many dis-
eases, including cardiovascular diseases [7], kidney dis-
ease [8], neurodegenerative disease [9], and cancer [10, 
11]. The impact of mitophagy on cancer cells are multi-
dimensional, and the specific role and mechanism of 
mitophagy in different cancers and at different cancer 
stages is still unclear [11]. The regulation of this pro-
cess is critical for maintaining cellular homeostasis and 
has been implicated in acquired drug resistance [12]. 
In mammals, there are two main molecular regulatory 
mechanisms for mitophagy [13]: the Parkin-dependent 
pathway, involving PINK1/Parkin-mediated mitophagy; 
and the Parkin-independent pathway, in which mitoph-
agy is mainly mediated by receptor proteins, such as 
BNIP3L/NIX, BNIP3, and FUNDC1 [11]. In addition, 
more and more new receptor molecules that can regulate 
mitophagy have been identified in recent years. A recent 
study showed that mitophagy is closely associated with 
cisplatin resistance in OC, and cisplatin resistance can be 
curtailed by blunting Bnip3-mediated mitophagy [14].

Long non-coding RNAs (lncRNAs) can bind to DNA, 
RNA, and proteins, and thus participate in gene regu-
lation at the transcriptional, post-transcriptional and 
epigenetic levels [15]. LncRNAs are frequently dysregu-
lated in cancer cells [16]; therefore, they can be consid-
ered as therapeutic, diagnostic and prognostic factors for 
cancer [15–17]. Thus, we explored the prognostic value 
of lncRNAs associated with mitophagy in OC and the 
possible regulatory mechanisms between lncRNAs and 

mitophagy-related genes. Our study may be valuable and 
meaningful for identifying potential prognostic markers 
and therapeutic targets in OC.

Methods
Data acquisition
RNA sequence, somatic mutation, and copy number vari-
ation (CNV) data, as well as clinicopathological infor-
mation of 379 patients with OC, were downloaded from 
The Cancer Genome Atlas (TCGA) database. mRNA 
and lncRNA data were annotated using GTF files from 
Ensembl (http://asia.ensembl.org). We used Perl to inte-
grate and extract lncRNA expression and corresponding 
clinicopathological data, including the patient number, 
age, stage, grade, survival status, and survival time. As 
reported in a previous article, we also used the Reac-
tome database to obtain data on three mitophagy-related 
signaling pathways: PINK1/Parkin-mediated mitoph-
agy (R-HSA-5,205,685), receptor-mediated mitophagy 
(R-HSA-8,934,903), and mitophagy (R-HSA-5,205,647) 
[18]. Based on the analysis of the combined gene set data, 
we identified 29 mitophagy-related genes (Additional file 
1: Table S1). The “maftools” package in R software was 
used to present the mutation data of mitophagy-related 
genes.

Identification of mitophagy-related lncRNAs
The correlation between lncRNAs and mitophagy-related 
genes extracted from the TCGA-OV dataset was calcu-
lated using the “corrplot” package, and mitophagy-related 
lncRNAs were screened out according to the p < 0.05 and 
|R| ≥ 0.4 screening criteria, using Pearson correlation 
analysis.

Construction of the prognostic signature
Univariate Cox regression analysis was used to iden-
tify the mitophagy-related lncRNAs associated with the 
prognosis of patients with a setting of p < 0.05. LASSO 
Cox regression analysis with ten-fold cross-validation 
and forward stepwise regression analysis were then used 
to conduct a prediction signature of mitophagy-related 
lncRNAs. At the same time, the risk score of each patient 
was calculated using the following formula: risk score = Σ 
(expression value of each lncRNA × corresponding coeffi-
cient). The median risk score was used to classify patients 
into high- and low-risk groups.

Validation of the prognostic signature
To validate this model, we performed a Kaplan Meier 
(KM) analysis to show the survival differences between 
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the high- and low-risk groups and visualized the survival 
curves using the “survminer” and “survive” R packages. 
The 1-, 3-, and 5-year receiver operating characteristic 
(ROC) curves were drawn to evaluate prognostic predic-
tion efficiency using the KM “survival ROC” R package. 
We performed univariate and multivariate Cox regres-
sion analyses to determine whether our risk model could 
independently predict prognosis in patients with OC. 
Furthermore, we divided the TCGA-OV dataset into two 
sets randomly, TCGA-training and -testing datasets, for 
internal validation of the model.

