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Background
Premature ovarian insufficiency (POI), characterized by 
the decline of ovarian function before 40 years of age, 
affects 3.7% of women globally [1]. It is highly hetero-
geneous, ranging from ovarian dysgenesis and primary 
amenorrhea to post-pubertal secondary amenorrhea, 
with elevated serum gonadotropin levels and hypoestro-
genism [2]. Long-term complications include osteoporo-
sis, cardiovascular/neurological disease, and cancer. The 
development of POI in patients with secondary amenor-
rhea can be a gradual process that encompasses occult, 
biochemical and overt stages [3]. Because of the irre-
versible nature of the decline in ovarian function, there 
is no effective method of restoring and improving ovar-
ian function. Therefore, researchers should focus on 
early recognition, early diagnosis, and early interven-
tion in disease development in patients with POI, which 
will subsequently be of great significance in improving 
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Abstract
Background The etiology of premature ovarian insufficiency, that is, the loss of ovarian activity before 40 years of 
age, is complex. Studies suggest that genetic factors are involved in 20–25% of cases. The aim of this study was to 
explore the oligogenic basis of premature ovarian insufficiency.

Results Whole-exome sequencing of 93 patients with POI and whole-genome sequencing of 465 controls were 
performed. In the gene-burden analysis, multiple genetic variants, including those associated with DNA damage 
repair and meiosis, were more common in participants with premature ovarian insufficiency than in controls. The 
ORVAL-platform analysis confirmed the pathogenicity of the RAD52 and MSH6 combination.

Conclusions The results of this study indicate that oligogenic inheritance is an important cause of premature ovarian 
insufficiency and provide insights into the biological mechanisms underlying premature ovarian insufficiency.
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the quality of life of patients in the near future and pre-
venting complications in the long term. Its etiology is 
complex, involving genetic, immune, infectious, and iat-
rogenic factors [4]. Genetic factors have been identified 
in 20–25% of cases [5].

Whole-exome sequencing has been used to identify 
novel candidate genes for POI associated with various 
biological functions [6]. However, no genes have been 
implicated in more than 5% of cases, except for BMP15, 
FMR1, and NOBOX [7]. Genome-wide association stud-
ies (GWASs) have identified several single-nucleotide 
polymorphisms [8–15]. However, the cohorts were small, 
the results varied among populations, and the suggested 
candidate genes tend to lack biological evidence of a 
direct association with the ovary. Although whole-exome 
sequencing and GWASs have revealed a part of the 
genetic basis of POI, > 50% of cases are idiopathic [5]. The 
delayed intervention is a consequence of the failure to 
diagnose at an earlier stage [3]. Genetic testing can pro-
vide families with important information about the risks 
and etiology of POI [16]. None of the mutations in one or 
a few genes or a particular genetic mechanism explains 
most of the pathophysiological mechanisms of POI, and 
some of the challenges that have arisen in genetic studies 
have not yet been plausibly explained (e.g., despite famil-
ial onset of the disease, majority of patients present with 
sporadic cases, and some candidate genes are incomplete 
in families with autosomal dominant inheritance), sug-
gesting the need to look at the genetic background of 
POI development from a new genetic perspective, which 
suggests that new causative mechanisms remain to be 
explored. The exploration of therapeutic targets, such as 
in vitro activation, holds significant importance in the 
context of research and providing guidance for genetic 
counseling and pregnancy planning [16].

The inheritance of a trait (or disease) by a few genes is 
defined as oligogenic inheritance. It is an intermediate 
state between monogenic and polygenic inheritance [17]. 
Since the first report of retinitis pigmentosa as a digenic 
disease in 1994 [18], 207 digenic or oligogenic diseases 
have been reported [19]. Several studies [20–22] have 
reported the possibility of oligogenic inheritance in POI. 
The oligogenic inheritance pattern may be a more plau-
sible explanation for the differences in clinical symptoms, 
time of onset, and severity of clinical manifestations 
among patients with POI. Variants at different loci in the 
same gene, or multiple genes with multiple variants, may 
contribute to the different clinical phenotypes of patients 
with POI. However, these studies mainly included 
patients with sporadic disease in European countries 
and did not include healthy control groups. Moreover, 
the authors did not validate their findings or investigate 
the potential mechanisms. Combinations of variants 
may cause POI by similar or different mechanisms and 

pathways. Therefore, we recruited Chinese individuals 
with POI and normal women (as controls) and aimed to 
investigate the oligogenic basis of POI, which may aid 
early diagnosis and treatment. The overall study design is 
shown in Fig. 1.

