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Abstract 

Background The mechanisms and risk factors underlying ovarian cancer (OC) remain under investigation, mak‑
ing the identification of new prognostic biomarkers and improved predictive factors critically important. Recently, 
circulating metabolites have shown potential in predicting survival outcomes and may be associated with the patho‑
genesis of OC. However, research into their genetic determinants is limited, and there are some inadequacies 
in understanding the distinct subtypes of OC. In this context, we conducted a Mendelian randomization study aiming 
to provide evidence for the relationship between genetically determined metabolites (GDMs) and the risk of OC 
and its subtypes.

Methods In this study, we consolidated genetic statistical data of GDMs with OC and its subtypes 
through a genome‑wide association study (GWAS) and conducted a two‑sample Mendelian randomization 
(MR) analysis. The inverse variance weighted (IVW) method served as the primary approach, with MR‑Egger 
and weighted median methods employed for cross‑validation to determine whether a causal relationship exists 
between the metabolites and OC risk. Moreover, a range of sensitivity analyses were conducted to validate the robust‑
ness of the results. MR‑Egger intercept, and Cochran’s Q statistical analysis were used to evaluate possible heteroge‑
neity and pleiotropy. False discovery rate (FDR) correction was applied to validate the findings. We also conducted 
a reverse MR analysis to validate whether the observed blood metabolite levels were influenced by OC risk. Addition‑
ally, metabolic pathway analysis was carried out using the MetaboAnalyst 5.0 software.

Results In MR analysis, we discovered 18 suggestive causal associations involving 14 known metabolites, 8 metabo‑
lites as potential risk factors, and 6 as potential cancer risk reducers. In addition, three significant pathways, "caffeine 
metabolism," "arginine biosynthesis," and "citrate cycle (TCA cycle)" were associated with the development of muci‑
nous ovarian cancer (MOC). The pathways "caffeine metabolism" and "alpha‑linolenic acid metabolism" were associ‑
ated with the onset of endometrioid ovarian cancer (OCED).

Conclusions Our MR analysis revealed both protective and risk‑associated metabolites, providing insights 
into the potential causal relationships between GDMs and the metabolic pathways related to OC and its subtypes. 
The metabolites that drive OC could be potential candidates for biomarkers.
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Background
Ovarian cancer (OC) is the most challenging and daunt-
ing disease among all gynecological malignancies [1]. 
Due to its lack of typical early clinical symptoms and 
specific detection methods [2], patients often miss the 
optimal opportunity for chemotherapy and molecular 
targeted therapy. Furthermore, because of the gaps in 
the identification of prognostic biomarkers and targeted 
drugs for OC, the high recurrence rate and the emer-
gence of drug resistance lead to a poor prognosis for OC 
patients [3].

Ovarian carcinogenesis is a complex multifactorial 
process, the possible causes include abnormal ovulatory 
cycles [4], chronic inflammation of the fallopian tubes [5], 
and gene mutations like Breast Cancer Gene 1 (BRCA1) 
[6]. Among these, metabolic dysregulation is considered 
one of the significant contributors [1, 7]. For instance, 
it is posited that local metabolic changes in the adipose 
tissue of obese individuals lead to various systemic meta-
bolic alterations, such as insulin resistance, hyperglyce-
mia, and chronic inflammation. These conditions more 
readily shape the tumor microenvironment, facilitating 
tumor initiation and progression [8]. In addition, cancer 
is fundamentally a disorder of cell growth and prolifera-
tion. During tumor initiation and development, cellular 
metabolism undergoes changes [9, 10], leading to meet 
the unrestrained proliferation energy needs of cancer 
cells and the synthesis of nucleic acids, proteins, and 
lipids. These metabolites act as cofactors or substrates, 
participating in enzymatic reactions involved in cancer 
cell epigenetic modifications and transcriptional regula-
tion. Aberrant epigenetic regulatory modifications can 
further induce tumor development through metabolic 
reprogramming in cancer cells [11].

The molecular interaction network based on metabo-
lomics offers fresh perspectives for elucidating the 
molecular mechanisms of OC treatment, discovering 
new therapeutic targets, and identifying reliable and 
effective biomarkers. Numerous metabolic groups and 
classes are associated with OC risk, including organic 
acids and their derivatives [12]. For example, studies have 
shown that circulating levels of pseudouridine in plasma 
are associated with a higher risk of developing OC 3-23 
years prior to diagnosis [13]. Additionally, some scholars 
believe that the spectra of amino acids and organic acids 
can serve as potential screening tools for epithelial ovar-
ian cancer (EOC) [14]. Currently, due to the following 
factors, these studies in OC remain less than satisfactory: 
(i) Intermediate metabolites have not been comprehen-
sively studied. (ii) Most of the existing databases only 
contain distinct information about high-grade serous 
ovarian cancer (HGSOC) and lack histological types of 
other ovarian cancers. (iii) The absence of large-sample 

studies makes it difficult to explore the relationship 
between metabolites and OC in clinical practice [15].

Mendelian randomization (MR) serves as a power-
ful epidemiological tool that can effectively eliminate 
confounders and reveal potential causal relationships. 
Studies indicate that genetic polymorphisms affect bio-
chemical levels in serum, suggesting that genetic varia-
tions might play a role in racial differences in the gender 
and/or age-related variations of circulating metabolite 
levels [16, 17]. A recent robust study on the GWAS of 
metabolites has pinpointed loci associated with the dis-
ease [16]. Moreover, developments by So-Youn Shin [17] 
on the database of genotype-dependent metabolic phe-
notypes, also known as genetically determined metabo-
lites (GDM), have matched hundreds of metabolites 
and pathways with genetic data. This paves the way for 
further research into the potential relationship between 
serum metabolites in humans and associated genetic var-
iations in the biological mechanisms of OC initiation and 
progression.

