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Abstract 

For decades, most studies of ovarian aging have focused on its functional units, known as follicles, which include 
oocytes and granulosa cells. However, in the ovarian stroma, there are a variety of somatic components that bridge 
the gap between general aging and ovarian senescence. Physiologically, general cell types, microvascular struc-
tures, extracellular matrix, and intercellular molecules affect folliculogenesis and corpus luteum physiology along-
side the ovarian cycle. As a result of damage caused by age-related metabolite accumulation and external insults, 
the microenvironment of stromal cells is progressively remodeled, thus inevitably perturbing ovarian physiology. 
With the established platforms for follicle cryopreservation and in vitro maturation and the development of organoid 
research, it is desirable to develop strategies to improve the microenvironment of the follicle by targeting the perifol-
licular environment. In this review, we summarize the role of stromal components in ovarian aging, describing their 
age-related alterations and associated effects. Moreover, we list some potential techniques that may mitigate ovarian 
aging based on their effect on the stromal microenvironment.
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Introduction
With improved social and economic status in modern 
life, women are inclined to delay family planning and 
childbearing, which has led to an increased need for 
strategies to preserve fertility and delay reproductive 
aging. However, female reproduction sharply declines 
with chronological aging. The live birth rate drops from 

26% at age 35 to 1% at age 42, showing a robust linear 
decrease (10% per year). This means that women still 
face the inevitable dilemma of subfertility after middle 
age [1]. Additionally, women suffer an increased risk of 
age-related diseases after menopause, including cardio-
vascular disease, osteoporosis, Alzheimer’s disease, and 
diabetes, among others, suggesting that age-associated 
ovarian dysfunction is a pacemaker of general organic 
aging [2–4]. As the human lifespan is steadily being pro-
longed and women are becoming increasingly concerned 
about healthy aging, researchers must determine the 
mechanisms of ovarian aging and identify potent thera-
peutic strategies for its postponement.

The natural aging of ovary is closely associated with a 
decline in reproduction and abnormal endocrine func-
tion that manifests as infertility, irregular menstrua-
tion. The ovarian follicle is the unit core executing the 
two fundamental functions of ovary, i.e., endocrine and 
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fertility. Ovarian aging is characterized by progressively 
declining quantity and compromised quality of follicles. 
The exhaustion of ovarian reserve has been reported to 
subvert folliculogenesis. In response to the decreased 
growing follicle reserve, circulating FSH levels increase 
to promote the recruitment of primordial follicles and 
to rescue more selectable antral follicles from atresia. 
This has been viewed as a compensatory mechanism 
that acts at the expense of follicle quality [5, 6]. With the 
activated primordial follicle activation (PFA), phosphati-
dylinositol 3-kinase (PI3K)/AKT (PI3K/AKT) pathway 
mediates DNA damage and impairs the repair capacity 
of oocytes through ribosomal protein S6 (rpS6) [7–10]. 
Second, primary follicles support each other for growth 
through paracrine signaling, but the decreased follicle 
density leads to the compromised supportive capability 
and growth [11, 12]. Moreover, according to the produc-
tion-line hypothesis, optimal follicles are recruited first 
leaving the poorer follicles in the aged ovary to maximize 
the utilization of the best gametes [13]. On the other 
hand, the oocytes in follicles are decaying with a defec-
tive nuclear genome and/or cytoplasm during the long-
term dormancy [14]. Shortened telomeres lead to the 
dysfunctional spindles, decreased chiasmata, and abnor-
mal synapsis, etc. [15]. Therefore, oogonia recruited at a 
late age may harbor the shortened telomeres because of 
replicative senescence, as they are the last batches exit-
ing the oogonial cell cycle based on the productive-line 
theory mentioned above [16]. The balance between spon-
taneous mutation and repair in the nucleus is progres-
sively tilted, leading to accumulated DNA damage and 
chromosomal instability. Organelles in immature oocytes 
maintain a low rate of metabolism, even though they are 
quiescent, as chronic toxicity is provided by metabolites 
[17]. For example, mitochondria start to produce exces-
sive amounts of oxidants. This leads to mitochondrial 
DNA (mtDNA) mutations, which exacerbate energy 
insufficiency [18, 19]. Additionally, the defective cross-
talk between oocytes and granulosa cells such as reduced 
transzonal projections (TZPs) gap junctional coupling, 
and oocyte-derived microvilli (Oo-Mvi), also leads to 
the loss of oocyte quality [20, 21]. Notwithstanding, the 
factors leading to ovarian aging and their mechanisms of 
actions remain unexplored.

Ovarian microenvironment plays a significant role 
in mediating somatic aging and follicular part. Ortho-
topic transplantation of ovarian tissue between young 
and aged mice demonstrated that a healthy stromal 
microenvironment plays an essential role in folliculo-
genesis [22]. In ovaries, follicles are surrounded by a 
variety of stromal cell types and microstructures, i.e., 
theca-interstitial cells, immune cells, nerve and blood 
vessels, and extracellular matrix (ECM) [23]. These 

components support follicles physically by providing 
the biological scaffold, and chemically by the parac-
rine effect of nutritional and signaling molecules. For 
example, early-stage follicles acquire their oxygen and 
blood supply from adjacent stromal microvasculature, 
but spindle abnormalities occur with reduced vascu-
larization [24]. Macrophages are reported to be dis-
pensable for folliculogenesis, and their ablation causes 
ovarian hemorrhage and disrupted steroidogenesis [25, 
26]. Moreover, the deposition and resolution of ECM 
molecules determine the stiffness of the perifollicu-
lar environment, affecting the activation of primordial 
follicles [27]. Additionally, microenvironmental mol-
ecules associated with aging, i.e., advanced glycation 
end products (AGEs), reactive oxidative species (ROS), 
and inflammatory cytokines, are produced and accu-
mulate in the perifollicular environment. They interact 
with stromal cells to affect follicle development syn-
ergistically [28]. In the context of somatic aging, the 
dysfunction of these components has been implicated 
in multiple pathophysiological changes, such as tissue 
fibrosis, inflamm-aging, and immune senescence. How-
ever, their manifestations and effects on ovarian aging 
have not yet been clarified. Therefore, in this review, 
we focus on the ovarian components surrounding folli-
cles that mediate the crosstalk between the follicle and 
microenvironment. We discuss their age-associated 
alterations and effects. Moreover, we propose potent 
strategies that could rescue or alleviate the effect of 
aging on ovaries based on the techniques related with 
the stromal microenvironment (Fig. 1).