Tissue collection
Samples of 51 OC and 40 normal ovarian tissues were 
collected from the tissue specimen Bank of Shengjing 
Hospital of China Medical University between 2015 and 
2019. All OC patients had not received chemotherapy, 
radiotherapy or other antitumor therapy before sur-
gery. This study was approved by the Ethics Committee 
of Shengjing Hospital of China Medical University, and 
informed consent was obtained from all patients.

Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR)
Total RNA was extracted using TRIzol reagent (Takara 
Bio, Kusatsu, Japan) and evaluated using the NanoDrop 
2000 system (Thermo Fisher Scientific, Carlsbad, CA, 
USA) to determine RNA purity and concentration. RNA 
samples were reverse transcribed using TransScript Uni 
All-in-One First-Strand cDNA Synthesis SuperMix for 
qPCR (One-Step gDNA Removal; TransGen Biotech, 
Beijing, China). PerfectStart Green qPCR SuperMix 
(TransGen Biotech) was used for qPCR using an ABI 
7500 Fast System. The primer sequences of LINC00174 
is as follows: forward: GGCCCAACACTTCCCTCAAA, 
reverse: CAGGGAGAAACGACCTGGAG. We used 
β-actin as an internal reference and the 2−ΔΔCt method 
for gene expression analysis.

Cell culture and transfection
We purchased cells from the Chinese Academy of Sci-
ences Cell Bank (Shanghai, China) and cultured them 
in RPMI 1640 medium (Seven, Beijing, China) with 10% 
fetal bovine serum (FBS; Procell, Wuhan, China) in a 5% 
CO2 atmosphere at 37  °C. Long intergenic non-protein 
coding RNA 00174 (LINC00174) shRNA plasmid was 
purchased from GeneChem (Shanghai, China). We used 
lipofectamine 3000 (ThermoFisher Scientific, Waltham, 
MA) for transfection according to the manufacture’s 
protocol.

Cell viability assay
The CCK-8 kit (GK10001, GLPBIO, Montclair, CA, USA) 
was used to assess the viability of cells. We inoculated 

the cell suspension in a 96-well plate (2 × 103 cells/well), 
and added CCK-8 solution (10 µL per well) every 24  h, 
then incubated for 2 h. We measured the absorbance at 
450 nm by using a microplate reader.

Colony formation assay
We seeded 1000 cells per well of a 6-well plate. After 10 
days in culture, we fixed and stained the cells with 4% 
paraformaldehyde (PFA) and 0.5% crystal violet, respec-
tively; and then counted the colonies (> 50 cells).

Cell scratch assay
We seeded cells in 6-well plates and waited for cells to 
grow to 90% confluency. We gently draw a straight line 
in each well with a 200 µL pipette tip, then washed the 
well 3 times with phosphate-buffered saline (PBS), and 
imaged the scratches with a microscope (Nikon, Japan) 
under 10x objective lens. Cells were cultured for 24 h in 
FBS-free medium before images were captured again.

Transwell migration assay
Cell migration assay was performed using transwell 
chamber (8-µm pore size transwell filter) in a 24-well 
plate. We added 700 µL of medium containing 10% FBS 
to the lower chamber and 200 µL FBS-free medium 
(2 × 104 cells) to the upper chamber. After incubation for 
24 h, we fixed the cells with 4% PFA and stained the cells 
with 0.5% crystal violet. The stained migrated cells on the 
membrane were photographed under 20x objective lens 
and manually counted.

Apoptosis assay with flow cytometry
After transfection for 48  h, the cells were collected and 
resuspended into a single cell suspension. Then we added 
Annexin V-FITC and PI staining solution (Vazyme, Nan-
jing, China) according to the manufacturer’s protocol. 
The cells were incubated in the dark for 10 min at room 
temperature and then analyzed by flow cytometry (Beck-
man Coulter, Brea, CA, USA).

Construction of a nomogram model
The nomogram, which combined clinicopathological 
information and risk score, was plotted using the “rms” 
R package and analyzed to improve clinical applicability. 
Calibration curves were constructed to evaluate the con-
sistency between the predicted and actual survival rates. 
Decision curve analysis (DCA) was used to incorporate 
patients or decision-makers preferences for clinical utility 
[19]. Meanwhile, area under the curve (AUC) values were 
calculated using the “survival,” “survminer,” and “time 
ROC” packages to compare the differential performance 
between the nomogram, risk score and clinicopathologi-
cal information.
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Drug sensitivity analysis
We used the R package “pRRophetic” to predict the drug 
response. We used Ridge’s regression to estimate the 
half-maximum inhibitory concentration (IC50) of each 
patient, and 10-fold cross-validation to estimate the 
accuracy of the prediction. The drug sensitivity analysis 
was based on the Genomics of Drug Sensitivity in Cancer 
(GDSC) database [18].

