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Abstract 

Background C-X-C motif chemokine ligand 9 (CXCL9), which is involved in the pathological processes of various 
human cancers, has become a hot topic in recent years. We developed a radiomic model to identify CXCL9 status 
in ovarian cancer (OC) and evaluated its prognostic significance.

Methods We analyzed enhanced CT scans, transcriptome sequencing data, and corresponding clinical charac-
teristics of CXCL9 in OC using the TCIA and TCGA databases. We used the repeat least absolute shrinkage (LASSO) 
and recursive feature elimination(RFE) methods to determine radiomic features after extraction and normalization. We 
constructed a radiomic model for CXCL9 prediction based on logistic regression and internal tenfold cross-validation. 
Finally, a 60-month overall survival (OS) nomogram was established to analyze survival data based on Cox regression.

Results CXCL9 mRNA levels and several other genes involving in T-cell infiltration were significantly relevant to OS 
in OC patients. The radiomic score (rad_score) of our radiomic model was calculated based on the five features 
for CXCL9 prediction. The areas under receiver operating characteristic (ROC) curves (AUC-ROC) for the training 
cohort was 0.781, while that for the validation cohort was 0.743. Patients with a high rad_score had better over-
all survival (P < 0.001). In addition, calibration curves and decision curve analysis (DCA) showed good consistency 
between the prediction and actual observations, demonstrating the clinical utility of our model.

Conclusion In patients with OC, the radiomics signature(RS) of CT scans can distinguish the level of CXCL9 expres-
sion and predict prognosis, potentially fulfilling the ultimate purpose of precision medicine.
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Background
Ovarian cancer (OC) has the highest mortality rate 
among all gynecological tumors, with no early symp-
toms, owing to the deep pelvic location of the ovaries and 
broad drug resistance. Despite advances in treatments 
including surgery, chemotherapy, targeted therapy, and 
immunotherapy, the overall survival (OS) rate of patients 
with OC remains low; five-year survival is less than 30% 
and a three-year recurrence rate is more than 70% [1, 2]. 
Furthermore, owing to high tumor heterogeneity, classic 
biomarkers and imaging indicators such as serum CA125 
and transvaginal ultrasound are insufficient for monitor-
ing therapy, which may lead to misdiagnosis or overtreat-
ment [3, 4]. Therefore, new prognostic markers must be 
explored to provide individualized precision treatments.

In addition to malignant tumor cells, tumors con-
tain normal cells, including immune cells, fibroblasts, 
and epithelial cells. The tumor immune microenviron-
ment (TIME) is composed of these cells, and inflam-
matory immune cells act as the initial line of immune 
protection against pathogens [5, 6]. The mobilization of 
lymphocytes, a symptom of inflammation and a char-
acteristic feature of malignancy, requires a multitude of 
cytokines and stimulating agents [7]. Chemokines, as a 
type of cytokines in the TIME, may be associated with 
patient outcomes. The CXC chemokine subfamily mem-
ber CXCL9 encodes secreted proteins that play essential 
roles in disease processes, such as inflammation, immune 
regulation, tumor metastasis, and angiogenesis [8–10]. 
In addition to its two family members, CXCL10 and 
CXCL11, CXCL9 has been reported to enhance antitu-
mor lymphocyte infiltration through its receptor CXCR3 
in solid tumors, such as colorectal cancer, bladder can-
cer, gastric cancer, and uterine corpus endometrial carci-
noma [11–14]. The same is true for ovarian cancer, where 
preclinical models have demonstrated a positive correla-
tion between CXCL9 expression and T cell infiltration 
and overall survival [15–17]. In view of the promising 
clinical applications of CXCL9, recent clinical studies 
have focused on its role in diseases such as COVID-19, 
autoimmune diseases, and cancer [18–23]. In ovarian 
cancer, Au et al. indicated that high levels of CXCL9 are 
associated with an enhanced response to chemotherapy 
[24]. In addition, CXCL9 may be a reliable biomarker 
for predicting the immune checkpoint blockade (ICB) 
response in patients with OC due to CXCR3 chemokine 
activity being essential for effective immune checkpoint 
suppression [22, 23].

