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Abstract
Ovarian cancer (OV) is the most fatal gynecological malignant tumor worldwide, with high recurrence rates and 
great heterogeneity. Pyroptosis is a newly-acknowledged inflammatory form of cell death with an essential role 
in cancer progression, though studies focusing on prognostic patterns of pyroptosis in OV are still lacking. Our 
research filtered 106 potential pyroptosis-related genes (PRGs) among the 6406 differentially expressed genes 
(DEGs) between the 376 TCGA-OV samples and 180 normal controls. Through the LASSO-Cox analysis, the 6-gene 
prognostic signature, namely CITED2, EXOC6B, MIA2, NRAS, SETBP1, and TRPV46, was finally distinguished. Then, 
the K-M survival analysis and time-dependent ROC curves demonstrated the promising prognostic value of the 
6-gene signature (p-value < 0.0001). Furthermore, based on the signature and corresponding clinical features, we 
constructed and validated a nomogram model for 1-year, 2-year, and 3-year OV survival, with reliable prognostic 
values in TCGA-OV (p-value < 0.001) and ICGC-OV cohort (p-value = 0.040). Pathway analysis enriched several 
critical pathways in cancer, refer to the pyroptosis-related signature, while the m6A analysis indicated greater 
m6A level in high-risk group. We assessed tumor immune microenvironment through the CIBERSORT algorithm, 
which demonstrated the upregulation of M1 Macrophages and activated DCs and high expression of key immune 
checkpoint molecules (CTLA4, PDCD1LG2, and HAVCR2) in high-risk group. Interestingly, the high-risk group 
exhibited poor sensitivity towards immunotherapy and better sensitivity towards chemotherapies, including 
Vinblastine, Docetaxel, and Sorafenib. Briefly, the pyroptosis-related signature was a promising tool to predict 
prognosis and evaluate immune responses, in order to assist decision-making for OV patients in the realm of 
precision medicine.
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Introduction
Ovarian cancer (OV) is the second most common 
gynecological disease and the most fatal gynecological 
malignant tumor worldwide, thus seriously threatening 
women’s safety and health [1]. As reported, there were 
19,880 new cases and 12,810 deaths related to OV, esti-
mated for 2022 in the United States [2]. Owing to the lack 
of specific early symptoms, over 70% OV cases were first 
diagnosed at late period, which led to a poor 5-year over-
all survival rate of 35% [3, 4]. After the initial therapy of 
surgery combined with platinum-based chemotherapy, 
approximately 80% OV patients finally suffer recurrence 
and progression [5]. Accordingly, to improve survival, 
identifying a promising prognostic signature is of great 
urgency.

During the past decades, cell death, one of the most 
fundamental issues for life sciences, has been defined as 
a hallmark of cancer [6]. Recently, increasing researches 
have been focused on pyroptosis, a newly-acknowledged 
inflammatory form of cell death [7]. Pyroptosis was usu-
ally caused by certain inflammasomes, which could lead 
to the cleavage of Gasdermin D (GSDMD) and matura-
tion of pro-inflammatory cytokines, such as interleu-
kin-18 (IL-18) and interleukin-1β (IL-1β) [8]. With the 
deepening of studies, the essential role of pyroptosis has 
been proved in various aspects, including tumor origin, 
tumor progression, and therapy-resistance, etc. [9]. As 
for OV and pyroptosis, Berkel and colleagues pointed 
out that the expression of GSDMD and GSDMC was up-
regulated, whereas GSDME was downregulated in OV 
tissue, which was associated with poor prognosis [10]. In 
this regard, it is of great importance to explore the under-
lying mechanisms of pyroptosis-related genes (PRGs) in 
the process of OV progression, which has guiding signifi-
cance in the treatment and prevention of cancer [11].

Recently, immunotherapy has become a hotspot in 
OV studies, though the effective rate for immunother-
apy in OV is still limited [12, 13]. Up till now, emerging 
evidence has suggested the crosstalk between tumor 
immune microenvironment and pyroptosis [14]. Most 
researches focused on only one or two pyroptosis-related 
genes (PRGs) and several cell types in the microenviron-
ment, however, the tumor progression process is char-
acterized by numerous genes and cell types interacting 
in a high-coordinated manner, which haven’t been fully 
understood yet [15, 16]. Hence, the in-depth mechanisms 
of pyroptosis along with the tumor immune microenvi-
ronment in OV progression could be instrumental in 
developing efficacious immunotherapy to overcome drug 
resistance [17].

Accordingly, in our research, we comprehensively eval-
uated the importance of PRGs in OV, and filtered 6 PRGs 
to build a prognostic signature. Moreover, we assessed 
the difference of methylation N6 adenosine (m6A) 

level, tumor immune microenvironment, and sensitiv-
ity towards chemotherapy/immunotherapy between risk 
groups classified via the pyroptosis-related signature.