Results
POI cohort gene-burden analysis
Sequencing analysis of 93 patients with POI and 465 
controls was performed. Gene-burden analysis was per-
formed after whole-exome sequencing, quality control, 
and variant annotation. Genes were the basic study unit, 
and different groups were analyzed separately from con-
trols. There were 7,549 variants, including 4,631 loss-
of-function (included frame-shift, splice-site or stop 
variants) and 4,471 missense variants. In total, 2,924 vari-
ants, including 1,792 loss-of-function and 1,704 missense 
variants were significant in the comparison between 
patients and controls (P < 0.05; Additional File 1). The 
P-values and quantiles (calculated by ranking the genes 
according to P-values) are summarized in Additional File 
2.

Participants heterozygous for multiple variants
Regarding the 191 POI-related genes, 35.5% (33/93) of 
patients with POI and 8.2% (38/465) of controls were 
heterozygous for more than one variant (odds ratio, 6.20 
[95% confidence interval: 3.60–10.60]; P = 1.50 × 10− 10; 
Table  1). Overall, multiple variants were more common 
in patients with POI than in controls.

Additional File 3 provides an overview of the 33 
patients with POI who were heterozygous for more than 
one variant. The proportions of patients who were het-
erozygous for two, three, four, and five variants were 
16.1% (15/93), 10.8% (10/93), 7.5% (7/93), and 1.1% 
(1/93), respectively. The highest proportion of patients 
with POI was heterozygous for two variants.

Analysis and validation of variant combinations
Gene-burden analysis
Among 191 POI-related genes, the top 15 genes (P < 0.05) 
ranked using gene-burden analysis are listed in Table 2. 
RAD52 (P = 5.28 × 10− 4) and MSH6 (P = 5.98 × 10− 4) were 
enriched in patients with POI, ranking first and second, 
respectively. We identified RAD52 variants in 9/93 (9.7%) 
patients with POI; seven of these patients (77.8%) were 
heterozygous for an additional variant in a POI-related 
gene (MSH6, TEP1, POLG, MLH1, or NUP107; Addi-
tional File 4).

Validation of the RAD52 and MSH6 combination
Two patients were heterozygous for both variants; the 
RAD52 and MSH6 combination was not detected in the 
control group (P = 0.027; Additional file 5). Oligomeric 
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network analysis using the ORVAL platform showed that 
RAD52 and MSH6 existed in combination with candidate 
disease-causing variants (Additional File 6). In CADD 
raw score generation, gene haploinsufficiency prediction, 
and biological process similarity, VarCoPP predicted 
that the RAD52 and MSH6 combination was pathogenic 
(scores of 1.0; Table  3). Using the Digenic Effect pre-
dictor, loci were classified as “true digenic” or “mono-
genic + modifier” (Table 3 and Additional File 6).

Table 1 Number of POI-related variants in patients with POI and 
controls

Patients 
with > 1 
variant (n)

Odds ratio (95% 
confidence 
interval)

P-value

POI (n = 93) 33 1 /
Controls (n = 465) 38 6.20 (3.60–10.56) 1.50 × 10–10

POI, premature ovarian insufficiency

Table 2 Gene-burden analysis of POI-related genes
Gene Patient Control P-value Odds ratio (95% 

confidence 
interval)