Our study aims to comprehensively investigate the 
causal relationship between various subtypes of OC and 
serum metabolic factors. Further, it provides reverse vali-
dation to ensure the directional accuracy of the results. 
By identifying metabolic pathways that may shed light 
on the mechanisms underlying the initiation of OC, this 
research offers practical and targeted guidance for the 
early detection, treatment, and prevention of high-risk 
OC patients and those with different OC subtypes.

Materials and methods
Study design
We systematically evaluated the causal relationship 
between 486 serum metabolites and OC risk using a 
MR design with two independent samples. Based on the 
STROBE-MR checklist [18] (Supplement file S1), a prop-
erly designed MR study relies on three basic assump-
tions: (i) genetically determined variations should exhibit 
a strong association with the exposure; (ii) genetically 
determined variations should be independent of con-
founding factors between the exposure and outcome; and 
(iii) genetically determined variations should only influ-
ence the outcome through the exposure and not via other 
pathways [19]. An overview of this study is illustrated in 
Fig. 1.

Data sources
Data source for exposure
We obtained the genome-wide summary data involving 
486 serum metabolites from the GWAS server of metab-
olomics (http:// metab olomi cs. helmh oltz- muenc hen. de/ 
gwas/). This dataset was generated by Shin et al. in 2014 
through liquid chromatography and gas chromatography 

http://metabolomics.helmholtz-muenchen.de/gwas/
http://metabolomics.helmholtz-muenchen.de/gwas/
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coupled with tandem mass spectrometry analysis of 
blood or plasma samples from 7,824 individuals of 
European ancestry [17]. It represents the most compre-
hensive report to date on genetic loci related to blood 
metabolites. A total of 529 metabolites were analyzed in 
the study, with strict quality control measures applied. 
Among these, 486 metabolites were available for genetic 
analysis, consisting of 309 known metabolites and 177 
unknown metabolites. Furthermore, based on the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database 
[20], the 309 known metabolites were further classified 
into eight categories: cofactors and vitamins, energy, 
amino acids, carbohydrates, lipids, nucleotides, peptides, 
and xenobiotics (Supplementary Table S1).

Data source for outcome
The summarized data on OC included in this study was 
sourced from a genome-wide association study (GWAS) 
conducted by the Ovarian Cancer Association Consor-
tium (OCAC). The GWAS included a total of 25,509 OC 
cases and 40,941 European ancestry controls [21]. To 
investigate the impact of serum metabolites on different 

types of OC, subgroup analyses were conducted using 
data specific to each OC subtype. An overview of the 
data relevant to OC can be obtained from the IEU Open 
GWAS project (https:// gwas. mrcieu. ac. uk/) (Table 1).

Instrument variable selection
To ensure validity and precision of the findings associ-
ated with the relationship between GDMs regulators 
and risk of OC, the following quality control measures 
were implemented: (1) Given the non-independence of 
metabolites, the genome-wide significance threshold 
(p<5×10-8) might be overly conservative, possibly lead-
ing to the omission of potentially meaningful results [22] 
(Specific information can be found at Supplement Table 
S2). Consequently, we opted for a locus-specific signifi-
cance threshold (p < 1 ×  10-5, r2 < 0.1, 500kb), which has 
been widely employed in previous MR studies [23]. (2) 
The selected SNPs were matched within the dataset of 
the outcome (OC). For SNPs that could not be matched 
in the outcome dataset, we looked for proxies with an 
 r2 threshold of >0.8, excluding those without any proxy 
(3). Finally, to quantitatively verify whether the selected 

Fig. 1 The flowchart of the study: the whole workflow of MR analysis. Abbreviations: GWAS, Genome‑wide association studies; SNPs, Single 
nucleotide polymorphisms; LOO, Leave‑One‑Out; OC, Ovarian cancer; OCED, Endometrioid ovarian cancer; OCCC , Clear cell ovarian cancer; SOC, 
Serous ovarian cancer; MOC, Mucinous ovarian cancer; MR, Mendelian randomization; IVW, Inverse variance weighted; WM, weighted median

https://gwas.mrcieu.ac.uk/
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SNPs were strong instruments, we calculated the F sta-
tistic and the proportion of variance explained   (R2)  for 
each instrument variable in relation to the exposure trait. 
Typically, F statistic > 10 was considered for selection of 
strong instrumental variables (IVs) [24]. (4) To maintain 
stability in our results, we retained only serum metabo-
lites with a minimum of three instrument variables (5). 
To further ascertain the probability of detecting an effect 
and enhance the reliability of our study, we utilized an 
online power calculator (https:// shiny. cnsge nomics. com/ 
mRnd/) to compute the statistical power of our analyses.