Methods
Data collection
Figure 1 A showed the workflow of the research. The gene 
expression profiles of OV patients were obtained from 
The Cancer Genome Atlas database (TCGA, https://
portal.gdc.com) as the training cohort (n = 376) and from 
the International Cancer Genome Consortium database 
(ICGC, https://dcc.icgc.org) as the validation cohort 
(n = 111). The corresponding clinical features of OV 
patients were also publicly available from the TCGA and 
ICGC datasets, which were summarized in Supplement 
Table 1. All patients involved underwent standard opera-
tion aimed to achieve optimal tumor debulking followed 
by platinum-based chemotherapy. We also extracted 
the transcriptome profiles of normal tissues as con-
trols (n = 180), through the Genotype-Tissue Expression 
database (GTEx, https://gtexportal.org). Based on the 
“limma” package of the R software, the RNA-sequencing 
raw data was normalized for further analysis. The batch 
effects caused by non-biotechnological bias among two 
different datasets (TCGA and GTEx) were corrected 
through the “Combat” algorithm using the “SVA” package 
of the R software [18].

Filtration of pyroptosis-related genes
From the Genecards database (https://www.genecards.
org), we identified 278 ferroptosis-related mRNAs with 
Relevance Score ≥ 2. Then, we filtered the differentially-
expressed genes (DEGs) between normal and OV tis-
sues (adjusted p-value < 0.05; | Log2 (Fold Change) | >1). 
According to the Venn diagram, we identified differen-
tially expressed pyroptosis-related genes (DE-PRGs). To 
identify the prognosis value of the identified genes, the 
Kaplan–Meier (K-M) method was used to graph survival 
curves and the p-value was assessed through the Log-
rank test.

Construction and validation for prognostic signature
To filter prognostic PRGs for signature construction, the 
least absolute shrinkage and selection operator (LASSO) 
- COX Regression algorithm was conducted with 10-fold 
cross-validation, through the “glmnet” package of the 
R software. We also performed the Time-dependent 
receiver operating characteristic curve (ROC) analy-
sis of 1-year, 3-year, and 5-year survival rate through 
the “timeROC” package of the R software. For survival 
analysis, we stratified OV patients into two risk groups, 
according to the medium cut-off value of risk-score. 
Next, the Kaplan–Meier (K-M) analysis was conducted to 
assess prognostic value of the signature.

https://portal.gdc.com
https://portal.gdc.com
https://dcc.icgc.org
https://gtexportal.org
https://www.genecards.org
https://www.genecards.org
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To further select independent risk factors for the 
nomogram, we carried out univariate and multivariate 
Cox Hazard Regression analyses, which were visualized 
through the forest diagram using the “forestplot” package 
of the R software. According to the selected risk factors, 
we then constructed a nomogram for 1-year, 3-year, and 
5-year OS prediction through the “rms” package of the R 
software.

Functional enrichment analysis and tumor immune 
microenvironment analysis
Furthermore, we analyzed the functional enrichment of 
gene expression profiles, in order to assess the underlying 
functions of the potential genes. The Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontology 

(GO) functional enrichment analyses, including molecu-
lar function (GO-MF), biological pathways (GO-BP), and 
cellular components (GO-CC) were analyzed using the 
“ClusterProfiler” package of the R software.

To evaluate immune microenvironment of tumor tis-
sue, we analyzed the abundance proportion of 22 typical 
tumor-infiltrating immune cells, based on the CIBER-
SORT algorithm at the CIBERSORTx (https://cibersortx.
stanford.edu/) website [19] and the Estimation of STro-
mal and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE, https://bioinformatics.
mdanderson.org/estimate/). Moreover, the correlations 
between the 22 immune cells signature risk score were 
calculated through the Spearman’s test.

Fig. 1  Identification of differentially expressed pyroptosis-related genes (DE-PRGs) in ovarian cancer (OV). (A) The flowchart of the research. (B) The heat-
map of differential gene expression, among which the top 50 up-regulated and the top 50 down-regulated genes were listed. Different colors represent 
the different trend of gene expression between normal tissues and OV tissues. (C) The volcano plot showed the differentially expressed genes (DEGs) 
between normal tissues and OV tissues. The up-regulated and down-regulated DEGs were respectively highlighted in red and blue. (D) The Venn plot of 
the DE-PRGs. (E) The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the 106 DE-PRGs (up). 
The hallmark pathway from mSigDB enrichment analysis of the 106 DE-PRGs (bottom). Here, the top 20 clusters were shown, while the size of the circles 
represents gene ratio and the color scale represents the p-value. (F) The protein-protein interaction (PPI) network plot of the 106 DE-PRGs (left), among 
which 13 hub genes with significant associations were defined (right)

 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
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Assessment of patient response toward immunotherapy 
and chemotherapy
To identify effective immunotherapy for OV patients, we 
conducted the Pearson’s test to evaluate the relationship 
between the pyroptosis-related signature and expression 
of immune checkpoint genes, including CD274, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCD1LG2, SIGLEC15, and 
TIGIT. In addition, we predicted the Potential immune 
checkpoint blockade (ICB) response for individuals, 
based on the TIDE website (http://tide.dfci.harvard.
edu/).