RAD52 9 (9.7%) 8 (1.7%) 5.28 × 10–4 6.12 (2.30–16.31)
MSH6 11 (11.8%) 13 (2.8%) 5.98 × 10–4 4.66 (2.02–10.77)
AR 4 (4.3%) 0 (0%) 7.31 × 10–4 Inf (Nan–Inf )
TP63 4 (4.3%) 1 (0.2%) 3.18 × 10–3 20.85 (2.30–188.78)
IGSF10 6 (6.5%) 6 (1.3%) 7.26 × 10–3 5.28 (1.66–16.74)
POLG 4 (4.3%) 2 (0.4%) 8.33 × 10–3 10.40 (1.88–57.67)
TEP1 5 (5.4%) 4 (0.9%) 8.39 × 10–3 6.55 (1.72–34.87)
MLH1 6 (6.5%) 7 (1.5%) 1.17 × 10–2 4.51 (1.48–13.75)
ERCC6 4 (4.3%) 3 (0.6%) 1.70 × 10–2 6.92 (1.52–31.46)
FANCG 2 (2.2%) 0 (0%) 2.75 × 10–2 Inf (Nan–Inf )
MSH5 2 (2.2%) 0 (0%) 2.75 × 10–2 Inf (Nan–Inf )
GALT 2 (2.2%) 0 (0%) 2.75 × 10–2 Inf (Nan–Inf )
GDF9 4 (4.3%) 4 (0.9%) 2.96 × 10–2 5.18 (1.27–21.10)
FANCM 3 (3.2%) 2 (0.4%) 3.48 × 10–2 7.75 (1.27–46.84)
NUP107 3 (3.2%) 2 (0.4%) 3.48 × 10–2 7.75 (1.27–46.84)
POI, premature ovarian insufficiency

Fig. 1 Overall study design. WES, whole-exome sequencing; WGS, whole-genome sequencing; POI, premature ovarian insufficiency
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Protein–protein interaction (PPI) networks
PPI network analysis revealed associations of RAD52 and 
MSH6 with DNA damage-repair processes (such as DNA 
recombination, DNA repair complex, nucleotide-excision 
repair, double-strand break repair, and the homologous 
recombination pathway), suggesting their significant 
roles in DNA damage-repair processes (Fig. 2).

Biological functions of POI-related genes
POI-related genes are involved in various biological func-
tions, such as meiosis and DNA damage repair, gonadal 
formation, and ovarian development, and the encoded 
proteins serve as signaling molecules and transcription 
factors. Gene-burden analyses were performed on four 
gene sets with different biological functions. A significant 
difference was observed in the number of genes associ-
ated with meiotic and DNA repair pathways between 
patients with POI and controls (P = 4.04 × 10–9; Table 4).

Discussion
Whole-exome and -genome sequencing are widely used 
for the diagnosis and molecular analysis of POI, thereby 
gradually improving our understanding of its molecu-
lar basis. In the gene-burden analysis, multiple genetic 
variants and genetic variants associated with DNA dam-
age repair and meiosis were more commonly found in 
patients with POI than in controls. The ORVAL-platform 
analysis supported the pathogenicity of the RAD52 and 
MSH6 combination. Our results indicate that oligogenic 
inheritance is an important cause of POI.

Regarding POI-related genes, the incidence of POI in 
patients with multiple variants was significantly higher 
than that in controls. However, some individuals in the 
control group also had multiple POI-related genetic vari-
ants. It is possible that variants on different alleles have 
different degrees of pathogenicity as some alleles may not 
be sufficient to cause a phenotypic trait or disease. Alter-
natively, one or more variants can cause POI, whereas 
simultaneous variants can mitigate or counteract the 
pathogenicity of the variant via interaction effects [23]. 
In this study, the RAD52 and MSH6 combination was 
classified as “true digenic” in one patient and as “mono-
genic + modifier” in another. RAD52 variants were at 
the same locus in both patients, whereas MSH6 variants 
were at different loci. This illustrates that the same gene 
combination with different alleles can lead to a differ-
ent classification, indicating the complexity of predicting 
and classifying oligogenic pathogenic combinations [24]. 
In both patients, another variant was detected in addi-
tion to the RAD52 and MSH6 combination. However, 
it was difficult to predict the pathogenicity of combina-
tions involving three or more variants. Additional data 
are needed to support the classification criterion of the 
RAD52 and MSH6 combination.Ta