Statistical analysis
Mendelian randomization analysis
In our study, the inverse variance weighted (IVW) 
method was used as the primary approach to assess 
causal relationships between exposure and outcome. This 
method assumes the absence of horizontal pleiotropy 
across all IVs, under which the IVW method provides 
the most accurate causal estimation between exposure 
and outcome [25]. Additionally, we conducted several 
supplementary analyses to validate the robustness of our 
results. The MR-Egger method was employed to provide 
unbiased causal estimates in the presence of horizon-
tal pleiotropy, and the intercept of this method was also 
used to detect horizontal pleiotropy [26]. When at least 
50% of the IVs were valid, weighted median (WM) pro-
vided robust causal estimation [27]. Results were consid-
ered more robust if P < 0.05 for two or more MR methods 
[28]. Cochran’s Q test was conducted to assess heteroge-
neity among the available SNPs [29]. To verify that the 
obtained causal estimates were not driven by individual 
SNPs, we performed a leave-one-out analysis by remov-
ing each SNP and examining if the previous causal rela-
tionship was altered [30]. Finally, scatter plots and funnel 
plots were used to visually display the relationships and 
interplay between each genetic instrument. FDR (false 
discovery rate) correction was applied to correct for mul-
tiple comparisons. A P < 0.05 before FDR correction was 
considered as suggestive for association. All MR analyses 
were conducted using the "TwoSampleMR" package (ver-
sion 0.4.22). It is worth mentioning that the R package 

can use effect allele frequencies to automatically harmo-
nize the exposure and outcome datasets, ensuring that 
the effect of the SNP on the exposure and the effect of the 
SNP on the outcome corresponding to the same allele.

Reverse Mendelian randomization
To investigate whether the outcomes studied had an 
impact on serum metabolite levels, we performed a 
reverse MR analysis. In this reverse analysis, we utilized 
SNPs selected from data on OC and its subtypes as IVs, 
with the chosen blood metabolite as the outcome, to 
explore whether the previously determined relationship 
was bidirectional.

Metabolic pathway analysis
Metabolic pathway analysis was conducted using the 
network-based MetaConflic 5.0, available at https:// www. 
metab oanal yst. ca/ [31]. Two databases, namely the Small 
Molecule Pathway Database (SMPDB) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, 
were utilized in this study. The significance level for path-
way analysis was set at 0.05.

Results
Selection of instrumental variables
After undergoing a rigorous selection process, we con-
ducted Mendelian random analysis on the relationship 
between 486 blood metabolites and OC and its sub-
types. To ensure the robustness of our results, the study 
only retained metabolites that contained at least 3 SNPs, 
resulting in a total of 485 unique metabolites. The F-sta-
tistics for all SNPs involved were greater than 10, indicat-
ing that our results are less likely to be affected by weak 
IV bias. Specific information regarding IVs can be found 
in Supplementary Table S3. The total  R2 and the median 
F-statistic (and range) for each metabolite in Supplemen-
tary Table S4.

Causal estimation of blood metabolites on OC and its 
subtypes
We conducted MR analysis on 486 blood metabolites 
and five subtypes of OC, and discovered 112 suggestive 

Table 1 Gynecological cancers GWAS samples used in this study

Abbreviations: OC Ovarian cancer, OCED Endometrioid ovarian cancer, OCCC  Clear cell ovarian cancer, SOC Serous ovarian cancer, MOC Mucinous ovarian cancer

GWAS ID Trait No.Case No.Control Sample size Year Consortium Populations Reference

ieu‑a‑1120 OC 25,509 40,941 66,450 2017 OCAC European Phelan, et al. [20]

ieu‑a‑1125 OCED 2,810 40,941 43,751

ieu‑a‑1124 OCCC 1,366 40,941 42,307

ieu‑a‑1228 SOC 14,049 40,941 54,990

ieu‑a‑1231 MOC 2,566 40,941 43,507

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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causal associations (IVW P < 0.05), involving 53 known 
metabolites as shown in Fig. 2. To ensure the robustness 
of our results, we further screened the 112 suggestive 
associations. We included metabolites with consistent 
causal associations identified by at least three MR meth-
ods, including the IVW, WM and MR-Egger methods. 
In total, we retained 18 causal associations involving 14 
known metabolites, 8 metabolites as potential risk fac-
tors, and 6 as potential cancer risk reducers (Table 2 and 
Fig. 3).

Ovarian cancer
We found that genetically predicted asparagine was asso-
ciated with a low risk of OC (OR = 0.65, 95% CI: 0.45-
0.95, P = 0.024) in the IVW method. The association 
between asparagine and OC remained stable in the WM 
method, and the results of the MR Egger method were 
similar to the primary method. Four metabolites were 
associated with a high risk of OC: 4-acetamidobutanoate 
(OR = 1.78, 95% CI: 1.07-2.95, P = 0.026), alpha-hydrox-
yisovalerate (OR = 1.49, 95% CI: 1.08-2.05, P = 0.016), 
3-(3-hydroxyphenyl)propionate (OR = 1.17, 95% CI: 
1.03-1.32, P = 0.018),X-13183—stearamide (OR = 1.40, 
95% CI: 1.09-1.80, P = 0.008). Among them, we found 
that the p-value of 4-acetamidobutanoate for OC was less 
than 0.05, with the OR values and confidence intervals 
being close to each other, as verified by the IVW, WM 
and MR Egger methods, and the causal relationships 
were all consistent with each other as a salient potential 
protective factor.

Mucinous ovarian cancer
Two metabolites were suggestively associated with MOC 
using IVW method: 1,5-anhydroglucitol (1,5-AG) (OR 
= 2.33, 95% CI: 1.17-4.64, P = 0.016), ADpSGEGDFX-
AEGGGVR (OR = 2.52, 95% CI: 1.33-4.77, P = 0.005), 
meanwhile, the results from the WM method were 
consistent.