GSVA analysis and construction of a ceRNA Network
Gene set variation analysis (GSVA) is an unsupervised 
and nonparametric method for assessing the enrichment 
of gene sets associated with mRNA expression data [20]. 
We used the “GSVA” packages to assess the potential dif-
ferences in biological functions between the high- and 
low-risk groups and constructed a ceRNA network based 
on selected mitophagy-related lncRNAs and correspond-
ing mitophagy-related genes. The miRDB [21] and miR-
Walk [22] websites were used to identify microRNAs 
(miRNAs) interacting with selected mitophagy-related 
lncRNAs and mitophagy-related genes, respectively. 
The overlapping miRNAs were selected to construct the 
ceRNA network, which was visualized using Cytoscape 
software.

Statistical analysis
Statistical analyses were performed using R (v4.0.0) and 
GraphPad Prism 9 (La Jolla, CA, USA). Univariate and 
multivariate Cox regression analyses were used to evalu-
ate the independence of the mitophagy-related lncRNA 
signature in OC. For comparisons between the two 
groups, the unpaired Student’s t-test was used for vari-
ables with normal distribution. The Mann–Whitney U 
test was used to analyze variables with non-normal dis-
tribution. Analysis of variance (ANOVA) or the Kruskal–
Wallis test was used to compare three or more groups. 
Statistical significance was set at p < 0.05 unless other-
wise specified. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** 
p < 0.0001.

Results
Landscape of mitophagy-related genes in TCGA-OV 
dataset
Mutation analysis of 29 mitophagy-related genes in the 
TCGA-OV dataset indicated that 19 samples (4.36%) 
had gene mutations. The mutation frequencies in 
MFN1, MFN2, and UBC were the highest in OC patients 
(Fig.  1A). Common CNVs were identified in the 29 
mitophagy-related genes, with MFN1 having the maxi-
mum CNV amplification frequency and PINK1 having 
the maximum CNV deletion frequency (Fig. 1B). Among 
the 29 mitophagy-related genes, the expression of 
TOMM6 (translocase of outer mitochondrial membrane 
6) was zero in OC samples in the TCGA-OV dataset, and 

thus not included in further analyses. Network analy-
sis revealed that MFN2 had the strongest positive cor-
relation with PINK1 (Fig.  1C). KM analysis showed 
that 19 mitophagy-related genes were associated with 
patient survival. ATG5, CSNK2A1, CSNK2B, FUNDC1, 
TOMM5, TOMM7, and UBA52 were prognostic protec-
tive factors against overall survival (OS) in OC patients, 
whereas ATG12, MFN1, MFN2, PINK1, PRKN, SQSTM1, 
SRC, TOMM70, UBC, and ULK1 were prognostic risk 
factors (Fig. 1D).

Establishment of a prognostic risk model based on the 
mitophagy-related lncRNAs for OC patients
Pearson correlation analysis identified 331 lncRNAs that 
met the screening criteria (Additional file 2: Table S2). 
A network diagram of the 331 selected lncRNAs and 28 
mitophagy-related genes is shown in Additional file 3: Fig. 
S1. Univariate Cox analysis was conducted to select 31 
prognosis-related lncRNAs (selection criteria, p < 0.05), 
and the results are shown in Table 1. LASSO Cox regres-
sion and forward stepwise regression analyses were per-
formed on the 31 prognosis-related lncRNAs (Fig.  2A, 
B). Finally, five lncRNAs (AC007637.1, AC020637.1, 
AC114741.1, AL513550.1, and LINC00174) were selected 
to establish a risk score model. The prognostic model for-
mula we obtained to assess the risk score for each patient 
was as follows: risk score = 0.0035 × expAC007637.1-0.023 
× expAC020637.1-0.3839 × expAC114741.1-0.0011 × exp 
AL513550.1+0.0008 × expLINC00174. Patients were divided 
into high- and low-risk groups according to the median 
risk score. KM analysis of the curve demonstrated that 
patients in the high-risk group had shorter OS than those 
in the low-risk group (Fig. 2C). The ROC curve showed 
the specificity and sensitivity of the risk model for pre-
dicting the patient prognosis (Fig. 2D). The survival sta-
tus of patients and the expression levels of five lncRNAs 
are shown from low to high risk (Fig. 2E–G). Univariate 
and multivariate Cox analyses showed that the model 
was an independent influencing factor in predicting the 
prognosis of patients (Fig.  2H, I). In addition, stratified 
prognostic analysis based on clinicopathological charac-
teristics showed that, except for grade 1/2 and stage I/II 
groups, the prognosis of patients in the high-risk group 
remained poor (Fig. 3).