Age‑related changes in the perifollicular 
microenvironment
Stroma
Kinnear et al. characterized the cell types of the ovarian 
stroma into mainly two categories: 1) general cell types 
composing immune system, nerves, blood, and lymphatic 
system, etc.; and 2) ovary-specific cell types, including 
surface epithelium, tunica albuginea, rete ovarii, hilar 
cells, and most uncharacterized stromal cells [23]. The 
ovarian microenvironment comprises more than cells, as 
it also contains extracellular matrix molecules, secretory 
or/and soluble factors, metabolic products, etc. Some 
of these components interact with each other playing 
critical roles in regulating follicle development and ger-
mline cell differentiation. Herein, we mainly focused on 
the stromal components that have been documented to 
be associated with ovarian aging and discuss their age-
related alterations, and roles in the peri-follicular micro-
environment leading to ovarian dysfunction (Fig.  2 and 
Table 1).
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Theca‑interstitial cells
According to Kinnear et  al., the interstitial part of the 
ovary is heterogeneous and composed of different 
cell types. Among the interstitial cells, fibroblast-like 
cells produce ECM molecules, which are involved in 

peri-follicle scaffolding and biomechanics. Spindle-
shaped cells produce steroids, mainly androgens, and 
participate in follicle modulation [23]. Hummitzsch et al. 
compared gene expression profiles between the inter-
stitial stroma, peri-preantral follicular pre-theca, theca 

Fig. 1 Age-related changes in the intrinsic characteristics and the extrinsic microenvironment of follicles

Fig. 2 Evidenced age-related alterations of ovarian stromal components
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Table 1 The physiological function and their age-related mechanisms of main stromal components in ovary aging

Physiological Functions Age-Related Alterations Mechanisms in Ovarian Aging

Theca-interstitial cells
 Architectural support [29]
 Paracrine [30, 31]
 Androgen production [32]

Androgen production ↓ [33]
Phasic sensitivity of LH ↓ [34]
PPARα expression ↓, DHEA synthesis ↓ [35]
LH receptor expression ↑
Actin-rich fibrotic cells ↑ [36, 37]

Steroidogenesis ↓ [33]
Oocyte quality ↓, apoptosis ↑ [35]
Ovulatory dysfunction [38]
Stromal fibrosis ↑ [37]
Secondary follicle development ↓ [37]

Immune cells
 Monocyte/macrophage (Mφ)
  Folliculogenesis: granulosa cell proliferation, vascular 
integrity [25]
  Ovulation: pro-inflammation, matrix breakdown [39]
  Luteal phase: vascularization, progesterone synthesis 
[40, 41]
  Follicle atresia/luteolysis: scavenging debris/apoptotic 
cells [42]

Percentage of populations ↓: resident Mφ ↓, 
monocyte derived Mφ ↑ [43]
Polarization from M1 to M2 [44]
Phagocytotic function ↓
Iron/lipofuscin overload ↑
Multinucleated giant cells (MNGCs) ↑ [42, 45]

Granulosa proliferation ↓ [25]  
Follicle growth ↓ [25]
Steroidogenesis (E2, P4) ↓ [25, 41]
Corpus luteal hemorrhage ↑ [25]
Corpus luteum formation/lysis ↓ [41]
Stromal waste/debris ↑ [46]

 Other immune cells
  Phagocytosis [47]
  Antigen presentation [48]
  Paracrine/autocrine [47]

CD4+ T cells ↑
NK cells ↑
CD8+ T cells ↓ [43]
Plasma cells ↑
Naive CD4+ T cells ↑ [49]

Abnormal immunity [50, 51]
Luteal regression [40]
Autoimmune reaction [48]

Vasculature
 Pericytes
  Follicular vascularization [52]
  Initiate luteal angiogenesis:
  Endothelial cell migration
  Capillary outgrowth
  Vessel stablization [53]

Migration ↓ [54]
Apoptosis ↑
Detachment ↑
Coverage ↓ [55]
Differentiation to fibroblasts [56]

Altered angiogenesis [52]
Vascular instability
Luteal hemorrhage [53]
Fibrosis [56]

 Smooth muscular cells
  Constituting arterioles and muscular venules [57] Migration ↑

Proliferation ↑
Hypotrophy [57]

NA

 Endothelial cells
  Constituting blood/lymphatic vessels, secreting 
NO in response to hypoxia [58]
  Interaction with perivascular cells [59]
  Angiocrine [60]

Apoptosis ↑, Regeneration ↓, eNOS-NO ↓ [58]
Senescence ↑ [61]
Interaction with pericyte ↓ [62]
Migration↓, proliferation ↓ [63]
Suboptimal angiocrine [64]

Perifollicular angiogenesis ↓ [52]
Postovulatory vascularization ↓ [59]

 Blood vasculature
  Supportive architecture
  Delivering/removing nutrients and metabolites [65]

Stromal blood flow ↓ [66–68]
Superficial cortex (> 30 yr): density ↑ [69]
Deep cortical stroma (> 40 yr): abundance ↓ [69]
Hyaline degeneration, sclerosis, and stenosis [67]

Primordial follicle activation ↑
Earliest follicle development ↑ [69]
Terminal micro-vascularization [69]

 Lymphatic vasculature
  Extravascular fluids homeostasis
  Hormone recruitment
  Immune cell transport [65]

Capillary rarefaction; dilated; contractile ↓
Permeable ↑ [70]

Secondary follicle development ↓ [71]
Follicular fluid accumulation [72]

 Extra cellular matrix
  Sequesteriation
  Signaling [73, 74]
  Biomechanics [75]

Collagen (type I and III) ↑
Hydroxyproline ↑ [76]
Hyaluronan (HA) ↓ [77]
Low molecular weight hyaluronan (LMW) ↑ [78]

Primordial follicle activation ↓ [75]
Oocyte dormancy ↑ [27]
Meiosis/maturation ↓ [77, 78]
Ovulation ↓ [79]
Granulosa cell proliferation ↓
Steroidogenesis ↓ [80]
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interna of antral follicles, and tunica albuginea of bovine 
ovaries, and found minimal differences between the pre-
theca and interstitial stroma [66]. This finding is con-
sistent with the notion that theca cells are derived from 
interstitial cells in the stroma. These two types of cells 
were studied in mice, and together, they were termed 
‘theca-interstitial cells’ or ‘stromal cells’ [67]. How-
ever, Richards et  al. proposed that theca cells might be 
derived from two resources. Only those from progeni-
tors migrating from mesonephros become androgen-
producing cells, and others from ovarian indigenous 
stroma cells produce fibroblasts and smooth muscle cells 
[81]. Regardless, both cell types secrete matrix-related 
factors, providing architectural support and integrity to 
the perifollicular microenvironment. In injury conditions 
(incision or ovulation), interstitial cells stimulate primor-
dial follicle activation via nerve growth factor (NGF) in 
mice [68, 82]. Moreover, they control the perifollicular 
vascular system and regulate the blood supply of follicles 
by secreting members of the transforming growth factor 
beta (TGF-β) superfamily and cell adhesion molecules 
(CAMs) [69, 83].