bl
e 

3 
Pa

th
og

en
ic

ity
 a

nd
 D

ig
en

ic
 E

ffe
ct

 p
re

di
ct

io
n

Sa
m

pl
e 

ID
G

en
e

A
lle

le
s

Va
rC

oP
P

D
ig

en
ic

 E
ffe

ct
Pr

ed
ic

tio
n 

sc
or

e
Pr

ed
ic

te
d 

cl
as

s
Co

nfi
-

de
nc

e 
zo

ne

Tr
ue

 d
ig

en
ic

M
on

og
en

-
ic

 +
 m

od
ifi

er
D

ua
l m

ol
ec

ul
ar

 
di

ag
no

si
s

Pr
ed

ic
te

d 
cl

as
s

64
RA

D
52

N
C_

00
00

12
.1

1 
(N

M
_1

34
42

4.
4)

 c
.1

03
7 

C 
>

 A
1.

0
D

ise
as

e-
ca

us
in

g
99

.9
%

0.
42

0.
35

0.
23

Tr
ue

 d
ig

en
ic

M
SH

6
N

C_
00

00
02

.1
1 

(N
M

_0
00

17
9.

3)
 

c.
40

68
_4

07
1d

up
TT

G
A

66
RA

D
52

N
C_

00
00

12
.1

1 
(N

M
_1

34
42

4.
4)

 c
.1

03
7 

C 
>

 A
1.

0
D

ise
as

e-
ca

us
in

g
99

.9
%

0.
34

0.
44

0.
22

M
on

og
en

-
ic

 +
 m

od
ifi

er
M

SH
6

N
C_

00
00

02
.1

1 
(N

M
_0

00
17

9.
3)

 c
.3

48
8 

A 
>

 T



Page 5 of 10Long et al. Journal of Ovarian Research           (2024) 17:32 

Using age of onset and FSH values as indicators of the 
severity of the POI phenotype, we analyzed the rela-
tionship between the age of onset (age at which oligo-
menorrhea or amenorrhea occurs) and FSH values of 
patients respectively, and the number of variants carried 
by patients with POI. Our results showed that a higher 
number of variants in patients with POI was associated 
with a lower age of onset (Fig. 3a), however, there were no 
statistical differences between groups (Fig.  3b); In addi-
tion, our results indicated a positive correlation between 
the value of FSH and the number of variants carried by 
patients with POI (Fig.  3c), and differences between 

groups were statistically significant (P < 0.01) (Fig.  3d). 
However, this analysis did not include factors such as the 
pathogenicity of variants and the contribution of differ-
ent genes. More cases and data analyses are required to 
construct disease prediction models for POI, including 
age of onset, age at menopause, phenotype severity, mas-
ter genes, and the specific relative contribution of each 
locus.

POI-related genes are involved in various biologi-
cal functions, such as meiosis and DNA damage repair, 
gonadal formation, ovarian development, and the 
encoded proteins serve as signaling molecules and 

Table 4 Patients heterozygous for variants in genes of different biological pathways
Patients with > 1 variant (n) Odds ratio (95% confidence interval) P-value
POI Controls

Meiosis and DNA repair 21 15 8.75 (4.31–17.76) 4.04 × 10–9

Gonadal formation 0 0 / 1
Ovarian development 5 3 8.75 (2.05–37.28) 0.004
Signaling molecules and transcription factors 5 2 13.15 (2.51–68.87) 0.001
POI, premature ovarian insufficiency

Fig. 2 Protein–protein interaction (PPI) networks of RAD52 and MSH6.
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transcription factors [4]. RAD52 is involved in DNA 
double-strand break repair and mitotic/meiotic recom-
bination [7]. RAD51, which is the known causative gene 
for POI [25], is in the same gene family as RAD52. MSH6 
variants have been reported in patients with POI [26]. 
Although RAD52 variants were more commonly found 
in patients with POI than in controls, RAD52 has not yet 
been identified as a pathogenic gene for POI, and a clear 
pathogenic mechanism by which RAD52 causes POI 
has not been determined. We found TEP1 and FANCG 
as novel potential candidate disease-causing genes for 
POI. TEP1 is a part of the telomerase ribonucleoprotein 
complex that catalyzes the addition of new telomeres to 

chromosome ends [27]. A FANCG mutation has been 
identified in patients with Fanconi anemia of comple-
mentation group G [28]. The N-terminal nuclear localiza-
tion signal of FANCA is necessary for FANCG binding, 
FANCC binding, sensitivity of complementary FAA 
lymphocytes to mitomycin C, and nuclear localization 
[28]. More evidence on whether TEP1 and FANCG are 
causative genes for POI is required. Our results con-
firmed that the frequencies of genetic variants associ-
ated with the meiotic and DNA repair pathways differed 
between patients with POI and controls. Several variants 
are involved in the meiotic and DNA repair pathways. 