Clear cell ovarian cancer
In the OCCC analysis with the IVW method, betaine was 
associated with a reduced risk of it (OR = 0.21, 95% CI: 
0.05-0.88, P = 0.033), but estrone 3-sulfate was associated 
with an increased risk (OR = 1.32, 95% CI: 1.00-1.75, P = 
0.049), their results using the WM method support their 
respective causal effects.

Endometrioid ovarian cancer
In addition, in the analysis of OCED, four metab-
olites were associated with a high risk of it: 
3-(3-hydroxyphenyl)propionate (OR = 1.52, 95% 
CI: 1.16-2.00, P = 0.003), 1,5-anhydroglucitol (1,5-
AG) (OR = 2.35, 95% CI: 1.22-4.53, P = 0.011), 

1-linoleoylglycerophosphoethanolamine (OR = 2.98, 
95% CI: 1.24-7.13, P = 0.014), ADpSGEGDFXAE-
GGGVR (OR = 2.35, 95% CI: 1.04-5.29, P = 0.040), as 
for ADpSGEGDFXAEGGGVR, the MR Egger method 
produced similar estimates (OR = 19.77, 95% CI: 3.22-
121.42, P = 0.023), though with wider confidence 
intervals.

Serous ovarian cancer
Similarly, in the IVW method, the analysis revealed 
causal associations between two metabolites and the low 
risk of SOC: X-13183—stearamide (OR = 1.48, 95% CI: 
1.11-1.97, P = 0.008), DSGEGDFXAEGGGVR (OR = 
0.73, 95% CI: 0.56-0.96, P = 0.023), 2-hydroxyhippurate 
(salicylurate) (OR = 0.93, 95% CI: 0.87-0.99, P = 0.028), 
and their results from the WM method support such a 
causal effect.

Furthermore, two metabolites were associated with a 
low risk: arachidonate (20:4n6) (OR = 0.38, 95% CI: 0.16-
0.92, P = 0.033), stearidonate (18:4n3) (OR = 0.36, 95% 
CI: 0.15-0.87, P = 0.023). We found that 3-(3-hydroxy-
phenyl) propionate potentially causally related to OCED 
was the same as OC; 1,5-anhydroglucitol (1,5-AG) and 
ADpSGEGDFXAEGGGVR potentially causally related to 
OCED was the same as MOC, and that the analysis esti-
mates were close. The reported OR values in our study 
are interpreted as changes per 1-SD increase in metabo-
lite levels, aligning with the methodological framework 
utilized in the research conducted by Wang et  al. [32]. 
However, FDR correction for these P values did not show 
significant confirmative association, and the results as 
suggestive causal associations (Table 2, specific informa-
tion can be found at Supplement Table S5).

No evidence of pleiotropy or heterogeneity was found 
in the robust causal relationships listed above (Table 3), 
which suggested that the main result of the IVW method 
in our study could provide reliability for causal effect with 
low heterogeneity. In addition, the statistical power of 
causal inference calculated by the IVW method reached 
1 for all metabolites except one, which was 0.85, with a 
Type I error rate of 0.05 (Supplement Table S6). Leave-
one-out analysis indicated that none of the associations 
were driven solely by a single SNP, suggesting a stable 
result (Supplementary Figures 1 and 2).

Reverse Mendelian randomization
To validate whether the observed blood metabolite levels 
were influenced by OC risk, we conducted a reverse MR 
analysis, treating OC as the exposure and blood metabo-
lites as the outcome. The results did not show evidence of 
OC impacting blood metabolite levels (Table 4).
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Fig. 2 Mendelian randomization associations of known metabolites on the risk of the four different GWAS datasets for five OC phenotypes. The 
pink group represents risk factors, while the blue group represents protective factors. Abbreviations: OC, Ovarian cancer; OCED, Endometrioid 
ovarian cancer; OCCC, Clear cell ovarian cancer; SOC, Serous ovarian cancer; MOC, Mucinous ovarian cancer
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Table 2 Mendelian randomization estimates for the identified candidate metabolite associations with OC phenotypes