Validation of the prognostic risk model
Patients in the TCGA-OV dataset were randomly divided 
into two datasets, TCGA-training and -testing, to con-
firm the performance of the risk model through internal 
validation. KM analysis indicated that the low-risk group 
patients lived longer in both the TCGA-training and 
-testing datasets (Fig. 4A and E). The ROC curve showed 
the specificity and sensitivity of the risk model in predict-
ing the prognosis of patients in the TCGA-training and 
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-testing datasets, and the AUCs for the 5-year OS were 
0.700 and 0.653, respectively (Fig.  4B and F). Univari-
ate and multivariate Cox analyses demonstrated that the 
risk score was an independent prognostic factor for OC 
patients in both the TCGA-training and -testing datasets 
(Fig.  4C, D, G, and H). In summary, by using the same 
formulation, we obtained consistent results for the train-
ing and testing cohorts, confirming the robustness of the 
risk model.

LINC00174 is overexpressed in OC, and knockdown of 
LINC00174 inhibits proliferation and migration, and 
promotes apoptosis of OC cells in vitro
We first reviewed the role of LINC00174 in cancer in 
previous literature reports (Table  2) and observed that 
it mainly acts as an oncogene in cancer. As mentioned 
earlier, LINC00174 was highly expressed in the high-risk 
group and associated with poor prognosis in our risk 
model. qRT-PCR was performed to examine the expres-
sion of LINC00174 in 40 normal ovarian samples and 51 
OC samples, revealing that LINC00174 expression was 

Fig. 1 Landscape of mitophagy-related genes in TCGA-OV dataset. A The mutation frequency of 29 mitophagy-related genes. B The copy number varia-
tion condition. C The correlation network among the mitophagy-related genes (the circle size indicates the p value of the log-rank test, and the lines 
indicate the interactions between genes). D Prognostic value of 19 mitophagy-related genes in TCGA-OV dataset
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elevated in the OC samples (Fig. 5A). We then measured 
the expression of LINC00174 in a normal ovarian epithe-
lial cell line (HOSEpiC) and three OC cell lines (A2780, 
ES-2, and OVCAR3), and observed that LINC00174 
expression was significantly increased in OVCAR3 
cells (Fig.  5B). Therefore, we chose OVCAR3 for sub-
sequent cell function experiments. We downregulated 
LINC00174 expression in OVCAR3 cells using an shRNA 
plasmid. The knockdown efficiency was examined by 
RT-qPCR (Fig.  5C). CCK-8 assay results showed that 
LINC00174 knockdown decreased cell viability (Fig. 5D). 
Downregulation of LINC00174 also inhibited colony 
formation by OVCAR3 (Fig.  5E). Scratch and transwell 
assays revealed that the migration ability of OVCAR3 
cells decreased after LINC00174 knockdown (Fig. 5F, G). 
Apoptosis assay showed that the proportion of apoptotic 
cells increased after LINC00174 knockdown (Fig. 5H).

Construction of a nomogram model
A nomogram model combining risk score, age, grade, and 
the stage was constructed to improve clinical applicabil-
ity (Fig. 6A). The calibration curves for 1-, 3-, and 5-year 
OS indicated a high consistency between the actual 
observations and nomogram predictions (Fig.  6B). The 
DCA curve demonstrated that the nomogram model had 
the highest net benefit compared with the risk model and 
clinicopathological characteristics (Fig.  6C). The ROC 
curve showed that the nomogram model had the best 
sensitivity and specificity in predicting prognosis com-
pared with the risk model and individual clinicopatholog-
ical characteristics (Fig.  6D). These results demonstrate 
that the constructed nomogram is clinically practical for 
predicting the survival probability of patients with OC.