Fig. 3 Relationship of age of onset, FSH and number of variants carried in patients with POI. (a) Relation between age of POI onset and the number of 
variants carried, (b) Comparison of age of POI onset in patients with one or no variants compared with those with two or more variants, (c) Relation be-
tween FSH and the number of variants carried in patients with POI, (d) Comparison of FSH in patients with one or no variants compared with those with 
two or more variants. FSH: follicle-stimulating hormone; ns: no significance; **P < 0.01
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Therefore, these pathways represent promising therapeu-
tic targets.

Whole-exome sequencing is a molecular diagnostic 
approach that can be used to explore multiple genetic 
variants. In an whole-exome sequencing analysis of 2,076 
participants, 101 (4.9%) were found to be heterozygous 
for multiple genetic variants [29]. Oligogenic inheri-
tance models have been proposed for 207 diseases in the 
OLIDA database. Tools for oligogenic analysis include 
DiGePred, OligoPVP, and VarCoPP/ORVAL. DiGePred is 
a random forest classifier developed to specifically iden-
tify pathogenic variant combinations based on biological 
networks, along with genomic, evolutionary, and func-
tional data. DiGePred facilitates identification of genetic 
factors for rare non-monogenic diseases by scoring the 
potential of variant combinations to cause a biallelic dis-
ease [30]. OligoPVP combines a random forest classifier 
and a deep neural network to predict the pathogenicity of 
combinations of genetic variants, using feature sets from 
different tools (e.g., CADD and DANN) to classify the 
variant combinations as pathogenic or non-pathogenic 
[31]. In addition, VarCoPP is a machine-learning tool 
that identifies pathogenic variant combinations in gene 
pairs (digenic/bilocus variant combinations), generating 
classification scores for combinations of genetic vari-
ants using 11 different biological traits [32]. ORVAL is 
another tool that extends VarCoPP predictions to include 
more features (e.g., network-based exploration) [33] and 
integrates different resources to predict combinations 
of oligogenic variants that cause disease. Several studies 
have used VarCoPP/ORVAL to predict variant combina-
tions [34–38], as in this study. The advantages of ORVAL 
over other tools include the number of predicted combi-
nations of pathogenic variants, ability to classify combi-
nations of variants, availability of detailed information on 
genes at the level of functional pathways, and visual pre-
sentation of the results. In this study, we investigated the 
oligogenic inheritance of POI using gene-burden analy-
sis, quantified the contributions of variants to the disease 
by P-value ranking, and demonstrated that the frequency 
of multiple POI-related genetic variants differed signifi-
cantly between patients with POI and controls. However, 
pathogenicity prediction was not possible using gene-
burden analysis. Accordingly, this approach was com-
bined with VarCoPP/ORVAL to demonstrate the roles of 
multiple POI-related genetic variants in the disease and 
to score and classify combinations of variants in patients 
for pathogenicity prediction. These findings support an 
oligogenic inheritance model of POI and will inform oli-
gogenic studies in more disease cohorts.

In this study, 93 participants with POI and 465 controls 
were recruited. The sample sizes are being expanded and 
data from parents and other family members are being 

collected to verify whether the variants are consistent 
with familial co-segregation.

Conclusions
Overall, we demonstrated that POI is consistent with an 
oligogenic inheritance model by going beyond the tradi-
tional methods of screening and validation of pathogenic 
genes for POI. Our findings will inform cohort-based oli-
gogenic studies and provide insights into the biological 
mechanisms underlying POI. Our findings provide sup-
port for further research on the etiology of and potential 
therapeutic targets for POI.