Moreover, we analyzed the half-maximal inhibitory 
concentration values (IC50) through the ridge regression, 
in order to evaluate patient response to chemotherapy. 
The chemotherapy-related data was obtained from the 
Genomics of Drug Sensitivity in Cancer database (GDSC, 
https://www.cancerrxgene.org/), the largest public phar-
macogenomics dataset. The prediction for IC50 was 
performed through the “pRRophetic” package of the R 
software.

Statistical source
The differences between groups were compared through 
the Chi-squared test for categorical variables and the 
Wilcoxon test for continuous variables. The Spearman 
correlation analysis was used to analyze correlations 
between different variables, and the “ggstatsplot” pack-
age of the R software was used to graph the multi-gene 
correlation heatmap. P-value was adjusted using the BH 
method, while the p-value (two-tailed) < 0.05 was consid-
ered statistically significant. Statistical analyses were per-
formed using the R software (version 4.0.3).

Results
Identification of pyroptosis-related differentially expressed 
genes in OV
Firstly, we downloaded the transcriptome data and cor-
responding clinical features of OV patients (n = 376) from 
the TCGA-OV database (https://portal.gdc.com). The 
transcriptome data from normal tissues (n = 180) was also 
obtained from the GTEx database (https://gtexportal.
org) as controls. As shown in Fig. 1B and C, we identified 
6406 DEGs, among which 4073 genes were down-regu-
lated, and 2333 genes were up-regulated in OV tissues 
compared with the normal tissues. Then, we obtained 
278 PRGs (Relevance Score ≥ 2) from the Genecards data-
base (https://www.genecards.org). According to the Venn 
diagram, 106 PRGs were differentially expressed between 
normal tissues and OV tissues (Fig.  1D). Then, we con-
ducted a pathway enrichment analysis of the 106 DE-
PRGs through the Metascape website (https://metascape.
org) [20]. Among the 106 DE-PRGs, 38 genes were up-
regulated in the OV cancer tissues compared with nor-
mal, while 68 genes were down-regulated in the OV 

tissues. In Fig.  1E, the top 20 most significant GO and 
KEGG pathways were listed, which were mainly enriched 
in pathways in cancer, cellular response to growth factor 
stimulus, regulation of cell cycle process, etc. Based on 
the hallmark pathway analysis from the Molecular Signa-
tures Database (mSigDB), the DE-PRGs mainly enriched 
in pathways including the Epithelial-mesenchymal transi-
tion (EMT), TGFβ signal, and hypoxia, which indicated 
that these pathways might be related to the pyroptosis 
pattern. In order to provide screens for protein interac-
tions, we conducted a protein-protein interaction (PPI) 
network for the 106 DE-FRGs, based on the Search Tool 
for the Retrieval of Interacting Genes (STRING, https://
string-db.org) (Fig.  1F) [21]. Among 106 DE-FRGs, 13 
hub genes with significant associations were defined.

Establishment and estimation of the prognostic signature 
based on pyroptosis-related genes
Through the LASSO regression analysis, we filtered ten 
potential prognostic genes (including MIA2, XRCC2, 
NRAS, ALPL, TRPV4, RYR1, EXOC6B, SETBP1, 
CITED2, and IGF2) from the 106 DE-FRG (Fig. 2A and 
B). To enhance model explicability, the multivariate Cox 
Regression analysis was conducted to distinguish prog-
nostic genes for the signature, namely CITED2, EXOC6B, 
MIA2, NRAS, SETBP1, and TRPV4 (Fig.  2C). The rela-
tionships among these selected DE-PRGs were shown in 
Fig. 2D, while the expression distribution of the six prog-
nostic PRGs in normal tissues and OV tissues was also 
presented (Fig. 2E). Ultimately, we constructed the pyrop-
tosis-related 6-gene prognostic signature model as fol-
lows: risk-score = (0.2726)*CITED2 + (0.4932)*EXOC6B 
+ (-0.29)*MIA2 + (-0.3169)*NRAS + (-0.2583)*SETBP1 + 
(0.2071)*TRPV4. As shown in the Kaplan-Meier (K-M) 
survival curves (Fig. 2F), OV patients with high expres-
sion of MIA2, NRAS, and SETBP1 had better OS, while 
those with high expression of CITED2, EXOC6B, and 
TRPV4 suffered worse OS. The overview for the func-
tions in OV of the six DE-FRGs with prognostic values 
was listed (Supplement Table  2) [22–29]. We have also 
checked the expression dimension of two merged expres-
sion dataset using the PCA analysis, which have been 
shown in Supplement Fig. 1