Drug sensitivity analysis
We also evaluated the risk model for OC pharmacother-
apy. We discovered that the sensitivity to 40 anti-tumor 
drugs was strongly correlated with the risk score; the 
IC50 was higher for 18 anti-tumor drugs in the high-risk 
group (Figs.  7) and 22 anti-tumor drugs in the low-risk 
group (Additional file 4: Fig. S2). A high risk score was 
associated with a higher IC50 of chemotherapy drugs 
such as olaparib (AZD.2281), cisplatin, mechanistic tar-
get of rapamycin (mTOR) pathway inhibitor (AZD8055), 
insulin receptor and insulin-like growth factor-1 recep-
tor inhibitor (BMS.536,924), avagacestat (BMS.708,163), 
camptothecin, lestaurtinib (CEP.701), vismodegib 
(GDC.0449), phosphoinositide 3-kinase-mTOR inhibi-
tor (NVP.BEZ235), mirdametinib (PD.0325901), palbo-
ciclib (PD.0332991), p70 ribosomal S6 kinase inhibitor 
(PF.4,708,671), refametinib (RDEA119), glycogen syn-
thase kinase-3 inhibitor (SB.216,763), vinblastine, vorino-
stat, aurora kinase inhibitor (VX.680), and epithelial and 
endothelial tyrosine kinase inhibitor (WZ.1.84) (Fig.  8). 
Higher estimated IC50 values were obtained in the high-
risk group than in the low-risk group, indicating that a 
higher risk score could predict decreased sensitivity to 
these therapeutic drugs in patients with OC. Thus, the 
risk model may guide clinical drug treatment for patients 
with OC.

Functional analysis of the prognostic risk model
GSVA was performed to compare the different bio-
logical functions between the two groups. The high-
risk group was mainly enriched in pathways related to 
cancer, leukemia, MTOR_SIGNALING_PATHWAY, 
INSULIN_SIGNALING_PATHWAY, and NOTCH_SIG-
NALING_PATHWAY. In contrast, the low-risk group 
was mainly enriched in pathways associated with OXI-
DATIVE PHOSPHORYLATION, PARKINSONS DIS-
EASE, and RIBOSOME (Fig.  8A). To further illustrate 
the possible mechanisms by which lncRNAs regulate 

Table 1 The 31 mitophagy-related lncRNAs with a significant 
prognostic value
Id HR HR.95 L HR.95 H p value
AC007637.1 1.004387563 1.001773749 1.007008196 0.00099152

AC073046.1 1.000810794 1.00032226 1.001299567 0.001140439

SEMA6A-AS1 1.011022227 1.003971178 1.018122797 0.002141365

AL590729.1 1.00595448 1.002083848 1.009840062 0.002542013

AC005034.6 1.001220447 1.000394508 1.002047067 0.00377101

ACAP2-IT1 1.004787158 1.001524102 1.008060846 0.004007016

AL391335.1 1.007204349 1.002290243 1.012142548 0.004018574

LINC00174 1.0008445 1.000266835 1.001422498 0.004160958

AC073332.1 0.998190358 0.996899156 0.999483232 0.006094355

LINC02035 1.00126421 1.000301614 1.002227732 0.010039236

AL121944.2 0.999358132 0.998857385 0.99985913 0.012042886

AC245060.2 1.000803879 1.000168723 1.001439438 0.013108134

AL133230.2 1.011961706 1.001922967 1.022101027 0.019405698

AC131953.2 1.008978946 1.001311036 1.016705576 0.021643053

AC145423.3 1.003458336 1.000466158 1.006459463 0.023461274

AL450998.3 1.002731643 1.000327299 1.005141767 0.025938301

AC020637.1 0.973505795 0.95067642 0.996883391 0.026569837

AL513550.1 0.999235213 0.998559054 0.999911829 0.026741474

AC125494.1 1.012283541 1.001318404 1.023368755 0.028015712

ARF4-AS1 0.99826815 0.996722453 0.999816245 0.028350216

AC083806.2 1.014302692 1.001035496 1.027745725 0.034512788

Z94721.2 1.031102379 1.001976555 1.061074843 0.036168373

AC020916.2 1.001160631 1.000068291 1.002254164 0.037290602

YEATS2-AS1 1.003029456 1.000165072 1.005902042 0.038164271

AC074135.1 1.000474777 1.000023989 1.000925769 0.038990328

SEC 62-AS1 1.004040057 1.0001878 1.007907151 0.039810806

KDM2B-DT 1.002092434 1.000077782 1.004111145 0.041779093

AC022400.6 1.002499231 1.000083882 1.004920414 0.042548388

NRSN2-AS1 0.999725747 0.999460585 0.99999098 0.042702475

AC018521.6 1.001175291 1.000038 1.002313876 0.042817041

AC114741.1 0.713087734 0.512733105 0.991732564 0.044506036
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Fig. 2 Construction of the prognostic model based on the TCGA-all dataset. A, B LASSO Cox regression analysis. C, D The KM curve and ROC curve for 
the risk model in predicting the OS of OC patients. E, F The risk score distribution and survival status of patients. G The heat map of the expression of 5 
mitophagy-related lncRNAs. H, I Univariate and multivariate Cox analysis to assess the independence of the risk score
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mitophagy-related genes, we constructed a ceRNA net-
work with three mitophagy-related lncRNAs, 17 miR-
NAs, and two mitophagy-related genes (Fig. 8B).