Theca cells play an essential role in follicle growth, 
mainly via producing androgens; moreover, cell types 
in the ovarian hilum, the mesovarium and the intersti-
tial stroma may also synthesize and secrete androgens 
in postmenopausal ovaries [70–72]. In humans, serum 
androgen levels in women decrease in a biphasic pattern 
with age, steeply dropping during age 25–45 but with no 
significant change after age 45 [84]. Umehara et al. found 
an increased number of luteinizing hormone receptor 
(Lhr)-positive cells in the ovarian stroma of aged mice, 
noting that these endocrine cells may produce excessive 
androgens associated with stroma fibrosis and inhibit 
FSH-stimulated secondary follicle development [85]. 
This plateau is probably because of increased luteinizing 
hormone (LH) stimulation on theca-interstitial cells as 
well as the increase in Lhr-positive cells [86]. Androgens 
are  well known to play an essential role in early follicle 
development (primordial follicle activation and prean-
tral follicle growth), serving as a substrate for estrogen, 
and fine-tuning the extracellular matrix and vasculature 
of the ovarian stroma [87]. The coculture of small folli-
cles with stromal cells containing thecal cells and mac-
rophages substantially promotes follicle growth and 
survival compared with follicles alone, probably through 
the mechanism of androgen [67]. In this respect, the 
results indicate that androgens may have a pleiotropic 
effect during the life of women, but more specific inves-
tigation is required to tease out how their actions change 
with age and what the consequences are.

The function of theca-interstitial cells is regulated by 
multiple factors, including estrogen, insulin signaling, 

and the circadian clock, etc., which could be the rea-
son for the age-related dysfunction of these cells; how-
ever, direct studies about their age-related changes are 
lacking [73, 81]. Ethun et  al.  studied the relationship 
between theca cellular function and reproductive aging 
in macaques, reporting that decreased steroidogenesis 
of theca-interstitial cells is accompanied by a lowered 
follicle number with aging [74]. Estrogens promote the 
production of androgens in the stromal cells of goats, 
suggesting age-related weakening of the paracrine  feed-
back loop between follicles and theca-interstitial cells 
that may lurk in the ovaries [75]. Deletion of the brain 
and muscle Arnt-like protein-1 (Bmal1) locus, a key fac-
tor controlling circadian rhythm, in ovarian theca cells in 
mice, leads to altered luteinizing hormone/choriogon-
adotropin receptor (Lhcgr) expression, loss of phasic sen-
sitivity of LH, and impaired reproduction [88]. Because 
circadian desynchrony progresses with aging, a similar 
mechanism in aging women is implied [76, 89]. Ford J.H. 
proposed the decreased production of dehydroepian-
drosterone (DHEA) and peroxisome proliferator-acti-
vated receptor alpha (PPARα) in aged theca cells. This 
led to follicle loss and oocyte apoptosis, which was impli-
cated by the age-related decline in their downstream 
intermediates, i.e., androstenedione and ceramide [77, 
78, 90]. The main senescence-associated marker, senes-
cence-associated beta-galactosidase (SA-β-gal), is pre-
sent in theca-interstitial cells rather than follicular cells, 
indicating that these cells may exert a pro-aging function 
via cellular senescence, i.e., through inflammation and 
tissue remodeling [79]. Collectively, gaps in knowledge 
remain regarding the elucidation of the role of LH recep-
tor-positive cells in aged ovaries, and more age-related 
changes in the theca-interstitial cells.

Immune cells
A range of immune cells, including adaptive lymphocytes 
(i.e., T and B cells), monocytes and macrophages, natu-
ral killer (NK) cells, dendritic cells, and eosinophils, are 
found in ovarian tissues [29]. Generally, immune cells 
support ovarian physiology through phagocytosis, anti-
gen presentation, the inflammatory secretome, and extra-
cellular matrix remodeling, in which dysfunction may 
cause blunted immunosurveillance, hyperactive stress, or 
persistent inflammation. Matthew et al. recently demon-
strated the key role of the immune system and senescent 
immune cells in organic damage and organism aging [80]. 
Nevertheless, these mechanisms in ovary require further 
investigation.

The innate immune response plays an essential role 
in follicular cycles, specifically in ovulation and corpus 
luteum regression. An early investigation suggested the 
role of mast cells in rat ovarian activity based on their 
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distribution during the estrous cycle; however, there was 
no further study to elucidate the specific effect [91]. A 
recent investigation in mice showed increased CD4+ T 
cells, B cells, macrophages, and NK cells and decreased 
CD8+ T cells in aging ovaries, suggesting their relation-
ship  with follicle depletion [92]. Recent bioinformatics 
studies comparing the RNA sequencing data of young 
and aged mouse ovaries from the Gene Expression 
Omnibus (GEO) database also found increased expres-
sion of hallmarks of plasma cells and naïve CD4 T cells 
in aging mouse ovaries, implying their roles in ovarian 
aging [34]. Autoimmunity has been widely found in pre-
mature ovarian failure (POF), and this is accompanied by 
increases in CD19+CD5+ B cells and CD4(+) Th1 T cells 
and decreases in NK cells [35, 36]. Treg cells are essential 
for the maintenance of ovarian function, and their defi-
ciency is the main cause of autoimmune ovarian disease 
[33]. Nevertheless, the investigation of immune cells in 
the ovary is still inadequate, and all the above results are 
either observational or bioinformatic inferences. Further 
studies need robust mechanical methods such as trans-
genic mice or targeted ablation to explore what their 
roles are during aging.

To date, macrophages (Mφ) have been the most 
explored immune cells in the ovary, and they are known 
as the most abundant immune cells in the ovary and a 
prominent hallmark of inflamm-aging [93]. According 
to the results of a recent single-cell sequencing study  in 
humans, cells of the monocyte–macrophage system are 
the most predominant types in ovarian stroma follow-
ing follicle cells [94]. Generally, according to their spe-
cific functions, macrophages are classified into two types. 
M1-like macrophages promote acute inflammation in 
the early stage of the immune response, whereas M2-like 
macrophages remodel tissue and resolve inflammation in 
the late stage. Macrophages have been found to promote 
the survival and growth of early follicle development 
[67]. Ono et al. demonstrated that M1-like macrophages 
played an indispensable role in the growth, vasculariza-
tion, and estrogen production of follicles in mice through 
pericyte recruitment and granulosa cell proliferation 
[25]. Additionally, macrophages are also involved in 
proinflammation and matrix breakdown during ovula-
tion [93]. During the luteal phase of many species, mac-
rophages maintain the integrity of the vasculature and 
promote progesterone synthesis [26]. However, M1-like 
macrophages play a central role in interacting with luteal 
cells to regulate luteolysis [95–97]. In atretic follicles, 
endothelial cells recruit macrophages through inter-
leukin-33 (IL-33) for the phagocytosis of apoptotic fol-
licle cells, and a large amount of waste accumulates in 
the ovaries of IL-33-deficient mice [31]. In this current 

research perspective, macrophages are closely associated 
with ovarian physiology throughout the follicle cycle.