Through the above formula, we calculated the risk-
score of each OV patients, including the training set 
(TCGA-OV cohort; n = 374) and the validation set 
(ICGC-OV cohort; n = 111), which were followed-up for 
41.76 ± 31.78 months and 41.63 ± 31.16 months, respec-
tively. Then, we divided patients into two groups: low-risk 
and high-risk, according to the median cut-off value. Fig-
ure 3 A and 3B (top and middle) showed the risk-scores 
of OV patients in both training and validation sets, refer 
to corresponding survival time and status. We also listed 
the expression profiles of the 6-gene signature in low-risk 

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://portal.gdc.com
https://gtexportal.org
https://gtexportal.org
https://www.genecards.org
https://metascape.org
https://metascape.org
https://string-db.org
https://string-db.org
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and high-risk groups. In both training and validation sets, 
MIA2 and SETBP1 were highly expressed in the low-risk 
group, while EXOC6B was mainly expressed in the high-
risk group. The K-M curves demonstrated that patients 

in the low-risk group had better 1-year, 3-year, and 5-year 
OS in the training cohort (p-value < 0.0001) and valida-
tion cohort (p-value = 0.0002) (Fig.  3C and D). Through 
the time-dependent ROC analysis, we indicated that the 

Fig. 2  Construction of an ovarian cancer (OV) prognostic signature based on the pyroptosis-related genes (PRGs). (A) The λ selection plot of the 10-fold 
cross-validation for the LASSO tuning parameter selection. (B) The LASSO-Cox analysis for the optimal prognostic PRGs, including MIA2, XRCC2, NRAS, 
ALPL, TRPV4, RYR1, EXOC6B, SETBP1, CITED2, and IGF2. (C) The forest plot represented the prognostic ability of the ten optimal PRLs, which were ana-
lyzed through the Cox Regression algorithm. (D) The heatmap for the relationship among the six prognostic PRGs, namely CITED2, EXOC6B, MIA2, NRAS, 
SETBP1, and TRPV4. The color scale represented different correlation coefficients (red for negative relationship and blue for positive relationship). (E) The 
expression distribution of the six prognostic PRGs in normal tissues and OV tissues. (F) The Kaplan-Meier (K-M) survival curves of the six prognostic PRLs.
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6-gene signature had promising prognostic values for 
1-year, 3-year, and 5-year OS prediction (Fig. 3E F).

Construction and validation of the pyroptosis-related 
6-gene‑based nomogram
We analyzed the relationship between the pyroptosis-
related 6-gene signature and clinical features, including 
age (Supplement Fig.  2A), race (Supplement Fig.  2B), 

grade (Supplement Fig. 2C), and International Federation 
of Gynecology and Obstetrics (FIGO) stage (Supplement 
Fig. 2D). The results showed that elder patients (age ≥ 60 
years) are more likely to have higher risk-score, while 
race, grade, and FIGO stage had no significant relation-
ship with the signature (p-value ≥ 0.05). The Sankey plot 
visualized the distribution of every OV patient, based on 

Fig. 3  Estimation and validation of the prognostic signature based on the six pyroptosis-related genes (PRGs). The distribution of the risk score, survival 
time (months), and survival status of ovarian cancer (OV) patients in the TCGA training set (A) and the ICGC validation set (B). The scatter diagrams repre-
sented the risk score of different OV patients, refer to corresponding survival time and survival status (top and middle). The heatmaps (bottom) showed 
gene expression of the 6-gene signature between low-risk and high-risk groups. The Kaplan-Meier (K-M) curves for overall survival (OS), classified into 
the low-risk and high-risk groups of the TCGA training set (C) and the ICGC validation set (D). The ROC analysis of the TCGA training set (E) and the ICGC 
validation set (F) of OS prediction by the 6-gene signature based on PRGs.
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the risk groups stratified by the 6-gene signature and cor-
responding clinical features (Supplement Fig. 2E).