CXCL9 expression detected in the peripheral blood 
may not be representative of the tumor parenchyma. 
Given the remarkable tumor heterogeneity in OC and 
the impractical and invasive procedure of repeated 
biopsy, the whole tumor lesion and response to therapy 

are difficult to assess using conventional biopsies. Com-
puted tomography (CT), which is widely used in clinical 
practice, is a common imaging method for OC diagno-
sis, treatment evaluation, and postoperative follow-up. 
Notably, rapid advances in artificial intelligence mean 
that radiomics, a high-throughput data mining approach 
that extracts massive image parameters, can now dynam-
ically, noninvasively, and quantitatively assess the entire 
three-dimensional tumor [25, 26]. Previous reports have 
suggested that radiomics can be utilized not only in diag-
nosis for early OC, subtype classification, and lymph 
node metastasis, but also for the assessment of residual 
lesions, tumor heterogeneity, and TIME [27–32]. How-
ever, CXCL9 expression has not yet been predicted using 
radiomics in patients with OC.

Therefore, we developed a radiomic model using the 
TCGA and TCIA databases to predict CXCL9 expression 
in patients with OC and explored its prognostic value.

Methods
Data access
We extracted transcriptome sequencing data, enhanced 
computed tomography (CT) scans, and corresponding 
clinicopathological information from The Cancer Imag-
ing Archive (TCIA, https:// www. cance rimag ingar chive. 
net/) datab ase, as well as The Cancer Genome Atlas 
(TCGA, https:// portal. gdc. cancer. gov/) database, to 
investigate the prognostic significance of CXCL9, build a 
radiomic model for predicting CXCL9 status in OC, and 
identify its prognostic worth.

For assessment of prognostic significance, several vari-
ables were included as covariates, such as chemotherapy, 
age, residual tumor disease, venous invasion, histologi-
cal grade, lymphatic invasion, and International Fed-
eration of Gynecology and Obstetrics (FIGO) stage. The 
main outcome was OS. Patients with 1) non-primary OC 
and missing clinical data, such as OS, FIGO stage, and 
follow-up of < 30  days (prognostic value of CXCL9); 2) 
unqualified pre- or post-treatment CT scanning images 
(radiomics to predict CXCL9 expression); and 3) no OS 
and follow-up of < 30 days (prognostic value of radiomics) 
were excluded. Supplemental Table  1  presents detailed 
inclusion and exclusion criteria.

Survival analysis by CXCL9 expression and enrichment 
analysis of differential expressed genes (DEGs)
We extracted RNA-Seq data incorporating clinical 
information from TCGA and Gene-Tissue Expression 
(GTEx) from UCSC XENA using Xiantao online visu-
alization toolset (https:// www. xiant ao. love/ login). All 
eligible cases were classified as CXCL9-high or CXCL9-
low group, according to their cutoff expression lev-
els obtained by the R package “survminer”. RNA-seq 

https://www.cancerimagingarchive.net/)database
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expression data were downloaded, processed and 
reported as transcripts per million reads (TPM) by the 
Toil process [33], and were compared between samples 
after log2 transformation using the R package "ggplot2 
[version 3.3.3]". Univariate analysis, followed by mul-
tivariate analysis, was introduced to estimate hazard 
ratios (HRs) with 95% confidence intervals (CI) for vari-
ables by means of COX proportional hazards model to 
report, for both subgroup analysis and interaction test-
ing. Correlation analyses between CXCL9 levels and 
clinical characteristics were completed using Spearman’s 
rank correlation coefficient.

Differential immune gene expression of the CXCL9-
high group from CXCL9-low group was analyzed using 
the Wilcoxon test. Immune cell infiltration in each sam-
ple was calculated using the CIBERSORTx database 
(https:// ciber sortx. stanf ord. edu/). Correlation analysis 
between CXCL9 expression and immune cell infiltration 
was completed based on the Spearman’s rank correlation 
coefficient. We analyzed the data using functional enrich-
ment to confirm the functions of the potential targets. R 
package "clusterProfiler” was utilized to visualize the top 
ten significantly enriched terms from Gene Ontology 
(GO) analysis and the top thirty enriched pathways from 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis.