Previous studies have documented a few age-related 
changes in ovarian macrophages, including increased 
recruitment of monocyte-derived macrophages from 
circulation, decreased quantity of resident ovarian mac-
rophages [92]. Over the course of aging, the total popu-
lation of macrophages in mouse ovaries substantially 
declines and there is a shift from M1 to M2 polariza-
tion. Moreover, these macrophages become predisposed 
to replacement by monocyte-derived macrophage lines, 
and M2 macrophages are known to be closely associated 
with age-related chronic inflammation and fibrosis [29]. 
Additionally, stromal macrophages are overloaded with 
excessive nonheme ferric and ferrous iron in aged mouse 
ovaries, which may be due to oxidative stress [30]. More-
over, macrophage-derived multinucleated giant cells 
(MNGCs) are uniquely present in aged ovaries [98]. They 
are interpreted as a specific cell type that compensates 
for macrophages in response to aging-accumulated cell 
debris or waste from follicle atresia and luteolysis over 
the course of repeated ovulatory cycles [31]. Further-
more, MNGC has also been viewed as a hyperactive and 
fused form of macrophages caused by excessive accumu-
lation of hemosiderin and lipofuscin [99, 100]. Blunted 
immune clearance leads to the accumulation of excessive 
lipofuscin or other metabolites, and this accumulation 
can augment oxidative stress and inflammation [101]. 
The results of studies of conditional knockout mouse 
models have indicated that the deficiency may contribute 
to abnormal folliculogenesis and corpus luteum forma-
tion  through defective vasculature [25, 102]. Above all, 
more mechanical studies on the age-related alterations of 
macrophages in ovaries, such as M2 polarization and for-
mation of MNGCs, are merited, and how these changes 
are associated with ovarian dysfunction needs further 
clarification.

Blood and lymphatic vasculature
The vasculature system provides a supportive archi-
tecture for follicles by delivering hormones, circula-
tory factors, oxygen, and precursors for metabolism and 
removing metabolic wastes [50]. The system prominently 
impacts the selection of dominant follicles and luteal 
hormone secretion. Vascular endothelial growth factor 
(VEGF) is the most important angiogenic factor dur-
ing perifollicular vascularization, along with its recep-
tor VEGFR-1/2 [103, 104]. Once antrum starts forming, 
angiogenesis occurs, and newly formed capillaries pene-
trate the thecal layers in response to hypoxia in the gran-
ulosa layers of preovulatory follicles [81]. After the LH 
surge and despite increased vascular support and perme-
ability, transient and relative hypoxia caused by increased 
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O2-binding hemoglobin induces the activation of 
hypoxia-inducible factor (HIF-1α)/VEGF/VEGFR sign-
aling, thereby leading to extra vascularization. Hypoxia 
persists until early luteal formation because of the fast 
growth of the corpus luteum as well as vasculature degra-
dation caused by ovulation [105, 106].

Wagner et al. identified six main types of cells in human 
ovaries with a single-cell analysis, among which perivas-
cular cells (~10%) and endothelial cells (~5%) were most 
commonly present in the cortical stroma [107]. The 
results of another single-cell analysis study of human 
ovaries reported  endothelial cells and smooth muscu-
lar cells constitute a significant part of the inner corti-
cal stroma  [94]. Endothelial cells and perivascular cells, 
mainly pericytes, play a crucial role in postovulatory 
vascularization. They serve as the initiators of angio-
genesis in response to hypoxia, penetrating the hypoxic 
granulosa layer inside the follicles and aiding in subse-
quent capillary outgrowth. In later stages, pericytes are 
recruited for the maturation and stabilization of newly 
formed vessels [37, 38, 44]. In the condition of organic 
aging or age-related diseases, vascular cells undergo 
many unfavorable alterations. Pericytes differentiate into 
fibroblasts, causing fibrosis in the kidney, joints, etc. [41, 
47, 108]. Additionally, they undergo apoptosis and detach 
from blood vessels, which is linked with neurodegen-
eration and diabetes [39, 40]. Endothelial cells manifest 
blunted regeneration, decreased endothelial nitric oxide 
synthase (NOS)-NO activity, and compromised relaxa-
tion, leading to vasospasm and hypoperfusion [43]. Addi-
tionally, microenvironmental stimuli, such as AGEs and 
ROS, will also participate in disrupting endothelial align-
ments, migration, VEGF responsiveness and their inter-
action with the ECM and pericytes [109, 110]. Moreover, 
the suboptimal angiocrine of aged endothelial cells has 
also been found to promote postovulatory inflammation 
and fibrosis [49]. In view of all the above, it is evident that 
blood vessel cells are essential for maintaining normal 
folliculogenesis, and there are multiple changes associ-
ated with aging. However, more detailed studies are war-
ranted to validate these changes and clarify their specific 
roles in aging ovaries.

Aside from vascular cells, the microvascular network 
also manifests an age-related alteration in ovary. Ova-
ries experience continuous cyclic and highly controlled 
remodeling of vascular networks that accompanies fol-
liculogenesis and luteinization. Consistent with multiple 
organs such as the kidneys, lungs, thymus, and heart, 
the ovaries show decreased vascularization and blood 
flow with aging, as demonstrated by three-dimensional 
(3D) power Doppler ultrasonography [51–53]. The vol-
ume density of blood vessels in the superficial cortex of 
normally cycling ovaries significantly increases after the 

age of 30, which is related to the accelerated depletion of 
primordial follicle reserves during the same period [54]. 
Consistently, hypoxia- and VEGF-induced angiogenesis 
in the perifollicular area also increase during ages 38–46 
[111]. Small, avascular follicles mostly rely on the diffu-
sion of oxygen and nutrients from nearby stromal blood 
vessels. Physiologically, the poor prepubertal ovarian 
vasculature is known to be associated with maintaining 
the dormancy of the primordial follicle pool and inhibit-
ing primary follicle growth [27, 112]. These results indi-
cate that the acceleration of primordial follicle activation 
in middle age might be linked with increased cortical 
vascularization. In aged ovaries, blood vessels undergo 
hyaline degeneration, sclerosis, and stenosis, resulting in 
insufficient blood supply and hypoxia [52]. This may be 
explained by the faster rate of vascular aging in medul-
lary and deep cortical regions (specifically mid-sized 
arteries) and characterized by hyalinization, vessel-wall 
thickening, and lumen narrowing. This leads to blood 
flow decline and superficial cortical ischemia, culminat-
ing in terminal microvascularization [54].