Outcome Exposure Method nsnp P-value OR 95%CI PFDR

OC 4‑acetamidobutanoate IVW 43 0.026 1.78 1.07‑2.95 0.772322416

WM 43 0.024 2.13 1.10‑4.11

MR Egger 43 0.008 6.45 1.76‑23.72

OC alpha‑hydroxyisovalerate IVW 17 0.016 1.49 1.08‑2.05 0.65956674

WM 17 0.035 1.60 1.03‑2.48

MR Egger 17 0.254 1.76 0.69‑4.46

OC asparagine IVW 46 0.024 0.65 0.45‑0.95 0.772322416

WM 46 0.004 0.44 0.25‑0.77

MR Egger 46 0.028 0.42 0.19‑0.89

OC 3‑(3‑hydroxyphenyl) propionate IVW 11 0.018 1.17 1.03‑1.32 0.65956674

WM 11 0.040 1.20 1.01‑1.44

MR Egger 11 0.428 1.16 0.82‑1.63

OC X‑13183‑‑stearamide IVW 11 0.008 1.40 1.09‑1.80 0.65956674

WM 11 0.025 1.49 1.05‑2.12

MR Egger 11 0.158 1.49 0.90‑2.48

MOC 1,5‑anhydroglucitol (1,5‑AG) IVW 31 0.016 2.33 1.17‑4.64 0.851594997

WM 31 0.023 3.21 1.18‑8.77

MR Egger 31 0.052 5.77 1.06‑31.43

MOC ADpSGEGDFXAEGGGVR IVW 7 0.005 2.52 1.33‑4.77 0.851594997

WM 7 0.003 3.48 1.54‑7.89

MR Egger 7 0.232 3.93 0.55‑28.20

OCCC betaine IVW 24 0.033 0.21 0.05‑0.88 0.981998335

WM 24 0.013 0.10 0.02‑0.61

MR Egger 24 0.105 0.05 0.00‑1.59

OCCC estrone 3‑sulfate IVW 13 0.049 1.32 1.00‑1.75 0.981998335

WM 13 0.014 1.59 1.10‑2.29

MR Egger 13 0.408 1.21 0.78‑1.88

OCED 3‑(3‑hydroxyphenyl) propionate IVW 11 0.003 1.52 1.16‑2.00 0.693730355

WM 11 0.005 1.70 1.17‑2.46

MR Egger 11 0.045 2.34 1.14‑4.77

OCED 1,5‑anhydroglucitol (1,5‑AG) IVW 31 0.011 2.35 1.22‑4.53 0.693730355

WM 31 0.030 2.65 1.10‑6.40

MR Egger 31 0.406 2.00 0.40‑10.07

OCED arachidonate (20:4n6) IVW 20 0.033 0.38 0.16‑0.92 0.748839011

WM 20 0.007 0.20 0.06‑0.64

MR Egger 20 0.031 0.17 0.04‑0.75

OCED 1‑linoleoylglycerophosphoethanolamine IVW 11 0.014 2.98 1.24‑7.13 0.693730355

WM 11 0.025 4.18 1.19‑14.66

MR Egger 11 0.181 5.56 0.55‑56.35

OCED stearidonate (18:4n3) IVW 11 0.023 0.36 0.15‑0.87 0.694101869

WM 11 0.039 0.30 0.09‑0.94

MR Egger 11 0.098 0.10 0.01‑1.15

OCED ADpSGEGDFXAEGGGVR IVW 7 0.040 2.35 1.04‑5.29 0.748839011

WM 7 0.009 2.94 1.30‑6.62

MR Egger 7 0.023 19.77 3.22‑121.42

SOC X‑13183‑‑stearamide IVW 11 0.008 1.48 1.11‑1.97 0.871510468

WM 11 0.026 1.58 1.06‑2.37

MR Egger 11 0.150 1.61 0.89‑2.90
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Metabolic pathway analysis
Pathway analysis identified 5 significant metabolic 
pathways. The results indicated that the pathways "caf-
feine metabolism," "arginine biosynthesis," and "citrate 
cycle (TCA cycle)" were associated with the develop-
ment of MOC. Additionally, the pathways "caffeine 
metabolism" and "alpha-linolenic acid metabolism" 
were associated with the onset of OCED (Table 5).

Discussion
In this study, we identified 8 genetically determined 
metabolites as potential risk factors, and 6 as potential 
cancer risk reducers. Additionally, pathway enrichment 
analysis pinpointed four crucial metabolic pathways. To 
our knowledge, this is the first MR study that assesses 
the causal relationship between genetically determined 
metabolites and different subtypes of OC. Furthermore, 

Table 2 (continued)

Outcome Exposure Method nsnp P-value OR 95%CI PFDR

SOC DSGEGDFXAEGGGVR IVW 13 0.023 0.73 0.56‑0.96 0.952113534

WM 13 0.024 0.65 0.44‑0.94

MR Egger 13 0.092 0.47 0.21‑1.05

SOC 2‑hydroxyhippurate (salicylurate) IVW 13 0.028 0.93 0.87‑0.99 0.952113534

WM 13 0.035 0.90 0.82‑0.99

MR Egger 13 0.184 0.91 0.80‑1.04

Abbreviations: OC Ovarian cancer, OCED Endometrioid ovarian cancer, OCCC  Clear cell ovarian cancer, SOC Serous ovarian cancer, MOC Mucinous ovarian cancer, IVW 
Inverse variance weighted, WM Weighted median

Fig. 3 Forest plots illustrating the effect estimates for the identified candidate metabolite associations with several OC phenotypes based 
on the IVW MR model. Abbreviations: SNPs, Single nucleotide polymorphisms; OC, Ovarian cancer; OCED, Endometrioid ovarian cancer; OCCC, Clear 
cell ovarian cancer; SOC, Serous ovarian cancer; MOC, Mucinous ovarian cancer; OR, Odds Ratio
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we have conducted reverse validation of our results, 
which revealed no causal relationship, eliminating biases 
related to reverse causation and reinforcing the robust-
ness of our primary MR findings.