Developing radiomic models to determine CXCL9 
expression levels in OC
Volumes of interest (VOIs) were created by manually trac-
ing tumors on CT using 3D Slicer software (version 4.10.2) 
by an experienced radiologist in a double-blind manner. 
Another experienced radiologist performed accordingly 
in 10 randomly selected patients, to verify the results. We 
extracted 107 radiomic features (RFs) using an open source 
Python software package, PyRadiomics (https:// pyrad iom-
ics. readt hedocs. io/ en/ latest/) and conducted normaliza-
tion, including resampling images with the same voxel size 
and Z-score standardization. We conducted a reliability 
evaluation of feature extraction and image segmenta-
tion using the intraclass correlation coefficient (ICC), and 
included RFs with an ICC of ≥ 0.8 in our study.

We used repeat (1,000 times) LASSO and RFE methods 
to screen RFs, and LR was applied to construct our radi-
omic model, in which the rad_score was used to predict 
CXCL9 expression.

We used ROC, precision-recall (PR) curves, AUC, 
and other diagnostic indices to assess discriminatory 
capacity, and DCA to estimate the clinical net benefit. 
Diagnostic indices included accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), negative predic-
tive value (NPV),and Brier Score. Calibration curves 
were used to assess the calibration of our model, and the 

Hosmer–Lemeshow goodness of fit statistic was used to 
evaluate the diagnostic model fit. We conducted an inter-
nal tenfold cross-validation to verify the proposed model.

Prognostic relevance of of the radiomic model in patients 
with OC
The final radiomic model selection was performed using 
a stepwise selection approach with minimization of the 
Akaike information criterion (AIC). Patients were clas-
sified into two groups, high Rad_score and low Rad_
score, on the basis of the probability threshold obtained 
using the R package “survminer”. Time-dependent ROC 
curves were used to assess the discrimination. Calibra-
tion curves were constructed to compare predicted and 
observed 60-month survival probabilities. A nomogram 
was developed to predict 60-month survival based on 
Cox regression and was assessed using DCA.

Statistical analysis
Categorical variables were expressed as relative distri-
bution frequencies (percentages), whereas continuous 
variables were expressed as mean ± standard deviation. 
Categorical variables between two groups were com-
pared using the chi-square test, whereas continuous 
variables were compared using the Wilcoxon test. The 
DeLong test was used to assess statistical differences in 
the AUCs of the nomogram, Rad-score, and ROC curves. 
All data were statistically analyzed by R software. Statisti-
cal significance was set at P < 0.05, based on 2-tailed tests.

Results
Clinical significance of CXCL9
In total, 339 patients were included in the TCGA-OC 
project and divided into CXCL9-high (n = 150) and 
CXCL9-low (n = 189) groups with a cut-off expression 
level of 2.829. Table  1 summarizes the baseline patient 
characteristics of the TCGA-OV database. The covariates 
represented no significant difference between the two 
groups (P > 0.05).

CXCL9 was upregulated in 427 TCGA-OV 
tumor samples compared to 88 GTEx normal ovary 
samples(P < 0.001, Fig.  1A). As shown in Fig.  1B, the 
Kaplan–Meier curve indicated that the median survival 
time was 41.97  months in the CXCL9-low group and 
52.63 months in the CXCL9-high group, suggesting high 
CXCL9 expression was positively associated with sur-
vival for patients with OC (P = 0.002). Univariate and 
multivariate COX regression analyses verified the posi-
tive effect of CXCL9 on overall survival. After the sub-
group analysis via univariate model and interaction test 
via likelihood ratio test, high CXCL9 expression showed a 
protective and positive role in OC patients who received 
chemotherapy and in those aged < 60 years. CXCL9 and 

https://cibersortx.stanford.edu/
https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/
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age, CXCL9 and chemotherapy did not interact to show 
a significant impact on OS, as shown in Fig.  2. High 
CXCL9 expression was associated with enhanced lym-
phatic invasion (Fig. 3A).

The expression levels of CD44, TNFRSF9, LAG3 and 
CD8 + T cell infiltration abundance were positively 
correlated with the increased expression of CXCL9 
(Fig.  3B,3C). Based on GO enrichment analysis, the 
DEGs screened in this study were significantly enriched 
in immunoglobulin receptor binding and immunoglobu-
lin complexes (Supplemental Fig.  1A). KEGG pathways 
analysis of DEGs of CXCL9 also showed an enrichment 
of chemokines and Th17 cell differentiation (Supplemen-
tal Fig. 1B).