In order to find out prognostic indicators for OV 
patients, we implied the univariable and multivari-
able Cox Hazard Regression analyses, which con-
firmed that age (p-value = 0.001), FIGO clinical stage 
(p-value = 0.027), and risk-score (p-value < 0.001) were 
independent prognostic indicators for OS (Fig. 4A and B). 
Thus, we constructed a prognostic nomogram model for 
1-year, 3-year, and 5-year OS probability for OV patients, 
based on the integration of age, FIGO clinical stage, and 
6-gene risk-score, (Fig.  4C). The results indicated that 
the nomogram had promising C-index of 0.6663 (95%CI 
0.6278–0.7048) and 0.6037 (95%CI 0. 5675-0.7045) in the 
TCGA training cohort and the ICGC validation cohort, 
respectively. The calibration curves of nomogram model 
showed great consistency between the predicted and 
observed 1-year, 3-year, and 5-year OS (Fig.  4D; up, 
middle, and bottom, respectively). Then, we calculated 
the prognostic nomogram score for OV patients. Based 
on the median cut-off value, we stratified patients into 
two nomogram groups. Furthermore, the K-M survival 
curves demonstrated that OV patients with low nomo-
gram scores had better OS in both the training cohort 
(p-value < 0.001, Fig.  4E, left) and the validation cohort 
(p-value = 0.040, Fig.  4F, left). The ROC curves analysis 
demonstrated that the nomogram scores had reliable 
predictive value for OV prognosis in both the training 
cohort (Fig. 4E, right) and the validation cohort (Fig. 4F, 
right), with the Area Under Curve (AUC) value of 0.77 
and 0.64, respectively. Accordingly, the nomogram model 
based on the pyroptosis-related 6-gene signature had 
promising prognostic value for OV patients.

Pathway enrichment analysis for the pyroptosis-related 
6-gene signature
Stepwise, we conducted both KEGG and GO pathway 
enrichment analysis among OV patients stratified via the 
pyroptosis-related 6-gene signature. The KEGG pathway 
analysis enriched several critical pathways in cancer, such 
as the PI3K-Akt signaling pathway, Hedgehog signaling 
pathway, MAPK signaling pathway, and others (Fig. 5A). 
The GO biological process (GO-BP) pathway analysis 
was significantly enriched in regulation of the WNT sig-
naling pathway, transmembrane transport, and cell fate 
commitment, etc. (Fig. 5B). The GO cellular component 
(GO-CC) pathway enrichment analysis identified intrin-
sic components of synaptic membrane, supramolecular 
polymer, anchoring junction, and others (Fig.  5C). The 
GO molecular function (GO-MF) analysis was signifi-
cantly enriched in pathways including signaling receptor 
binding, WNT protein binding, and passive transmem-
brane transporter activity, etc. (Fig. 5D).

Recently, emerging studies implied the critical role of 
m6A, a common type of RNA modification, in OV pro-
gression [30]. Hence, we identified 19 typical m6A-asso-
ciated genes (including ALKBH5, FTO, HNRNPA2B1, 
HNRNPC, IGF2BP1, IGF2BP2, IGF2BP3, METTL3, 
METTL14, RBMX, RBM15, RBM15B, WTAP, YTHDC1, 
YTHDC2, YTHDF1, YTHDF2, YTHDF3, and ZC3H13) 
from a study, which focused on molecular characteriza-
tion of m6A modulators among 33 various cancer types 
in the TCGA pan-cancer cohort, including OV [31]. 
Interestingly, 9 out of the 19 m6A-related genes, includ-
ing WTAP, RBM15B, ZC3H13, YTHDC1, YTHDC2, 
YTHDF1, YTHDF3, FTO, and ALKBH5 were highly 
expressed in high-risk group (p-value < 0.05), compared 
with low-risk group (Fig. 5E).

Immunity analysis for tumor immune microenvironment 
related to the 6-gene signature
Growing evidence suggested that tumor immune micro-
environment could contributed to OV progression 
through the crosstalk between proximal immune cells 
and tumor cells [32]. Therefore, in order to determine the 
association between the pyroptosis-related 6-gene sig-
nature and tumor immune microenvironment, we con-
ducted the CIBERSORT algorithm to evaluate immune 
infiltration landscape among OV patients, which were 
stratified by the pyroptosis-related signature. We sum-
marized the composition of 22 immune cells infiltrat-
ing in OV samples, from both the low-risk and high-risk 
groups (Fig. 6A). According to the CIBERSORT analysis, 
2 out of the 22 immune cells, including M1 Macrophages 
and activated Myeloid Dendritic Cells (DCs) were signifi-
cantly up-regulated in the low-risk group compared to 
the high-risk group (Fig. 6B).Except for the intense cor-
relation between resting and corresponding activated 
cells, Follicular Helper T cells and M2 Macrophage had 
the strongest negative relationship (correlation coef-
ficient 0.46; p-value < 0.0001), while CD8 + T cells and 
Macrophage M1 had the strongest positive relationship 
(correlation coefficient 0.44; p-value < 0.0001) (Fig.  6C). 
Based on the ESTIMATE algorithm, we found that both 
the stromal score was significantly higher in the high-risk 
group, while the immune score was higher in low-risk 
group. However, there was no difference of the ESTI-
MATE score, which infers tumor purity, among two risk 
groups (p-value > 0.05, Fig. 6D).