In the present study, we identified suggestive 
causal associations for 4-acetamidobutanoate, alpha-
hydroxyisovalerate, 3-(3-hydroxyphenyl)propionate, 
X-13183-stearamide, 1,5-anhydroglucitol (1,5-AG), 
ADpSGEGDFXAEGGGVR, estrone 3-sulfate, and 
1-linoleoylglycerophosphoethanolamine associated with 
a high risk of developing OC. To our knowledge, previ-
ous research related to these 8 metabolites in association 
with OC has been limited. Among the 3 amino acids, 
4-acetamidobutanoate is a derivative of γ-aminobutyric 
acid (GABA) [33]. In recent years, GABA has been 
shown to be associated with promoting the proliferation 
of pancreatic cancer [34]. Adding GABA to cell culture 
media promoted the proliferation of pancreatic cancer 
cells expressing GABRP [35], which is somewhat con-
sistent with our study. Notably, in a study on unique 
metabolomic characteristics related to cirrhosis mortal-
ity [36], 4-acetamidobutanoate significantly predicted 
mortality. It’s reported that in patients with acute kidney 
injury (AKI), 4-acetamidobutanoate increased 12-fold 
[37], and its levels significantly increased in patients 
with morbid hypertension [38]. Similarly, alpha-hydrox-
yisovalerate, an organic acid related to branched-chain 
amino acid metabolism, has been linked with liver injury 

[39], diabetic nephropathy [40], and Maple Syrup Urine 
Disease [41]. These findings might help in predicting the 
prognostic features of OC patients.

X-13183-stearamide, estrone 3-sulfate, and 1-linole-
oylglycerophosphoethanolamine are all lipid metabolic 
factors. Among them, estrone 3-sulfate (E1S) is a natu-
rally occurring endogenous steroidal compound, classi-
fied under estrogen esters and estrogen conjugates [42]. 
E1S has associations with multiple transport proteins and 
plays a pivotal role in the uptake and release of drugs and 
endogenous substances [43]. It can be taken up by tumor 
cells through transport protein mediation, and upon 
cleavage by steroid sulfatase, eventually activating ERs 
and promoting tumor growth [44]. This aligns with our 
research findings. 1-linoleoylglycerophosphoethanola-
mine is a vital member of the phosphatidylethanolamine 
(PE) family [45], and might serve as an intermediary in 
the primary synthesis route of PE — the CDP-Ethanol-
amine Pathway [46]. Studies have shown that this sub-
stance plays a part in the development of preeclampsia 
during pregnancy [45] and colorectal cancer [47]. PE 
family are critical determinants of protein structure and 
function [46]. Aberrant levels of 1-linoleoylglycerophos-
phoethanolamine might lead to disruptions in the PE 
synthesis pathway, subsequently resulting in pathological 
conditions.

We identified suggestive causal associations for 6 meta-
bolic products that inhibit OC development. Among 

Table 3 The results of heterogeneity testing and pleiotropy testing for candidate blood metabolites and several OC phenotypes

Abbreviations: OC Ovarian cancer, OCED Endometrioid ovarian cancer, OCCC  Clear cell ovarian cancer, SOC Serous ovarian cancer, MOC Mucinous ovarian cancer

Outcome Exposure Nsnp Heterogeneity Q Pval Pleiotropy 
intercept

Pval

MOC ADpSGEGDFXAEGGGVR 7 5.416 0.49 ‑0.021 0.66

MOC 1,5‑anhydroglucitol (1,5‑AG) 31 29.820 0.47 ‑0.018 0.26

OC X‑13183‑‑stearamide 11 7.638 0.66 ‑0.004 0.79

OC alpha‑hydroxyisovalerate 17 10.200 0.86 ‑0.005 0.71

OC 3‑(3‑hydroxyphenyl)propionate 11 9.816 0.46 0.001 0.96

OC asparagine 46 45.809 0.44 0.006 0.19

OC 4‑acetamidobutanoate 43 56.405 0.07 ‑0.015 0.06

OCCC betaine 24 28.526 0.20 0.024 0.39

OCCC estrone 3‑sulfate 13 14.069 0.30 0.015 0.61

OCED 3‑(3‑hydroxyphenyl)propionate 11 4.949 0.89 ‑0.036 0.23

OCED 1,5‑anhydroglucitol (1,5‑AG) 31 17.186 0.97 0.003 0.83

OCED 1‑linoleoylglycerophosphoethanolamine 11 10.410 0.41 ‑0.017 0.58

OCED stearidonate (18:4n3) 11 13.599 0.19 0.038 0.30

OCED arachidonate (20:4n6) 20 19.316 0.44 0.018 0.20

OCED ADpSGEGDFXAEGGGVR 7 10.734 0.10 ‑0.102 0.06

SOC X‑13183‑‑stearamide 11 9.275 0.51 ‑0.005 0.76

SOC DSGEGDFXAEGGGVR 13 8.823 0.72 0.020 0.27

SOC 2‑hydroxyhippurate (salicylurate) 13 7.945 0.79 0.004 0.77
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them, asparagine is an essential natural amino acid that 
healthy cells utilize to maintain function and prolif-
eration [48]. Its role as a targeted anticancer amino acid 
aligns with our findings [48]. Betaine, another vital amino 
acid, has been shown to have chronic disease preven-
tion potential [49]. Research indicates that the content of 

betaine is higher in gluten-free cereals and products, sug-
gesting that this result might provide evidence for dietary 
guidance for patients.