Radiomic model construction and evaluation
Finally, 57 patients with OC were enrolled from the 
TCIA-CT database. Among the extracted radiomic fea-
tures, 91.6% had an ICC > 0.8, 6.5% had an ICC between 
0.5 and 0.79, and 1.9% had an ICC < 0.5. After filtration, 
98 out of 107 radiomic features (91.6%) with ICC ≥ 0.8 
were included for further analysis.

LASSO‑LR radiomic model
A histogram was plotted for the features with most 
counts (Fig.  4A). Five features remained after LASSO 
screening (Fig.  4B). Figure  4C illustrates these features 
and their significance.

In the training sets, the accuracy, sensitiv-
ity, specificity, PPV, NPV, and Brier score were 
0.719,0.667,0.778,0.769,0.677 and 0.184, respec-
tively; in the validation cohort, the accuracy, sen-
sitivity, specificity, PPV, NPV, and Brier score were 
0.702,0.567,0.852,0.81,0.639 and 0.203, respectively. In 
the training sets, the ROC curve achieved AUC values of 
0.781, and the PR curve achieved AUC values of 0.794; in 
the validation sets, the ROC curve achieved AUC values 
of 0.743. The DeLong test between the cross-validation 
AUCs did not show a significant difference between the 
results, indicating a good model fit (Fig. 5A, B).

Calibration curves derived from the Hosmer–Leme-
show test showed that the LASSO-LR predictive model 
fitted well with the actual gene expression. As shown 
in the DCA, the LASSO-LR model yielded a threshold 
probability of 0–0.82, resulting as the highest net benefit, 
when compared with all treatments and no treatment 

Table 1 Baseline characteristics between CXCL9-high and CXCL9-low groups

Variables Total (n = 339) Low (n = 189) High (n = 150) p

Age, n (%) 0.374

 ~ 59 175 (52) 93 (49) 82 (55)

60 ~ 164 (48) 96 (51) 68 (45)

Chemotherapy, n (%) 0.925

 NO 21 (6) 11 (6) 10 (7)

 YES 318 (94) 178 (94) 140 (93)

Venous_invasion, n (%) 0.308

 NO 32 (9) 20 (11) 12 (8)

 Unknown 248 (73) 141 (75) 107 (71)

 YES 59 (17) 28 (15) 31 (21)

Lymphatic_invasion, n (%) 0.089

 NO 40 (12) 25 (13) 15 (10)

 Unknown 208 (61) 122 (65) 86 (57)

 YES 91 (27) 42 (22) 49 (33)

Tumor_residual_disease, n (%) 0.696

 No Macroscopic disease 58 (17) 32 (17) 26 (17)

 1–10 mm 162 (48) 95 (50) 67 (45)

 10 mm ~ 86 (25) 46 (24) 40 (27)

 Unknown 33 (10) 16 (8) 17 (11)

Histologic_grade, n (%) 0.83

 G1/G2 41 (12) 24 (13) 17 (11)

 G3/G4/GX 298 (88) 165 (87) 133 (89)

FIGO_stage, n (%) 0.603

 I/II 19 (6) 9 (5) 10 (7)

 III/IV 320 (94) 180 (95) 140 (93)
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schemes. High CXCL9 level was with greater discrimi-
nation in their probability estimates of the CXCL9-high 
group than in other groups (Fig. 5C, D & E).

RFE‑LR radiomic model
Three features remained after the RFE screening (Sup-
plemental Fig.  3). The RFE-LR radiomic model showed 
a good prediction effect with an AUC-ROC of 0.765 and 
0.759 in the training and validation datasets, respec-
tively, and DCA provided evidence of its high clini-
cal utility. The results of predictive probability of high 
CXCL9 expression suggested an increased positive pre-
dicted probability of participants to be a high producer of 
CXCL9(P < 0.001,Supplemental Fig. 4).

LASSO and RFE feature intersection‑LR radiomic model
Supplemental Fig.  5  presents two common features 
between the LASSO and RFE methods and their signifi-
cance. The intersection-LR radiomics model showed a 
good prediction effect with an AUC-ROC of 0.723 and 
0.715 in the training and validation datasets, respectively, 
and the DCA provided evidence of its high clinical utility. 
High CXCL9 expression was with greater discrimination 
in their probability estimates in the CXCL9-high group 
(P < 0.001,Supplemental Fig. 6).