In addition to blood vasculature alterations, lymphatic 
remodeling is ongoing during cyclic ovulation and is reg-
ulated by hormones such as FSH and estrogen [56]. Lym-
phangiogenesis in the ovary is predominantly mediated 
by VEGF-C/VEGF-D/VEGFR-3 signaling. Additionally, a 
disintegrin and metalloproteinase with thrombospondin 
type 1 motif-1 (ADAMTS-1), an extracellular metallo-
proteinase in the stromal microenvironment, is involved 
[113]. Based on its function in hormone recruitment, 
homeostasis of extravascular fluids, and immune cell 
transport, lymphangiogenesis has implications for sev-
eral ovarian pathologies, such as PCOS, hyperstimula-
tion syndrome, and malignancy. The study of blockage 
with VEGFR3 neutralization demonstrated the role of 
lymphangiogenesis in the development of estrogenic sec-
ondary follicles as well as in follicular fluid accumulation 
of early antral follicles [56, 57]. In aged lymphatic vas-
culature, capillary rarefaction is induced by fibrosis and 
lowered VEGF-C levels. The collecting vessels are dilated, 
less contractile, and more permeable, which is potentially 
associated with age-related pathologies such as inflam-
mation and autoimmunity [55]. Additionally, lymphatic 
vascular diseases such as lymphedema exhibit a pro-
nounced predominance in women, suggesting that age-
related lymphatic dysfunction may play a role in ovarian 
aging [114].

Extracellular matrix (ECM)
In the ovaries, stromal cells express high levels of col-
lagen, which provides structural support for follicles 
[81]. The ECM, together with sequestered growth fac-
tors and cytokines, plays a significant role in regulating 
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intrinsic cellular functions and the cellular interactions 
between somatic components and germline cells (i.e., 
follicles and oogonial stem cells). The ECM is dynami-
cally remodeled by enzymes such as matrix metal-
loproteinases (MMPs), tissue inhibitors of matrix 
metalloproteinases (TIMPs), and plasminogen activa-
tors, etc. [115]. The softening or degradation of the 
ECM produces fragments or releases sequestered mol-
ecules, mediating downstream signaling pathways in 
follicle cells [58, 63]. Additionally, the composition of 
the ECM determines the stiffness of the ovarian stroma, 
which affects primordial follicle activation and primary 
follicle growth [60]. Finally, ECM components, such as 
fibronectin and laminin, which contain integrin-binding 
sequences (most notably Arg-Gly-Asp (RGD)), directly 
regulate the proliferation of follicle cells as well as the 
differentiation of oogonial stem cells [65, 116].

In the ovarian stroma, age-associated increases in col-
lagen (type I and type III) and hydroxyproline are asso-
ciated with chronic inflammation and fibrosis in mice 
[61]. Similarly, an increased collagen content, together 
with a decreased hyaluronan (HA) content, is linked 
with suppressed ovulation, compromised oocyte com-
petence, and reduced theca cell function and androgen 
production [62, 64]. The degradation of HA produces 
low-molecular-weight (LMW) hyaluronan, which is one 

of the best-characterized damage-associated molecular 
patterns (DAMPs) causing pathogen-free inflammation 
in the aged milieu. Consistently, Rowley et  al. showed 
that in vitro exposure to LMW hyaluronan promotes the 
secretion of inflammatory cytokines and the recruitment 
of inflammatory cells; moreover, it impairs oocyte meio-
sis and granulosa cellular steroidogenesis [63].

Microenvironmental molecules
Factors such as oxidative stress, AGEs, inflammatory 
cytokines, and related fibrosis, have been implicated in 
organic aging and age-related pathological progression. 
Extensive research has demonstrated their involvement 
in ovarian pathology such as PCOS and premature ovar-
ian failure (POI); however, the gap in knowledge per-
taining to their roles in the stromal microenvironment 
during ovarian aging remains to be filled (Fig. 3).

Advanced glycation end‑products (AGEs)
AGEs are generated by the Maillard reaction, polyol 
pathway, and lipid peroxidation, which can occur endog-
enously in  vivo or exogenously through the daily diet 
[117]. AGEs are a family of long-lived molecules that are 
usually cross-linked with other long-lasting matrix pro-
teins, i.e., collagen, which has been shown to increase in 
the ovarian stroma [62, 64, 118]. In reproductive-aged 

Fig. 3 Stromal components associated with different stages of oogenesis, folliculogenesis, and corpus luteum. Black, up-regulation; blue, 
down-regulation
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ovaries, AGE levels are 30 times higher because of pro-
tein glycation or cross-linking together with the com-
promised scavenging system [119]. In humans, AGEs 
also accumulate in ovaries over time by binding to their 
receptor RAGE [120]. AGEs have been implicated in the 
progression of PCOS and diabetes-associated ovarian 
dysfunction. Mechanistically, in granulosa cells, AGEs 
reduce glucose transporter type 4 (GLUT-4) expression 
and glucose uptake. This abnormally activates the extra-
cellular signal-regulated kinase (ERK) 1/2 pathway and 
inhibits LH-stimulated steroidogenesis [121]. In mice, 
oocytes administered with the AGE precursor methylg-
lyoxal exhibit abnormal meiotic spindles and aneuploidy 
[122, 123]. AGE accumulation increases lysyl oxidase 
activity, leading to abnormal collagen cross-linking 
and excessive ECM deposition, which promotes stiff-
ness and microvascular sclerosis [124]. RAGE is broadly 
expressed among immune cells such as monocytes and 
macrophages; moreover, increased RAGE expression 
is associated with decreased immune clearance and the 
accumulation of AGEs in turn [120, 125]. AGEs can also 
regulate macrophage polarization and infiltration, impair 
endothelial alignment, and cause pericyte loss [109, 126, 
127]. Moreover, AGEs interact with the receptor RAGE, 
leading to the activation of the downstream signaling 
pathways of NF-κB and NADPH oxidases (NOXs). This 
promotes inflammation and oxidative stress in the micro-
environment [128]. 