Discussion
OC is the deadliest gynecological cancer. The current 
first-line treatment of OC includes cytoreductive sur-
gery and platinum–taxane chemotherapy [23]. Following 
frontline treatment, tumor recurs in most patients with 
OC; the five-year survival rate is approximately 45% [23]. 
Chemoresistance is a significant hindrance to therapeutic 

efficacy in patients with OC [24]. Although angiogen-
esis inhibitor bevacizumab and poly (ADP-ribose) poly-
merase (PARP) inhibitors, such as olaparib and niraparib, 
have shown efficacy in prolonging progression-free sur-
vival (PFS) in recent years, they do not extend OS [25, 
26], indicating the need for more effective therapy.

Mitophagy, as a key mitochondrial quality control 
mechanism [8], plays an important role in the process of 
carcinogenesis, including its progression and treatment; 
and serves as an important regulatory mechanism for 
maintaining intracellular and extracellular homeostasis 

Fig. 3 Stratified survival analysis in the TCGA-all dataset. A-F The high-risk group showed a poor prognosis than the low-risk group in different clinical 
stratification, except for the grade 1/2 and stage I/II groups
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Fig. 4 Internal validation of the prognostic model. A The KM curve for the risk score in predicting the OS of OC patients in the TCGA-training dataset. B 
ROC curve to show the sensitivity and specificity of the prognosis model in TCGA-training dataset. C, D Univariate and multivariate Cox analysis to assess 
the independence of the risk score in the TCGA-training dataset. E The KM curve for the risk score in predicting the OS of OC patients in the TCGA-testing 
dataset. F ROC curve to show the sensitivity and specificity of the prognosis model in TCGA-testing dataset. G, H Univariate and multivariate Cox analysis 
to assess the independence of the risk score in the TCGA-testing dataset
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[11]. Mitophagy is considered a double-edged sword in 
cancer. On the one hand, it can reduce oxidative stress by 
clearing dysfunctional or redundant mitochondria, which 
may prevent carcinogenesis; on the other hand, it may 
protect tumor cells from apoptosis or necrosis by help-
ing cancer cells survive under stress, thereby promoting 
cancer progression. Overall, the molecular mechanisms 
involved in the regulation of mitophagy are diverse and 
complex, and involve crosstalk [11]. Recent studies have 
revealed that mitophagy plays an important role in OC, 
particularly in chemotherapy resistance [14, 27]. There-
fore, a better understanding of the role of mitophagy in 
OC development and chemoresistance may provide new 
prognostic markers and targets for the clinical treatment 
of OC.

In our study, we investigated the mutation status of 
mitophagy-related genes in samples from the TCGA-OV 
dataset and observed that 4.36% of the samples harbored 
gene mutations. Of all the mitophagy-related genes exam-
ined in the OC patient samples, MFN1, MFN2, and UBC 
exhibited the highest mutation frequencies. MFN1 and 

MFN2 are GTPases essential for mitochondrial fusion 
[28], and UBC plays a key role in maintaining ubiquitin 
homeostasis [29]. Mitochondrial fusion, division, and 
ubiquitin homeostasis play pivotal roles in mitophagy. In 
addition, we noted that alterations in CNV were common 
among mitophagy-related genes. These alterations may 
be the main factor responsible for the disturbed expres-
sion of some mitophagy-related genes, especially those 
encoding PINK1 and MFN1. KM analysis showed that 19 
mitophagy-related genes were associated with the prog-
nosis of patients with OC. For example, ATG5, FUNDC1, 
and TOMM5 were determined to be prognostic protec-
tive factors, whereas ATG12, MFN1, MFN2, PINK1, and 
PRKN were prognostic risk factors.