All three radiomics models described above exhib-
ited good predictive efficacy, and the comparison of 
AUCs using the DeLong test revealed no statistically sig-
nificant differences among the three models. However, 

Fig. 1 CXCL9 expression comparison, survival analysis, Cox regression analysis of TCGA-OV cohort. A The expression level of CXCL9 in OC tissues 
was signifcantly higher than that in normal tissues; B The Kaplan–Meier curve showed that high CXCL9 expression was significantly associated 
with improvement in patients’ OS; C Univariate and multivariate COX regression demonstrated the protective impact of high CXCL9 expression 
on the OS.* P < 0.05, ** P < 0.01, *** P < 0.001
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considering the AUC and PR curves of each model, the 
LASSO-LR model was better; thus, the predicted value of 
the LASSO-LR model was used for subsequent prognos-
tic analysis (Supplemental Table 4).

Prognostic value of the LASSO‑LR radiomic model 
in patients with OC
Ultimately, survival analysis included 57 patients from 
TCGA-OC divided into CXCL9-high (n = 46) and 
CXCL9-low (n = 11) groups, with a Rad_score cut-off 
expression level of 0.302. The covariates were not signifi-
cantly different between the two groups (P > 0.05,Table 2).

The predicted LASSO-LR model was visualized in the 
form of a new nomogram. Each factor had a score on a 
point scale, such as age, tumor _residual_disease, and RS 
(Fig.  6A). Prognostic probability at each time point was 
estimated by drawing a straight line. In the calibration 
curves, the calibration of OS probability was assessed by 
comparing the observed 60-month OS probabilities with 
the predicted OS probabilities. As is known, the predic-
tion falls along a 45-degree diagonal, close to the ideal 
diagonal, in a perfectly calibrated model. As shown in 
Fig.  6B, the 60-month survival rate predicted using the 
nomogram was almost identical to the actual 60-month 

survival rate. As shown in Fig.  6C (ROC curves), the 
AUC for the 60-month survival rate was 0.778. DCA 
(60 months) showed high clinical utility of the model in 
the risk threshold range from 0.2 to 0.65 (Fig. 6D).

Discussion
We built a radiomic model for the prediction of ovar-
ian cancer prognosis based on molecular biomarkers, 
computed tomography (CT), and clinical information. 
We concluded that: (1) CXCL9 considerably influenced 
OS in patients with OC (HR = 0.56, 95% CI: 0.417–0.75, 
P < 0.001), (2) our prediction model displayed promising 
predictive performance with an AUC-ROC of 0.781 (95% 
CI: 0.662–0.901), and (3) the prediction of the 60-month 
survival rate by radiomics-based nomogram matched 
the actual observational data well with an AUC-ROC of 
0.778.

Despite significant advances in cytoreductive surgery 
and systemic therapies, the survival rates for ovarian 
cancer are still vastly variable, owing to the considerable 
heterogeneity. Maximum tumor resection is believed to 
improve the prognosis of patients with ovarian cancer. 
Furthermore, for patients in advanced stages of the dis-
ease, aggressive treatment does not significantly extend 

Fig. 2 Univariate subgroup analysis and interaction test. High CXCL9 expression level was protective in OC patients aged < 60 years or accepted 
chemotherapy. Age and CXCL9 expression, chemotherapy and CXCL9 expression had no significant interaction effects on the OS
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patient survival, but reduces the quality of life [3]. Thus, 
additional prognostic information enables a better clini-
cal decision prior to treatment. Increasing evidence 
has shown that overexpression of CXCL9 mediates the 
recruitment of tumor-targeted CXCR3 + T cells and 
natural killer (NK) cells in various solid cancers, and 
thereby suppresses tumor growth [8]. Studies on OC, 
although limited, have indicated that significant increases 
in CXCL9 levels are strong and independent predictors 
of improved survival in patients with OC [16, 22–24]. 
Our results agree well with those of previous studies and 

demonstrate the importance of CXCL9 in the survival of 
patients with OC. Specifically, parameters including age, 
tumor histological grade, and lymphatic invasion were 
included in both the univariate and multivariate Cox 
regression analyses, and the results revealed that high 
CXCL9 expression levels were protective for patient sur-
vival (HR = 0.56, 95% CI: 0.417–0.75, P < 0.001).