Reactive oxidative species (ROS)
Oxidative species are the most abundant and inevitable 
byproduct of cell metabolism. Studies have reported that 
one of the main reasons for ovarian aging should be the 
decreased antioxidant ability of ovarian cells, leading to 
the accumulation of ROS [129, 130]. Macromolecules 
such as proteins, lipids, and nucleic acids can all be tar-
geted. The influence of oxidative stress on follicle cells, 
including granulosa cells and oocytes, has been well 
established elsewhere [100, 131]. In the ovarian stroma, 
a moderate level of ROS can stimulate the proliferation 
of theca-interstitial cells, but a high-level of ROS leads 
to suppression [132]. Paradoxically, excessive oxida-
tive stress has been implicated in stromal hyperplasia 
and androgen overproduction in PCOS [133]. Oxida-
tive stress also inhibits the proliferation and migration of 
fibroblasts, which is a crucial modulator of ECM recon-
stitution and wound healing [134]. Macrophages are 
more vulnerable to oxidative stress in aged mice than in 
younger mice [101, 135]. ROS disrupt the maturation, 
differentiation, polarization, and phagocytosis of mac-
rophages [136]. Lipofuscin accumulates in macrophages 
and promotes ROS production [101]. Moreover, various 
aspects of the vasculature have also been shown to be 

affected by ROS, including endothelial development, per-
icyte coverage, endothelial–pericyte interaction, adhe-
sion of the endothelium to the ECM, VEGF-A response, 
and endothelium-related vasodilation [110, 137]. How-
ever, detailed investigations are still needed to clarify the 
roles of ROS in the aging ovarian microvasculature.

Inflammatory cytokines
Chronic, low-grade inflammation usually occurs 
with advanced aging as a result of accumulated dam-
age to macromolecules, uncontrolled stress responses, 
and dampened innate immunity [138]. Inflammatory 
cytokines, such as interleukin (IL)-6, IL-1 and tumor 
necrosis factor (TNF)-α, have been implicated in fol-
licle development in a complicated manner. In a mouse 
model, the deletion of IL-1α led to improved reproduc-
tive performance, which was associated with elevated 
AMH levels, increased ovarian response, and resistance 
to apoptosis [139]. Consistently, in TNFα-/-mice, ovarian 
performance was improved by TNFα knockout through 
the mechanism of decreased oocyte activation and cell 
apoptosis [140]. Inflammasome-associated adaptor, 
apoptosis-associated speck-like protein containing a cas-
pase activation and recruitment domain (ASC), Nod-like 
receptor family, a pyrin domain containing (NLRP) 3, and 
IL-18 were increased in the aging ovaries of mice [92]. 
Additionally, inflammasome-induced low-grade chronic 
inflammation was demonstrated to be involved in fol-
licle reserve diminishment using Asc−/− and Nlrp3−/− 
mouse models [141, 142]. Nevertheless, there is a dearth 
of studies on the effect of chronic, low-grade inflamma-
tion on the cellular compartments of the ovarian stroma. 
Our group has identified a series of proinflammatory 
cytokines (chemokine ligand (CCL)9, CCL11, CCL5, and 
IL-6, etc.) secreted by stromal cells from ovaries of repro-
ductively aged mice and found their inhibitory effect 
on follicle development [79]. Moreover, the chronic, 
low-grade inflammation in aged tissue leads to fibrosis 
through the stimulation of ECM deposition and abnor-
mal remodeling, which indicates its role in altering the 
peri-follicular microenvironment with aging, however, 
further research is warranted [61, 143].

Fibrosis
Fibrosis is a significant characteristic of the stroma of 
multiple organs that influences their function. Age-
associated fibrosis is known to occur in the ovaries of 
mice and humans [61, 144]. Cyclic ovulation, viewed as 
a repeated process of inflammation and wound healing, 
acts as a persistent irritant, resulting in fibrosis [145, 
146]. In aged ovaries, fibrosis in the stroma has been 
found to be related to impaired ovulation and postovu-
latory tissue remodeling [147, 148]. MMP and TIMP 
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coordinate with each other to balance the synthesis and 
degradation of ECM; however, they can be disrupted by 
multiple profibrotic cytokines. An increased fibroinflam-
matory cytokine profile in the ovary has been found to be 
inversely correlated with the reproductive performance, 
and TGF-β3 was specifically linked with fibrosis of the 
ovarian stroma and vasculature [149]. Collagens are 
strongly associated with the extent of fibrosis. Depletion 
of collagen by enzymes or drugs (pirfenidone and BGP-
15) was shown to eliminate fibrosis and, moreover, to 
rejuvenate ovarian structure and extend the reproductive 
life of aged mice [62, 150].

Umehara et  al. found two heterogeneous intersti-
tial cell types, i.e., Lhr+ endocrine cells and actin-rich 
fibrotic cells in the ovarian stroma of a 6-month-old 
mutant mouse model of accelerated aging (the granulosa 
cell-specific Nrg1 knockout mice (gcNrg1KO)) as well 
as 12-month-old WT mice. They proposed that stro-
mal fibrosis in the aging ovary is caused by elevated LH 
secretion via the stimulation of these two cell types. With 
gonadotrophin-releasing hormone (GnRH) -antagonist 
treatment, aberrant endocrine cells and fibrotic cells 
were removed, and ovarian function was restored [151]. 
Additionally, McCloskey et  al. studied fibrosis in aging 
ovaries of humans and mice and discovered that it was 
associated with the activation of dipeptidyl peptidase 4 
(DPP4) + α-smooth muscle actin (α-SMA) + fibroblasts, 
which are a profibrotic subset of fibroblasts [144]. DPP4 
inhibitors have also been demonstrated to be able to alle-
viate age-related renal fibrosis, implying that DPP4 is 
a potential therapeutic target in the ovary [152]. Using 
scRNA-seq, Landry et  al. identified a type of fibroblast, 
secreting senescence-associated secretory phenotype 
(SASP), in age-associated ovarian fibrosis, implying cel-
lular senescence among fibroblasts [153]. In addition to 
fibroblasts, infiltration of certain immune cells such as 
M2 macrophages and CD8+ T cells, and an increased 
CD206+/CD68+ cell ratio is also implicated in fibrotic 
ovaries [144]. As a hallmark of inflamm-aging, M2 polar-
ization of macrophages is known to be increased in the 
old ovaries of mice and promotes collagen deposition. 
Metformin, a well-known antiaging drug, was shown to 
prevent fibrosis in mouse ovaries by suppressing CD8+ 
T-cell infiltration and the CD206+/CD68+ cell ratio, as 
well as clearing senescent fibroblasts [144]. However, 
the change in CD8+ T-cell percentage in aged ovaries is 
ambiguous and this needs more exploration [92]. Never-
theless, there is insufficient evidence in favor of the role 
of these cells in age-related fibrosis and ovarian dysfunc-
tion, and more explorations are warranted to identify the 
mechanism of age-related fibrosis in the ovaries and the 
potential of antifibrotic drugs in ovarian aging.