Recently, a close correlation between mitophagy-
related genes and lncRNAs was reported [30–33], and 
their interactions can regulate the expression of tar-
get genes and cellular biological functions. However, 
the roles of mitophagy-related lncRNAs in OC remain 
unclear and require further investigation. In this study, 
based on five mitophagy-related lncRNAs, a prognostic 

Table 2 Overview of the role of LINC00174 in cancer
Cancer Expression Functions Role Mechanism Reference
NSCLC Downregulated Overexpression of LINC00174 inhibited NSCLC cell prolifera-

tion and migration, and induced apoptosis
Tumor 
suppressor

LINC00174/miR-31-5p/
LATS2 axis

[47]

CRC Upregulated Overexpression of LINC00174 promoted CRC cell viability, 
proliferation, migration, invasion and EMT

Oncogene LINC00174/miR-3127-5p/
E2F7 axis

[34]

KIRC Upregulated Overexpression of LINC00174 promoted KIRC cell viability, 
proliferation, migration and invasion

Oncogene LINC00174/miR-612/
FOXM1 axis

[36]

HCC Upregulated Overexpression of LINC00174 accelerated proliferation and 
metastasis of HCC cells while reduced apoptosis

Oncogene LINC00174/miR-320/
S100A10 axis

[37]

BCa Upregulated Knockdown of LINC00174 attenuated proliferative and 
migratory abilities in BCa cells.

Oncogene LINC00174/miR-1827 [38]

Glioma Upregulated Knockdown of LINC00174 significantly suppressed GBM cells 
proliferation

Oncogene - [39]

OS Upregulated Knockdown of LINC00174 suppressed OS Cell Proliferation, 
Migration, Invasion and OS Tumor Growth

Oncogene LINC00174/miR-378a-3p/
SSH2 and TGF-β/SMAD 
pathway

[43]

TETs Upregulated Knockdown of LINC00174 reduced cell proliferation, migra-
tion, and lipid droplets accumulation in TET cells

Oncogene LINC00174/miR-145-5p/
SCD5 axis

[44]

Glioma Upregulated Knockdown of LINC00174 could remarkably prevent cell 
proliferation and promote cell apoptosis in both glioma cells 
and Temozolomide-resistant glioma cells

Oncogene LINC00174/miR-138-5p/
SOX9 axis

[40]

Glioma Upregulated Knockdown of LINC00174 increased BTB permeability and 
reduced the expression of the tight junction-related proteins 
ZO-1, occludin, and claudin-5

Oncogene LINC00174/miR-138-5p 
(miR-150-5p)/FOSL2 
feedback loop

[41]

Glioma Upregulated Knockdown of LINC00174 inhibited cell proliferation, migra-
tion, invasion and glycolysis of glioma cells

Oncogene LINC00174/miR-152-3p/
SLC2A1 axis

[42]

CRC Upregulated Knockdown of LINC00174 could repress CRC cell growth Oncogene LINC00174/miR-1910-3p/
TAZ axis

[35]

LUSC Upregulated Knockdown of LINC00174 could repress LUSC cells prolifera-
tion, migration, and invasion while promoting cell apoptosis

Oncogene LINC00174/miR-185-5p/
NFIX axis

[45]

LC Upregulated Knockdown of LINC00174 could repress LC cells proliferation, 
migration, invasion and angiogenesis while promoting cell 
apoptosis

Oncogene LINC00174/miR-584-3p/
RPS24 axis

[46]

Abbreviations: NSCLC, non-small cell lung cancer; CRC, colorectal cancer; KIRC, kidney renal clear cell carcinoma; HCC, hepatocellular carcinoma; Bca, breast cancer; 
OS, osteosarcoma; TETs, thymic epithelial tumors; LUSC, lung squamous cell carcinoma; LC, lung cancer
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Fig. 5 Experimental verification of LINC00174 in OC samples and cells. A Expression levels of LINC00174 in clinical samples (51 ovarian cancer and 40 nor-
mal ovarian tissues). B Expression levels of LINC00174 in normal ovarian epithelial cell line (HOSEpiC) and three OC cell lines (A2780, ES-2, and OVCAR3). 
C The knockdown efficiency of LINC00174 examined by RT-qPCR. D-H CCK-8 assay (D), colony formation assay (E), wound healing assay (F), transwell 
migration assay (G) and apoptosis assay (H) showed that knockdown of LINC00174 inhibited proliferation and migration, and promoted apoptosis of 
OVCAR3 cells
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risk model was constructed. Furthermore, the results 
showed that the risk model is a reliable prognostic indica-
tor of OC and that high risk scores are indicators of poor 
prognosis. Moreover, the risk model was correlated with 
clinicopathological features such as age, stage, and grade.