Pathway enrichment analysis revealed four signifi-
cant metabolic pathways, with three linked to MOC 
onset and two to OCED onset. The potential impact 

Table 4 The reverse Mendelian randomization analysis results: causal relationships between several OC phenotypes and candidate 
blood metabolites

Abbreviations: OC Ovarian cancer, OCED Endometrioid ovarian cancer, OCCC  Clear cell ovarian cancer, SOC Serous ovarian cancer, MOC Mucinous ovarian cancer, IVW 
Inverse variance weighted, WM weighted median

Outcome Exposure method nsnp OR(95%CI) pval

Amino acid
4‑acetamidobutanoate OC IVW 6 1.00 (0.98‑1.02) 0.932

WM 6 1.00 (0.98‑1.02) 0.878

MR Egger 6 1.01 (0.96‑1.06) 0.710

alpha‑hydroxyisovalerate OC IVW 6 1.00 (0.97‑1.04) 0.931

WM 6 1.01 (0.97‑1.05) 0.565

MR Egger 6 1.05 (0.96‑1.14) 0.366

asparagine OC IVW 6 1.01 (0.99‑1.02) 0.550

WM 6 1.00 (0.98‑1.03) 0.662

MR Egger 6 1.00 (0.96‑1.05) 0.919

betaine OCCC Wald ratio 1 1.00 (0.97‑1.03) 0.937

3‑(3‑hydroxyphenyl)propionate SOC IVW 10 0.97 (0.90‑1.04) 0.420

WM 10 0.99 (0.90‑1.10) 0.861

MR Egger 10 0.95 (0.69‑1.32) 0.784

Carbohydrate
1,5‑anhydroglucitol (1,5‑AG) MOC IVW 3 0.99 (0.98‑1.00) 0.153

WM 3 0.99 (0.97‑1.01) 0.210

MR Egger 3 1.04 (0.74‑1.46) 0.851

1,5‑anhydroglucitol (1,5‑AG) OCED IVW 2 0.99 (0.96‑1.02) 0.496

Lipid
estrone 3‑sulfate OCCC Wald ratio 1 0.97 (0.82‑1.14) 0.722

arachidonate (20:4n6) OCED IVW 2 0.99 (0.93‑1.05) 0.739

1‑linoleoylglycerophosphoethanolamine OCED IVW 2 1.00 (0.96‑1.04) 0.964

stearidonate (18:4n3) OCED IVW 2 1.01 (0.97‑1.05) 0.670

X‑13183‑‑stearamide SOC IVW 7 0.99 (0.94‑1.03) 0.561

WM 7 0.98 (0.92‑1.04) 0.458

MR Egger 7 0.89 (0.72‑1.09) 0.311

Peptide
ADpSGEGDFXAEGGGVR OCED IVW 2 0.95 (0.89‑1.01) 0.121

DSGEGDFXAEGGGVR SOC IVW 7 1.01 (0.96‑1.06) 0.807

WM 7 1.00 (0.94‑1.07) 0.911

MR Egger 7 0.88 (0.70‑1.10) 0.323

ADpSGEGDFXAEGGGVR MOC IVW 3 1.02 (0.97‑1.07) 0.469

WM 3 0.99 (0.95‑1.04) 0.758

MR Egger 3 0.52 (0.23‑1.19) 0.367

Xenobiotics
2‑hydroxyhippurate (salicylurate) SOC IVW 7 0.99 (0.85‑1.17) 0.938

WM 7 0.91 (0.74‑1.13) 0.412

MR Egger 7 1.07 (0.51‑2.23) 0.865
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of caffeine metabolism on the risk of MOC and OCED 
may be attributed to how caffeine and its metabolic 
pathways affect the levels of sex hormones[50, 51]. 
Coffee intake, as shown in a large retrospective study, 
reduces susceptibility to colon cancer[52], possibly 
due to metabolites formed via liver cytochrome P450 
enzyme system metabolism [53]. These studies align 
with our findings, suggesting that intervening in caf-
feine metabolism could potentially reduce the risk of 
cancer onset.

Arginine synthesis and metabolic pathways main-
tain nitrogen balance and protein synthesis processes, 
providing cells with necessary substances and energy, 
supporting rapid proliferation and survival of cancer 
cells [54]. Arginine can be degraded by enzymes in 
macrophages to produce urea and L-ornithine, which 
might inhibit the function of T cells [55]. This mecha-
nism might help cancer cells evade immune clearance, 
increasing the risk of tumor onset. It’s worth mention-
ing that our results are consistent with the above, sug-
gesting it is a potential MOC risk factor.

The relationship between the citrate cycle (TCA 
cycle) and MOC was also observed. The citrate cycle, 
a primary cellular energy production pathway, is impli-
cated in cancer biology by regulating glycolysis [56], 
immune responses [57], and affecting tumor cell activ-
ity [58]. Citrate synthase (CS) is one of the key enzymes 
in the TCA cycle. Silencing CS leads to proliferation 
defects in SKOV3 cells, inhibits invasion and migration, 
and increases chemosensitivity, indicating the citrate 
cycle pathway might affect the progression and drug 
resistance in OC [59].

Moreover, Our research results also suggest that 
the metabolism of α-linolenic acid may be one of the 
protective pathways against the onset of OC. Numer-
ous studies have confirmed α-linolenic acid, an essen-
tial polyunsaturated fatty acid, may regulate tumor 
proliferation, migration, and invasion by controlling 
inflammation-related cytokine secretion and cellular 

signal pathways [60]. Eicosapentaenoic Acid (EPA) and 
Docosahexaenoic acid (DHA) are both metabolites of 
α-linolenic acid and have shown significant anti-ovar-
ian cancer effects [61]. However, the impact of this 
pathway on OC and its mechanisms warrant further 
study.

Regrettably, we must acknowledge that our findings 
do not pass the multiple testing correction. The reasons 
for these outcomes might include the following factors. 
Firstly, OC is a complex disease likely influenced by mul-
tiple factors. Metabolic disorders are just one aspect and 
are not specific to the pathogenesis of OC. They might 
manifest as abnormalities in the internal environment 
during the onset of OC. MR studies are primarily utilized 
to deduce causal relationships between exposures and 
outcomes. Therefore, abnormalities in serum metabolic 
factors, may indicative of aberrant metabolic environ-
ment during OC rather than merely representing a sim-
ple causal relationship.