Assessment of patient response toward immunotherapy 
and chemotherapy
In addition, we assessed the association between the gene 
signature and immune checkpoint molecules expression, 
which implied that CTLA4, PDCD1LG2, and HAVCR2 
were significantly up-regulated among the high-risk 
group (Fig. 7A, P-value < 0.05). Accordingly, high-risk OV 
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Fig. 4  Construction and validation of the pyroptosis-related 6-gene‑based nomogram. The forest plots for univariate (A) and multivariate (B) Cox Hazard 
Regression analysis of overall survival (OS), based on the 6-gene signature and clinical characteristics, including age, pathological grade, and clinical FIGO 
stage. (C) The prognostic nomogram model for 1-year, 3-year, and 5-year OS of ovarian cancer (OV) patients, based on the 6-gene risk score and clinical 
indicators selected by the Cox Regression analysis. (D) The calibration diagrams of the prognostic nomogram for predicting 1-year, 3-year, and 5-year 
OS (top, middle, and bottom) among OV patients. (E) The Kaplan-Meier (K-M) curves (left) and Receiver Operating Characteristic (ROC) curves (right) for 
patients in the TCGA-OV training cohort, classified by the prognostic nomogram score. (F) The K-M curves (left) and ROC curves (right) for patients in the 
ICGC-OV validation cohort, related to the nomogram score
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patients were more likely to benefit from the immuno-
therapies focused on these 3 immune checkpoints. Fur-
thermore, we also predicted patient response to immune 
checkpoint blockade (ICB) through the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm. Figure 7B 
showed that high-risk OV patients had higher TIDE 
scores, which indicated poorer efficacy and shorter sur-
vival after ICB therapy (p-value < 0.05).

In order to evaluate chemotherapy sensitivity between 
two risk groups, we assessed the half-maximal inhibi-
tory concentration (IC50) of 8 typical OV chemother-
apy agents through the Genomics of Drug Sensitivity 
in Cancer (GDSC) dataset. The results implied that the 
estimated IC50 values of Vinblastine, Docetaxel, and 

Sorafenib in the high-risk group were significantly lower, 
compared to those in the low-risk group, indicating that 
high-risk OV patients were more sensitive to these che-
motherapies. However, no significant difference between 
the two risk groups was found in sensitivity to Cispla-
tin, Paclitaxel, Bleomycin, Gemcitabine, and Veliparib 
(p-value ≥ 0.05) (Fig. 7C).

Discussion
OV is the most fatal gynecological malignant tumors 
worldwide, mainly due to inefficient biomarkers and high 
recurrence rates [1, 5]. Therefore, identifying a promis-
ing prognostic signature is of great urgency to improve 
OV survival. Latterly, pyroptosis, a newly-discovered 

Fig. 5  Pathway enrichment analysis and immunity analysis for the pyroptosis-related 6-gene signature. (A) The Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analysis for potential genes. (B-D) The Gene Ontology (GO) pathway enrichment analysis for potential genes in terms 
of the biological process (BP), the cellular component (CC), and the molecular function (MF). The size of circles indicated gene numbers, while the color 
scale represented -log10(P-value). (E) The violin diagrams represented the expression distribution of the 19 typical N6-methyladenosine (m6A)-associated 
genes, between low-risk and high-risk groups. *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001; ****P-value < 0.0001
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inflammatory form of cell death caused by certain inflam-
masomes, has been demonstrated to play vital roles in 
the regulation of tumor progression, thus be considered 
a potential strategy for tumor treatment [8, 33]. As for 
OV, previous studies indicated that regulation of PRGs, 
including HOTTIP [34], α-NETA [35], and LncRNA 
GAS5 [36] in tumor cells could promote pyroptosis by 
inducing inflammasome formation, in order to inhibit 
OV progression, which could be used as a potential tar-
get for tumor therapy [7, 37]. Therefore, in this study, 
we aimed to identify a pyroptosis-related signature and 
evaluated prognostic potential, tumor immune microen-
vironment, and sensitivity to treatments related to fer-
roptosis patterns.