Methods
POI group
In total, 93 patients with POI (Two and 91 displayed 
primary or secondary amenorrhea, respectively) were 
recruited by stage from Xiangya Second Hospital of 
Central South University, Hunan, China; Changsha 
Reproductive Medicine Hospital, Changsha, China; 
and Changsha Jiangwan Maternity Hospital, Changsha, 
China. All patients with POI were women aged < 40 years 
with oligomenorrhea or amenorrhea for ≥ 4 months and 
elevated follicle-stimulating hormone levels > 25 IU/L 
on two occasions > 4 weeks apart. Patients with chro-
mosomal abnormalities, FMR1 variants, pelvic surgery, 
endometriosis, ovarian infection, radiotherapy or che-
motherapy, and endocrine autoimmune diseases were 
excluded. Blood samples (2–3 mL) were collected in 
EDTA anticoagulation tubes. DNA was extracted and 
stored at − 80 °C.

Control group
In total, 465 women aged 45–65 years in the menopause 
stage (no amenorrhea and regular menstrual cycles 
before age 40) were recruited from The Third Affiliated 
Hospital of Southern Medical University in 2017. Whole-
genome sequencing data were collected previously [39].

Whole-exome sequencing and variant calling
In total, 191 POI-related genes were obtained from the 
literature [6, 7, 40] and IDDB database (Additional File 
7). To clarify the role of genes with different biological 
functions in POI etiology, the biological functions are 
mainly categorized into meiosis and DNA damage repair, 
gonadal formation, ovarian development, and signaling 
molecules and transcription factors according to pre-
vious literature [6, 41]. We have organized the different 
gene sets based on four different biological functions 
(Additional File 8).

Whole-exome sequencing was performed in 93 patients 
with POI. Genomic DNA was extracted from peripheral 
blood. Whole-exome sequences were captured using 
the SureSelect Target Enrichment System for Illumina 
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Paired-End Sequencing Library (Agilent Technologies, 
Santa Clara, CA, USA). DNA sequencing was performed 
on the Illumina HiSeq Platform (Illumina, San Diego, 
CA, USA). Reads were mapped to the GRCh37 genome. 
Variants were annotated using GATK, ANNOVAR, and 
custom pipelines.

Gene-burden analysis
Gene-burden analysis of 191 POI-related genes was per-
formed. The following filtering thresholds were applied: 
read depth, > 20; minor allele frequency, < 5% in Gno-
mAD/ExAC/1000 Genomes Phase 3; and in silico predic-
tion tools (REVEL, > 0.5; Splice Site, > 0.6; and scSNV, 
> 0.6). Genes were weighted using SKAT-O, and associa-
tions between genetic variants and POI were evaluated.

Prediction of oligogenic pathogenic variant combinations
ORVAL is a web-based bioinformatics platform for pre-
dicting pathogenic variant combinations. VarCoPP, the 
variant combination pathogenicity predictor, was used 
to obtain the probability of whether a particular com-
bination of pathogenic loci was a true positive result. 
The Digenic Effect predictor was used to classify patho-
genic variant combinations as “true digenic,” “mono-
genic + modifier,” or “dual molecular diagnosis [32].”

PPI networks
The GeneMANIA database (http://genemania.org/), a 
powerful tool for analyzing gene lists, predicting gene 
function, and prioritizing genes for functional analy-
sis, was used to construct PPI networks for the genes. 
The database identifies genes with similar functions 
and assigns a value to each functional genome dataset 
based on the predicted value of the query by integrating 
multiple genomic and proteomic data. This integrated 
approach enhances the accuracy of gene function pre-
diction and facilitates a deeper understanding of the 
complex interactions between genes within biological 
pathways.

Statistical analysis
Gene-burden analysis was performed using “SKAT” (R 
version 2.2.4; R Foundation for Statistical Computing, 
Vienna, Austria). Fisher’s exact test was performed using 
“SciPy” (Python version 1.7.0) [42]. GraphPad Prism 8 
(GraphPad Software, San Diego, CA, USA) was used for 
statistical analysis. P < 0.05 was considered statistically 
significant.
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Additional File 8: Table S6 Four gene sets with biological functions related 
to POI.
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