Secondly, while individual intermediate metabolic 
products may exert only minor or indirect effects on 
the onset of OC, their combined impact could be sig-
nificantly more substantial, resembling the effect of poly-
genic risk scores in complex traits.

The third potential factor may be attributed to indi-
vidual variations in metabolic factors. While genetic 
elements significantly shape distinct metabolite profiles 
across various populations, it is imperative to recog-
nize the substantial variability of serum metabolic fac-
tors among individuals. Influences such as sex, lifestyle, 
and dietary habits contribute to these disparities. For 
instance, sphingolipid depletion, known to impede vita-
min absorption, is closely associated with vegetable 
intake [62]. A Study highlights disparities in blood sphin-
golipid levels between traditional and non-traditional 
lifestyles in Swedish populations [63]. Moreover, the 
metabolic environment in OC fluctuates across different 
disease stages [64], and singular sampling and measure-
ment may not accurately capture the patient’s dynamic 
metabolic changes. Due to the limitations imposed by 
the original data, we were unable to categorize patients 
more precisely, pointing to the need for more nuanced 
research in this area.

Lastly, the research methodology may have also influ-
enced these findings. Although MR is designed to miti-
gate the effects of confounding variables, potential 
uncontrolled confounders, including undetected genetic 
variations, might still exist.

Although we did not demonstrate a definitive causal 
effect of GDMs on OC and other subtypes, we believe 
these indicative results do not repudiate the role of blood 
metabolites in the pathogenesis of OC. An increas-
ing number of observational studies indicate metabolic 

Table 5 Significant metabolic pathways involved in different OC 
phenotypes

Abbreviations: OC Ovarian cancer, OCED Endometrioid ovarian cancer, OCCC  
Clear cell ovarian cancer SOC Serous ovarian cancer, MOC Mucinous ovarian 
cancer

Traits Metabolic pathways Total Hits Expected P-value

MOC Caffeine metabolism 10 2 0.019 0.019

MOC Arginine biosynthesis 14 1 0.027 0.027

MOC Citrate cycle (TCA cycle) 20 1 0.039 0.038

OCED Caffeine metabolism 10 1 0.039 0.038

OCED alpha‑Linolenic acid metabo‑
lism

13 1 0.050 0.049
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abnormalities in cancer patients compared to healthy 
controls, suggesting potential guidance for targeted treat-
ment in OC patients [65–67] For instance, beyond the 
indicative results we have already explained, our research 
discovered the potential protective role of 1,5-Anhydro-
glucitol (1,5-AG) as a potential protective factor against 
MOC and OCED. The reduced levels of 1,5-AG typically 
reflect increased blood glucose levels [68], a known risk 
factor for OC [69]. Furthermore, we observed that treat-
ment alters measurable circulating metabolites and lipo-
protein subfractions, potentially serving as biomarkers 
for recurrence risk [70]. A metabolomic analysis involv-
ing 35 patients with EOC demonstrated that changes in 
serum metabolic factors could help predict EOC recur-
rence [71]. Thus, while a precise causal relationship of 
individual metabolic products was not detected, they 
may still represent risk factors and key intermediaries in 
the development of OC.

Additionally, we observed that the study by Feng et al. 
also examined the relationship between GDMs and OC 
[72]. Interestingly, our study found different associations, 
likely due to the different thresholds used for selecting 
IVs. These varying thresholds led to the inclusion of dif-
ferent genetic variants in our analysis. This discrepancy 
highlights the need to further explore the impact of 
diverse IV selection criteria, as they may uncover dis-
tinct biological relationships. Future research could ben-
eficially focus on how these criteria affect MR analyses, 
thereby enriching our understanding of the genetic influ-
ences on metabolites and their role in the etiology of OC.

Limitations and future directions
Those preliminary findings offer a direction for further 
exploration. We advocate for enhanced screening of 
populations exhibiting metabolic abnormalities, recog-
nizing its vital role in the clinical prevention and prog-
nosis of OC. We also recommend longitudinal follow-up 
of patients to delve deeper into biomarkers of cancer 
recurrence.

This study presents several limitations. Firstly, based on 
the analysis we have previously conducted, the absence of 
sex-specific instruments and genetic heterogeneity may 
contribute to confounders. The accuracy of MR analy-
ses heavily relies on the interpretation of exposure IVs, 
expanding the sample size and enhancing metabolome 
measurements are imperative. Lastly, our study’s focus on 
the European population limits its generalizability, neces-
sitating further validation across diverse populations. 
Future research might need to categorize and describe 
phenotypes more precisely, and refine statistical models 
to reduce bias, thereby enhancing the accuracy and gen-
eralizability of the findings.

Conclusion
This MR study identified 18 suggestive causal relation-
ships involving 14 known metabolites and determined 
four crucial metabolic pathways potentially related to 
the pathophysiology of OC. These findings enhance our 
understanding of OC’s pathogenesis, including its vari-
ous subtypes, and could inform the development of more 
effective management strategies in clinical settings. How-
ever, the lack of strong corroborative evidence necessi-
tates further research to both confirm these relationships 
and extend these results to understand their clear impli-
cations in the context of OC treatment and prognosis.
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