Fibrosis can cause stiffness and increase the rigidity of 
tissues. In the ovary, the biomechanics theory has been 
proposed to explore the mechanism of physical rigid-
ity on follicles, i.e., the dormancy of immature oocytes 
through nuclear rotation and FOXO3a inhibition, the 
inhibition of early follicle growth by actin polymeriza-
tion, and the Hippo pathway [60, 154]. In an in vitro cul-
ture system, rigidity significantly influences the growth, 
antral formation, and oocyte quality of secondary follicles 
[155, 156]. Follicle development and hormone secretion 
can be restored in aged mice through surgical cutting, 
possibly due to the release of mechanical stress, resolu-
tion of fibrosis, or reconstruction of the injury–repair 
system [154, 157]. Consistently, Bouzin et  al. observed 
that increased rigidity in human ovaries at both prepu-
berty and postmenopause is probably associated with the 
inhibition of follicle activation [27]. Notwithstanding, 
more detailed work is needed to delineate the change in 
rigidity during reproductive life years and the biome-
chanical characteristics of accelerated follicle activation 
at mid-age.

Future perspectives on microenvironment‑based 
strategies
Stem cell-based therapy
Stem cell-based therapy holds considerable promise for 
the treatment of infertility. Preclinical studies have shown 
that ovarian failure can be recovered by the transplanta-
tion of mesenchymal stem cells (MSCs) from different 
sources, such as bone marrow, adipose tissue, amnion, 
umbilical cord, menstrual blood, etc. [158–162] (see 
Fig.  4). Compared with other stem cells (e.g., induced 
pluripotent stem cells (iPSCs) and embryonic stem cells 
(ESCs)), autologous mesenchymal stem cells have advan-
tages in clinical application owing to their abundance, 
high accessibility, low immunogenicity, and stability. In 
a recent study, rat MSCs were observed to spontane-
ously translocate to the interstitial rather than intrafol-
licular region, suggesting the essential role of stromal 
compartment mediating the effect of MSCs [163]. Prin-
cipally, MSCs improve the local environment of fol-
licles through ECM remodeling, lymphangiogenesis, 
immune cell recruitment, and inflammation modulation. 
Human menstrual blood-derived stromal cells (Men-
SCs) have been shown to restore ovarian function after 
chemotherapy through the ECM-dependent FAK/AKT 
pathway and maintain the homeostasis of the micro-
environment [162]. In a rat model of ovarian dysfunc-
tion with ovariectomy, Cho et al. showed the restorative 
effect of placental-derived mesenchymal stem cells by 
increasing angiogenesis and vascular remodeling via the 
VEGF signaling pathway [159]. The administration of 
human umbilical cord mesenchymal stem cells has been 
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revealed to inhibit inflammation and fibrosis in ovarian 
tissue by downregulating the expression of TNF-α, IL1β, 
IFN-γ, and CTGF [164]. Based on their multipotency, 
MSCs may also aid in ovarian recovery by differentiat-
ing into stromal cells as a substitute for their senescent or 
apoptotic counterparts. Moreover, the transfer of micro-
RNAs (miRNAs), exosomes, and mitochondria from 
MSCs to neighboring cells has been reported in many 
health conditions and diseases [165, 166]. Alternatively, 
an elaborate combination of beneficial stem cell-secreted 
factors may be used as a therapeutic molecular panel in 
the future to treat ovarian dysfunction.

Senotherapy
Cellular senescence is characterized by permanent and 
irreversible cell cycle arrest while being antiapoptotic 
and metabolically active. Senescent cells persist in tis-
sue for years, waiting to be cleared by immune sys-
tem. These cells are usually identified by their enlarged, 
flattened morphology and molecular hallmarks, i.e., 
β-galactosidase (SA-β-gal), gamma H2A histone fam-
ily member X (γ-H2AX), heterochromatic foci (senes-
cence-associated heterochromatic foci, SAHF), and 
specific secretome (SASP) [169]. Age-related deposition 
of certain senescent markers, i.e., lipofuscin aggresomes, 
 p21WAF1, and  p16INK4A, has been found in mouse ova-
ries and is negatively correlated with the size of the 

primordial follicle pool [170]. However, the mechanism 
of action of cellular senescence in ovarian pathophysiol-
ogy remains largely unexplored. In our previous study, 
SA-β-gal activity was observed to be increased in aged 
mouse ovaries, whereas the accumulation of lipofus-
cin and SA-β-gal foci was specifically observed in stro-
mal cells [79]. Landry et  al. have also identified a type 
of SASP-associated Cd74Hi fibroblast in aged mice and 
found that these cells may evade immune clearance and 
persist in aging ovaries [153]. In follicles, granulosa cells 
undergo either proliferation or apoptosis rather than 
being in long-term cell cycle arrest. Oocytes stay in qui-
escence and do not undergo replication. As the conse-
quence of limited replication and being nonproliferative 
and antiapoptotic, cellular senescence is more likely to 
occur in the stromal cells of the ovary. Consistently, exist-
ing studies have only demonstrated that granulosa cells 
are induced to senescence in  vitro or ex  vivo, while no 
observations of in vivo senescence of granulosa cells have 
been reported [171–173].

To date, senotherapy, i.e., therapies targeting cellu-
lar senescence and its nonautonomous effects, has been 
developed and validated in a wide range of organs [174]. 
It is a potential strategy to alter the microenvironment of 
aging ovaries without perturbing the follicles (see Fig. 4). 
Senotherapy is classified into two types: (1) Senolytics, 
which eliminate senescent cells by targeting antiapoptotic 