One of the five mitophagy-related lncRNAs, 
LINC00174, is an lncRNA whose high expression was 
associated with poor prognosis in our risk model. 
LINC00174 plays an oncogenic role in several cancers, 
including colorectal cancer [34, 35], renal clear cell car-
cinoma [36], hepatocellular carcinoma [37], breast cancer 
[38], glioma [39–42], osteosarcoma [43], thymic epithelial 
tumors [44], and lung cancer [45, 46]. Contrary to these 
conclusions, Cheng et al. suggested that LINC00174 acts 
as a tumor suppressor gene in non-small cell lung cancer, 
and overexpression of LINC00174 inhibits NSCLC cell 
migration and proliferation, and induces apoptosis [47]. 

However, the role of LINC00174 in OC has not been 
reported; thus, it was selected for experimental verifica-
tion. We observed that the expression of LINC00174 in 
OC tissue was higher than that in normal ovarian tis-
sue. At the same time, we detected the expression of 
LINC00174 in three OC cell lines. In OVCAR3 cells, 
the expression of LINC00174 was significantly higher 
than that in the normal ovarian epithelial cell lines. In 
contrast, in the other two OC cell lines, there was no 
increase in its expression. Therefore, we knocked down 
LINC00174 in OVCAR3 cells to study its role in the 
development of OC and demonstrated that cell viabil-
ity and proliferation of OVCAR3 cells were significantly 
inhibited, as well as cell migration ability, while cell apop-
tosis was promoted. These results prove that LINC00174 
plays a cancer-promoting role in OC and may become a 
potential therapeutic target for patients with OC.

Fig. 6 Construction of the nomogram model. A Nomogram for predicting the 1-, 3-, and 5-year OS of patients in the TCGA-OV dataset. B Calibration 
curves of the nomogram model of 1-, 3-, and 5-years. C DCA curves for predicting the OS of different parameters. D ROC curves for predicting the OS of 
different parameters
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To further understand the clinical applicability of the 
risk score, a nomogram combining the risk score and 
clinicopathological information was constructed, which 
proved to be a feasible tool for predicting the survival 

probability of OC patients. The GDSC database provides 
access to explore association between risk score and 
clinical treatment [18]. We noted that the sensitivity to 
40 anti-tumor drugs was closely related to the risk score, 

Fig. 7 Drug sensitivity analysis. A total of 18 potential anti-tumor drugs with higher IC50 in the high-risk group
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providing a promising prospect for individualized treat-
ment of OC patients in clinical practice. A higher risk 
score could predict decreased sensitivity to therapeu-
tic drugs such as cisplatin and olaparib in OC patients, 
indicating that a higher risk score may be associated with 
cisplatin resistance. Therefore, the risk score is an inde-
pendent prognostic tool as well as triggers further con-
sideration of the relationship between mitophagy-related 
lncRNAs and OC therapeutics.

GSVA results showed that the high- and low-risk 
groups were enriched in different signaling pathways, 
further explaining the heterogeneity between the two 
groups and their potentially different mechanisms. The 
ceRNA mechanism is a widely reported method by 
which lncRNAs regulate mRNA expression. Therefore, 
we predicted miRNAs that may interact with mitoph-
agy-related lncRNAs, and miRNAs that may interact 
with mitophagy-related genes using online websites 
and then constructed a ceRNA network. We speculated 
that mitophagy-related lncRNAs, such as LINC00174, 
may regulate the expression of downstream mitophagy-
related genes through a ceRNA mechanism, thereby 
affecting the progression of OC. However, further studies 
are required to validate these findings.

Our study had some limitations. First, we did not vali-
date our model using an external dataset. Second, we did 
not experimentally validate all five lncRNAs to clarify the 
practical application of the model in clinical practice, and 
we did not conduct relevant experiments on mitophagy. 
We also constructed a ceRNA network to speculate on 
the possible regulatory mechanism between mitophagy-
related lncRNAs and mitophagy-related genes; however, 

we did not experimentally validate the ceRNA network. 
Nonetheless, the present model was validated using 
internal datasets; therefore, the results are still reliable 
and acceptable.

In summary, to the best of our knowledge, there are 
no previous reports on the use of mitophagy-related 
lncRNAs to predict the prognosis of patients with OC. 
We successfully constructed and verified a risk model 
based on five mitophagy-related lncRNAs for OC and 
identified a key lncRNA, LINC00174, that may con-
tribute to OC development. The results of our study 
may contribute to further understanding of the role of 
mitophagy-related lncRNAs in OC progression as well as 
drug treatment responses, which highlights the potential 
of this model in prognosis prediction and targeted ther-
apy of OC. Well-designed experiments are needed in the 
future to further verify the reliability of the model and 
the molecular mechanisms by which LINC00174 pro-
motes OC cell proliferation and migration.
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