Recently, few current studies focused on pyropto-
sis, especially on its mechanism in OC. Zhou and col-
leagues constructed and validated a pyroptosis-related 
8-gene signature (including CD44, EPB41L3, FCN1, 
IRF4, ISG20, LYN, SLC31A2, and VSIG4), which could 
be used to predict OV prognosis [38]. However, the study 
only included 25 PRGs for signature identification, which 
could limit the accuracy and integrality of the research. 
Another research from Ye and colleagues defined 
another prognostic signature, which consisted of 8 PRGs 

including AIM2, CASP3, CASP6, ELANE, GSDMA, 
PLCG1, and PJVK, though with limited ROC-AUC 
for 1-year, 2-year, and 3-year OS prediction of 0.628, 
0.662, and 0.607, respectively [11]. Up till now, none of 
the pyroptosis-related prognostic signatures have been 
standardized and applied to OV clinical practice yet, 
which might be caused by the limited prognosis value. 
Accordingly, in our study, we aimed to identify a satis-
factory pyroptosis-related signature from 106 potential 
PRGs obtained from the Genecards database. Through 
integrative analysis, we distinguished a 6-gene signa-
ture (CITED2, EXOC6B, MIA2, NRAS, SETBP1, and 
TRPV4), which had a promising prognostic value among 
both training cohorts (TCGA-OV, p-value < 0.0001) and 
validation cohort (ICGC-OV, p-value = 0.0002). To the 
best of our knowledge, this is the first study identifying 
the 6-gene pyroptosis-related OV signature with satisfac-
tory prognostic value, in order to guide clinical decision-
making for OV patients.

Among the 6 identified PRGs, only NRAS and SETBP1 
have definite functions reported in OV progression. 
Dariush and colleagues demonstrated that NRAS, an 
oncogenic driver in serous ovarian carcinomas, could co-
expressed with EIF1AX, which promoted clonogenicity 

Fig. 6  The tumor immune landscape related to the 6-gene signature. (A) The Boxplots showed the composition of 22 immune cells infiltrating in OV 
samples, which were analyzed through the CIBERSORT algorithm. OV patients were classified into low-risk and high-risk groups by the 6-gene signature. 
(B) The Violin diagrams indicated the difference in the 22 immune cells infiltration between low-risk and high-risk groups. (C) The heatmaps showed the 
proportions and relationships of the 22 immune cells among OV patients. (D) Based on the ESTIMATE algorithm, the stromal score, immune score, and ES-
TIMATE score, which infers the presence of stroma, infiltration of immune cells, and tumor purity, were compared among two risk groups. *p-value < 0.05; 
**p-value < 0.01; ***p-value < 0.001; ****p-value < 0.0001
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and proliferation in OV [24, 25]. SETBP1 was an onco-
protein that directly binds to SET, which could protect it 
from proteasome degradation [39]. As for OV, Qiao and 
colleague reported that SETBP1 could maintain the Can-
cer Stem Cell (CSC)-like phenotype of tumor cells via the 
SET/PP2A axis [23]. Previous studies identified EXOC6B 

as a gene involved in the Notch signaling pathway, a 
key pathway in tumor progression, though haven’t been 
validated in OV yet [27, 28]. In breast cancer, research-
ers indicated that CITED2, as a transcriptional coacti-
vator, could modulate the metastatic ability of tumor 
cells through the regulation on IKKα [29]. Kurihara 

Fig. 7  Estimation of the sensitivity to immunotherapy and chemotherapy among OV patients. (A) The boxplots for the distribution of 8 typical immune 
checkpoints gene expression (including CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, SIGLEC15, and TIGIT) between the two groups classified by 
the 6-gene signature. (B) The immunotherapy response prediction of OV patients, refer to the Tumor Immune Dysfunction and Exclusion(TIDE)score. 
(C) The violin diagrams for the estimated IC50 values distribution for OV patients, in terms of 8 typical chemotherapies, including Bleomycin, Cisplatin, 
Docetaxel, Gemcitabine, Paclitaxel, Sorafenib, Vinblastine, and Veliparib. The chemotherapy sensitivity analysis was conducted based on the Genomics of 
Drug Sensitivity in Cancer (GDSC) database. *P-value < 0.05; **P-value < 0.01; ****P-value < 0.0001
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etc., claimed that MIA2 could regulate the infiltration 
of lymphocytes via a variety of integrins and subtypes of 
mitogen-activated protein kinase in oral squamous cell 
carcinoma [26]. As for TRPV4, researchers found that 
TRPV4 could promote breast cancer metastasis by regu-
lating cell extravasation, stiffness, and actin cortex [22]. 
Interestingly, in our study, the Hazard ratios of CITED2 
and EXOC6B were greater than 1 in Fig.  2C, and the 
higher expression of CITED2 and EXOC6B, the poorer 
survival in Fig. 2F. The results indicated that CITED2 and 
EXOC6B were risk factors related to OV progression. 
However, CITED2 and EXOC6B were highly expressed 
in normal group in Fig.  2E, which demonstrated that 
CITED2 and EXOC6B were negatively related to onco-
genesis. The underlying mechanism for the opposite role 
of CITED2 and EXOC6B in OV progression and onco-
genesis needs further validation and investigation.