Radiomics is a rapidly advancing quantitative tech-
nique that attempts to capture tumor characteristics 
using advanced imaging features. Numerous studies have 
shown that radiomics can reveal tumor heterogeneity and 

Fig. 3 Relationship analysis between CXCL9 expression level and clinical characteristics, immuno-infiltrations analysis. A High CXCL9 expression 
was positively associated with the lymphatic invasion; B The expression levels of CD44, TNFRSF9 and LAG3 were significantly increased 
in the CXCL9-high group;C CXCL9 was positively correlated with CD8 + T cell infiltration abundance.* P < 0.05, ** P < 0.01, *** P < 0.001
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the underlying genomic and biological characteristics 
[26]. The same is true for ovarian cancer, favorable radi-
omics applications in OC like early diagnosis, subtype 
classification, treatment response prediction, lymph node 
metastasis, and survival [29–32], raised the possibility of 
radiomics uncovering the CXCL9 status in OC patients.
Therefore, we aimed to apply radiomics to the prediction 
of OC survival using CT features extracted from pretreat-
ment images of primary tumors. So far as we know, the 
current study first report a radiomic model to noninva-
sively predicting CXCL9 expression in OC. The results 
revealed that the survival rate in the high rad_score group 
was consistently higher (P < 0.05). Considering the previ-
ous results, we believe that predicting CXCL9 expression 
levels based on radiomics would be helpful for clinical 
decision-making and individualized treatment.

Recently, deep learning radiomics integrated with RNA-
Seq microenvironmental analysis has provided powerful 
insights into the molecular mechanisms of cancer, and 

contributed to survival prediction. Zhao [34] conducted 
a radiomics study to predict the Epstein-Barr virus status 
in gastric cancer, and the predictive power of the model 
was excellent in both the training and validation cohorts, 
which achieved AUCs of 0.919 and 0.939, respectively. 
Lu [35] used a radiomic model to predict EGFR status 
in lung cancer, and the prediction model using different 
features achieved AUCs of 0.68, 0.67, and 0.69. Moreo-
ver, an increasing number of researchers are investigat-
ing accurate and cost-effective methods to assess immune 
biomarkers with prognostic value in OC, among which 
radiomic models are becoming a trend for future stud-
ies. For example, Wan [31] built a radiomic model for 
C–C motif chemokine receptor type 5 (CCR5) status and 
OC survival analysis, which yielded an AUCs of 0.770. 
Gao’s radiomic model for PD-1 and OC survival analysis 
yielded AUCs of 0.810. Our predictive model for CXCL9 
status consistently performed well in both the training and 
validation cohorts and achieved AUCs of 0.781 and 0.743, 

Fig. 4 Feature selection of the radiomic model.A Features histogram;B Feature reduction in the repeat LASSO logistic regression model;C Five 
optimal features:glcm_Idn, gldm_DependenceNonUniformityNormalized, shape_SurfaceVolumeRatio, glcm_ClusterProminence and shape_
SurfaceArea



Page 9 of 13Gu et al. Journal of Ovarian Research          (2023) 16:180  

Fig. 5 Evaluation of the radiomic model for prediction of CXCL9 expression: A Receiver operating characteristic(ROC) curves in the training set 
and the validation set; B Precision recall(PR) curves in the training set;C calibration curves;D Decision curve analysis(DCA); E Box plots of predicted 
probabilities in CXCL9-high and CXCL9-low groups
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respectively. GLCM and GLDM textures are well-known 
high-order radiomic features that are highly correlated 
with tumorgrades [36]. In this study, we derived 5 radiomic 
features, among which GLCM and GLDM also played 
a significant role in describing the spatial relationships 
between pixels and distinctive heterogeneity, and reflected 
the expression levels of CXCL9. We further assessed the 
calibration ability and clinical efficacy of our model in pre-
dicting CXCL9 status in both the training and validation 
groups, and the results were consistent with other studies 
that demonstrated that radiomic models performed well in 
the survival prediction of OC patients [37].