Fig. 4 Microenvironmental factors (ROS, AGEs, inflammation, and fibrosis) entwined with each other, leading to age-related alterations in stomal 
components. (Photographs from Wu et al. [167] and Agarwal et al. [168] with required copy right permission)
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pathways, i.e., ABT263 and dasatinib, which inhibit B-cell 
lymphoma protein-2 (Bcl-2) family proteins [175, 176]; 
heat shock protein 90 (HSP90) inhibitors, which destabi-
lize phosphorylated AKT [177]; and the FOXO4 peptide, 
which dissociates FOXO4-p53 and releases nuclear p53 
[178]. (2) Senomorphics, which mitigate the cell-extrinsic 
effects of senescent cells, primarily by targeting SASP or 
its upstream mechanisms, such as directly neutralizing 
SASP factors or antagonizing their receptors (i.e., sil-
tuximab, tocilizumab), modulating NF-κB transcription 
(metformin, kaempferol), and many others [179, 180]. 
Many senotherapeutic candidates, such as rapamycin 
and metformin, have been shown to be able to restore the 
ovarian function with aging [181, 182]. Senolytics induce 
the ablation of senescent cells in mice enabling the rescue 
of a variety of aging-related symptoms, improving metab-
olism and prolonging lifespans [183–185]. In the context 
of reproductive systems, the senolytic regimen of dasat-
inib plus quercetin (D+Q) has been shown to ameliorate 
dysfunction and fibrosis in uterus of aged mice [186]. 
Our group previously reported that the senotherapeutic 
compound D+Q attenuated stromal fibrosis and pro-
tected the ovarian function from the cisplatin treatment 
through the removal of senescent cells [187]. Innovative 
techniques such as nanoparticles and immunotargets 
have recently been applied into the field of senotherapy. 
Galactose-conjugated nanoparticles (GalNPs), called 
senoprobes, have been developed as a drug delivery sys-
tem by encapsulation with galacto-oligosaccharides to 
target senescent cells. With the sensitization of the high 
activity of β-galactosidase in lysosomes, the senoprobe 
is degraded and releases cytotoxic drugs preferentially 
in senescent cells. This gal-encapsulated biomaterial has 
been shown to reduce chemotherapy-induced cellular 
senescence and lung fibrosis in mice [188]. Based on the 
recognition of the surface protein urokinase plasminogen 
activator receptor (uPAR), Corina Amor et al. developed 
the senolytic chimeric antigen receptor (CAR)-T cells to 
target senescent cells. Similarly, they have also shown that 
uPAR- specific CAR-T cells could ablate senescent cells 
and alleviate the adverse effects of senescence-inducing 
chemotherapy [189]. The results of these studies have 
established the therapeutic potential of senolytic tech-
niques in the ovary, but further investigation is needed.

Tissue engineering
Currently, ovarian tissue and follicle cryopreserva-
tion and in  vitro maturation are considered future 
research hotspots because of the increasing trend of 
delayed pregnancy and high cancer incidence among 
younger generations. Tissue engineering has been 
developed to restore the normal microenvironment of 
cryopreserved follicles and/or tissues (see Fig.  4). As 

mentioned above, the ECM provides a mechanical scaf-
fold for follicle embedding and resumption. In classic 
3D-hydrogel-based culture systems, the development 
of follicles is largely dependent on the composition of 
the hydrogel, alginate, incorporated growth factors, and 
ECM peptides, all of which must be in a precise state 
to achieve ideal mechanics [190]. New techniques, such 
as tethering matrix proteins and/or affinity bound-
ing of growth factors, have also been introduced into 
the systems to produce a more suitable artificial scaf-
fold and mimic the native microenvironment [58, 191]. 
The modification of hydrogels with synthetic bioma-
terials, such as poly (ethylene glycol) (PEG) has been 
applicated in the field of artificial ovaries. PEG-based 
hydrogels crosslinked with MMP-sensitive peptides 
have been shown to improve the microenvironment of 
follicles and the survival rate [192]. A supramolecular 
hydrogel which coated with a receptor tyrosine kinase 
(RTK) inhibitor has been developed to delay the ovar-
ian aging by inhibiting the RTK-mTOR pathway [193]. 
An alternative to synthetic scaffolds is decellulariza-
tion, which provides a natural and acellular ECM scaf-
fold of the whole organs or tissues. Studies in rodents 
have shown that decellularized ovaries from mammals 
such as bovines and porcines could support the sur-
vival and maturation of follicles [194–196]. Laronda 
et  al. reconstructed ovaries with decellularized ovar-
ian scaffolds from bovines or humans and ovarian cells 
from mice. They demonstrated that the steroidogenesis 
had been recovered in  vitro and that puberty in ova-
riectomized mice had been initiated after the trans-
plantation [197]. Another transplantation study with 
human ovarian scaffolds and rat ovarian cells have also 
revealed the feasibility of decellularization in the recon-
struction of the artificial ovaries [198]. However, there 
are still some safety concerns about the decellulariza-
tion protocol, i.e., the usage of detergents. Moreover, 
recent advancements in biomaterials and techniques 
have shown their potential for application in ovarian 
aging. Gelatin-based 3D printing of ovarian scaffold-
ing has been shown to successfully seed follicles and 
restore the ovarian function. Additionally, the ovarian 
graft has achieved live birth after implantation in steri-
lized mice [199]. Furthermore, our group compared the 
printability of different biomaterials for follicle growth 
and found that gelatin-methacryloyl (GelMA) was able 
to build a more appropriate microenvironment for fol-
licle maturation [167]. To mimic the heterogenetic 
mechanics between the cortex and medulla, core–shell 
microgels were developed by incorporating different 
hydrogels (alginate and collagen) to encapsulate pre-
antral follicles. This biomimetic ovarian microtissue 
has been shown to be able to maintain the preantral 
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development and ovulation of secondary follicles [168, 
200]. Moreover, the recent studies have shown that fol-
licles and oogonia can be regenerated from the iPSCs 
of mice and humans in vitro [201, 202]. These achieve-
ments enable the construction of a de novo artificial 
ovary based on the biomimetic scaffolding from tis-
sue engineering, and follicles as well as stromal cells 
derived from patient iPSCs. However, more in-depth 
investigations are needed as these approaches are still 
in their infancy. Additionally, many differences exist 
between humans and other mammals.

Conclusion
Ovarian dysfunction leads to the initiation and progres-
sion of many age-related pathophysiological conditions, 
such as osteoporosis, diabetes, cardiovascular diseases, 
and neurodegenerative diseases, which negatively impact 
a woman’s quality of life [203]. Ovarian aging is charac-
terized by declines in the quantity and quality of follicles. 
Additionally, newly identified oogonial stem cells have 
also been proposed to be a potential substitute for follicles 
to reverse ovarian failure. Here, we provided a detailed 
description of the age-related alterations of the stromal 
microenvironment and their mechanism of action lead-
ing to ovarian failure. Furthermore, based on the current 
technological platforms, i.e., stem cell-based regenera-
tion, tissue engineering, and cell targeted therapy, several 
new and emerging strategies will be developed to cure 
age-related infertility and ovarian senescence. However, 
uncertainties still exist, such as senescence of follicle cells, 
the off-target toxicity of senotherapy and the safety of bio-
materials and stem cells. Thus, achieving further advances 
in all these areas is dependent on more sensitive detection 
methods and prudent investigations in the future.
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