Nowadays, owing to the increasing breakthroughs in 
immune checkpoint inhibitors, the crosstalk between 
immune environment and tumor has gained increasing 
attention [40]. Current studies have reported that tumor 
cells could release signals that recruited anti-tumor 
immune cells through the pyroptosis process, while the 
immune cells could also induce pyroptosis in tumor 
cells, thus causing a positive feedback loop [41, 42]. For 
instance, Wang and colleagues concluded that pyroptosis 
of less than 15% of tumor cells was sufficient to eliminate 
the entire mammary tumor graft, partly due to anti-
tumor immunity. In tumors that underwent pyroptosis, 
the number of CD4 + T cells, CD8 + T cells, NK cells, and 
M1 macrophages largely increased, while the number of 
M2 macrophages, monocytes, and neutrophils decreased 
[43]. Another study by Zhang and colleagues reported 
that CD8 + T cells and NK cells could evoke pyropto-
sis of tumor cells independent of caspases through the 
GSDME-GZMB axis, which is induced by interferon-γ 
(IFNγ) [44]. Nevertheless, the correlations between 
immune cell infiltration and pyroptosis patterns in OV 
remains to be further explored.

Accordingly, we evaluated the landscape of immune 
infiltration in OV. According to the CIBERSORT analy-
sis, 2 out of the 22 immune cells, including activated 
DCs and M1 macrophages, were up-regulated in the 
low-risk group compared to the high-risk group. Lee 
et al. concluded that activated DCs were essential for T 
cell recruitment into the tissue, the initiation of T cell 
responses, and maintenance of effector memory T cells 
[45]. In this regard, activated DCs played an essential role 
in the immune responses in the process of OV progres-
sion [45, 46]. Most previous studies have reported anti-
tumor effects of M1 macrophages, which was consistent 
with our findings [47]. Surprisingly, Untack Cho and col-
leagues indicated that M1 macrophages could promote 
OV metastasis by activating the NF-κB signaling pathway 

[48]. Interestingly, we also found that Follicular Helper T 
cells and M2 Macrophage had the most substantial nega-
tive relationship, while CD8 + T cells and Macrophage 
M1 had the strongest positive relationship. However, 
these findings need validation and exploration for the 
underlying mechanism in the future study.

Nowadays, regardless of the recent advances in immu-
notherapy and chemotherapy, clinical treatments for OV 
face bottlenecks, with a high recurrence rate of approxi-
mately 80%, [5, 49]. Emerging evidence demonstrated 
that pyroptosis, a programmed cell death (PCD) pro-
cess mediated by gasdermin (GSDM), was a new bridge 
to tumor immunity, which could influence sensitivity to 
immunotherapy and chemotherapy [50, 51]. Accordingly, 
we tried to explore the relationship between pyroptosis 
patterns and sensitivity to immunotherapy and chemo-
therapy based on the 6-gene signature. According to the 
evaluation through the GDSC dataset, high-risk patients 
were more sensitive to chemotherapy, including Vin-
blastine, Docetaxel, and Sorafenib. Besides, our results 
revealed that high-risk patients were more likely to ben-
efit from the immunotherapies based on immune check-
point molecules, including CTLA4, PDCD1LG2, and 
HAVCR2. However, OV patients with high risk-score had 
higher TIDE scores, which indicated poorer efficacy and 
shorter survival after ICB therapy. Previous researches 
showed that some PD-L1-positive patients could be 
insensitive to PD-L1/PD-1 immunotherapy in clinical 
practice of OV therapy [52]. Hence, our findings might 
hint that the underlying mechanism of immune check-
point inhibitors in OV could be more complicated than 
directly targeting the related immune checkpoints.

However, there remained several limitations of the 
study. Firstly, the underlying mechanism of the 6 iden-
tified PGRs, especially CITED2, EXOC6B, MIA2, and 
TRPV4, in OV progression and tumor immune micro-
environment remained largely unknown, which needs 
stepwise investigation. Moreover, the pyroptosis-related 
signature should be further validated in more popula-
tions, in order to apply to clinical practice and improve 
OV survival in the future.

Conclusion
In brief, our study identified and validated a pyroptosis-
related 6-gene signature (consist of CITED2, EXOC6B, 
MIA2, NRAS, SETBP1, and TRPV4), as a promising 
prediction tool for treatment response and prognosis in 
OV. Comprehensive analysis revealed that the pyrop-
tosis-related signature was related to m6A modification 
and several critical signal pathways in cancer, though the 
underlying mechanisms remained largely unclear. As for 
the tumor immune microenvironment, the immune anal-
ysis identified significant correlations between immune 
cell infiltration and pyroptosis patterns, thereby hinted 
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individual treatment of immunotherapy and chemo-
therapy in specific OV patients. Our findings provided 
a vital basis for future research focus on the relationship 
between pyroptosis patterns and tumor immune micro-
environment, for the sake of assisting decision-making 
for OV patients, in the realm of precision medicine.
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