Recently, some researchers have used CT texture 
analysis to predict treatment response and prognosis in 
patients with hepatic cancer [38] and glioblastoma [39]. 
Preoperative enhanced CT texture analysis helps predict 
complete response to treatment. However, correlating 
individual texture features with complex tumor biologi-
cal processes remains a challenge because it is not pos-
sible to fully exploit meaningful clinical information for 

comprehensive analysis, nor to validate the reliability of 
the results with internal or external data. Therefore, it is 
common to construct multifactorial radiomics models to 
evaluate clinical outcomes [40]. In this study, we devel-
oped prognostic models using integrated clinical-radiog-
enomic information to analyze survival in patients with 
OC and demonstrated that RFs combined with clinical 
features can improve the accuracy of individual clinical 
decision-making, and thus has a high potential for evi-
dence-based clinical translation for OC management.

However, given the exploratory nature of this retro-
spective study, future studies are required to validate 
the findings in this study. The limited number of cases 
is one of the main factors restricting our research 
from reaching reliable conclusions. Although tenfold 
internal cross-validation was used for the evaluation 
of signature model, lack of external cohort from OC 
patients is another limitation of the present study. In 
addition, radiomics studies have generally demon-
strated predictive ability in cancers, but the sensitivity 

Table 2 Baseline characteristics between Rad_score-high and Rad_score-low groups

Variables Total (n = 57) Low (n = 11) High (n = 46) p

Age, n (%) 0.948

  ~ 59 28 (49.1) 6 (54.5) 22 (47.8)

 60 ~ 29 (50.9) 5 (45.5) 24 (52.2)

Chemotherapy, n (%) 1

 YES 57 (100) 11 (100) 46 (100)

Venous_invasion, n (%) 0.87

 NO 5 (8.8) 1 (9.1) 4 (8.7)

 Unknown 39 (68.4) 7 (63.6) 32 (69.6)

 YES 13 (22.8) 3 (27.3) 10 (21.7)

Lymphatic_invasion, n (%) 0.682

 NO 5 (8.8) 1 (9.1) 4 (8.7)

 Unknown 33 (57.9) 5 (45.5) 28 (60.9)

 YES 19 (33.3) 5 (45.5) 14 (30.4)

Tumor_residual_disease, n (%) 0.635

 1–10 mm 31 (54.4) 8 (72.7) 23 (50)

 10 mm ~ 12 (21.1) 1 (9.1) 11 (23.9)

 No Macroscopic disease 9 (15.8) 1 (9.1) 8 (17.4)

 Unknown 5 (8.8) 1 (9.1) 4 (8.7)

Histologic_grade, n (%) 1

 G1/G2 5 (8.8) 1 (9.1) 4 (8.7)

 G3/G4/GX 52 (91.2) 10 (90.9) 42 (91.3)

FIGO_stage, n (%) 0.244

 I/II 5 (8.8) 2 (18.2) 3 (6.5)

 III/IV 52 (91.2) 9 (81.8) 43 (93.5)

OS, n (%) 0.201

 Alive 28 (49.1) 3 (27.3) 25 (54.3)

 Dead 29 (50.9) 8 (72.7) 21 (45.7)

 OS.time, Mean ± SD 42.9 ± 28.59 40.42 ± 21.11 43.49 ± 30.28 0.697



Page 11 of 13Gu et al. Journal of Ovarian Research          (2023) 16:180  

and specificity of the predictions were poorer using 
different models and radiological signatures. Addition-
ally, free datasets can vary in CT image quality and 
show high imbalances, especially in the ratio of high 
versus low CXCL9 levels. Accordingly, larger cohort 
data from multiple centers may provide a solution for 
future research and result in practical applications.

Conclusions
In conclusion, our model can be used to evaluate the 
prognostic risk in patients with OC. The radiomics-
based nomogram, which incorporates clinical and CT 
characteristics, can predict CXCL9 status in a nonin-
vasive manner, potentially fulfilling the ultimate pur-
pose of precision medicine for ovarian cancer.

Fig. 6 Nomogram and model evaluation. A Creation of the nomogram to predict the overall survival of a patient with ovarian cancer. B Calibration 
curves of the risk score; C The time-dependent ROC of the risk score; D DCA
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