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Abstract 

Ovarian cancer is the most lethal gynecologic neoplasm, and most patients experience recurrence and chemoresist-
ance. Even the promising immunotherapy showed limited efficacy in ovarian cancer, probably due to the immu-
nosuppressive microenvironment. However, the behind mechanisms of the immune exclusion or cold phenotype 
in ovarian cancer still remain to be explored. As a cancer dominated by copy number variations instead of mutations, 
ovarian cancer contains a high fraction of aneuploid, which might correlate with immune inhibition. Nevertheless, 
whether or how aneuploid affects ovarian cancer is still unclear. For exploring the role of aneuploid cancer cells 
and the potential ploidy-immune relationship, herein, the ploidy information was first comprehensively analyzed 
combining the karyotype data and copy number variation data obtained from Mitelman and cBioPortal databases, 
respectively. Ovarian cancer showed strong ploidy heterogeneity, with high fraction of aneuploid and recurrent arm-
level and whole chromosome changes. Furthermore, clinical parameters were compared between the highly-aneu-
ploid and the near-diploid ovarian cancers. Aneuploid indicated high grade, poor overall survival and poor disease-
free survival in ovarian cancer. To understand the biofunction affected by aneuploid, the differentially expressed genes 
between the highly-aneuploid and the near-diploid groups were analyzed. Transcription data suggested that ane-
uploid cancer correlated with deregulated MHC expression, abnormal antigen presentation, and less infiltration 
of macrophages and activated T cells and higher level of T cell exclusion. Furthermore, the ploidy-MHC association 
was verified using the Human Protein Atlas database. All these data supported that aneuploid might be promising 
for cancer management and immune surveillance in ovarian cancer.
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Introduction
Ovarian cancer is the most lethal gynecological neo-
plasm, with less than 30% five-year survival [1]. More 
than 80% patients experience recurrence or chemother-
apy-resistance and show unsatisfying response to the 
second-line chemotherapy [2]. The immune therapy 
has been promising in ovarian cancer since the pem-
brolizumab was approved for the treatment of solid 
tumors with high microsatellite instability and mismatch 
repair defects [3]. However, up to now, the PD-1/PD-L1 
immune checkpoint blockade (ICB)  therapy still shows 
limited curative efficacy, with less than 20% objective 
response rate in ovarian cancer [4].

The frustrating response to immune therapy might be 
attributed to the immunosuppressive microenvironment 
in ovarian cancer. Compared with other solid tumors, 
ovarian cancer has less tumor mutation burden (TMB) 
and less immunogenicity [5, 6]. The process of antigen 
processing and presentation is aberrant in ovarian can-
cer, with dysfunction of antigen-presenting cells and 
deregulated expression of MHC-related molecules [7, 8]. 
As a “cold” type cancer, ovarian cancer, especially plati-
num-resistant subtype, shows low infiltration of cyto-
toxic immune cells, such as CD4 + T cell and CD8 + T 
cell [9, 10]. Uncovering the contributing factors of immu-
nosuppressive microenvironment might be beneficial for 
immune reactivation and efficacy improvement in ovar-
ian cancer.

Aneuploid, one prominent type of genomic features in 
ovarian cancer, might provide some inspirations for the 
research of immunosuppressive microenvironment. Pan-
cancer copy number variation (CNV) data showed that 
ovarian cancer was manifested as aneuploid and high 
ploidy value [11, 12]. Recent CNV data from low-pass 
whole genome sequencing suggested that ovarian cancer 
presented strong heterogeneity of ploidy status, and ane-
uploid indicated advanced stage and poor survival [13]. 
As a neoplasm driven by CNV, ovarian cancer was cat-
egorized into the “C” type cancer, instead of the “M” can-
cer driven by mutation, with low level of TMB and low 
occurrence of neoantigens [14, 15]. Previous pan-cancer 
data also found the potential correlation between ane-
uploid and immune evasion or less leukocyte infiltration 
[16, 17]. Overall, current ploidy studies partially support 
that aneuploid might participate in the immunosuppres-
sive microenvironment, although the ploidy-immune 
relationship still remains to be elucidated.

For better understanding the role of aneuploid in the 
immune microenvironment in ovarian cancer, herein, we 
analyzed the ploidy status of ovarian cancer and prelimi-
nary explored the ploidy-immune relationship in ovar-
ian cancer. This research might provide information for 
ploidy research in ovarian cancer and supplement new 

mechanisms for the immunosuppressive microenviron-
ment formation.

Materials and Methods
Patient cohort
For karyotype analysis, 455 patients with ovarian adeno-
carcinoma from Mitelman Database (https:// mitel manda 
tabase. isb- cgc. org/) were included in this study. For ane-
uploid status analysis, 552 patients with ovarian serous 
cancer from the Cancer Genome Atlas (TCGA) were 
included in this study.

Ploidy analysis
Karyotype landscape of ovarian cancer was analyzed 
among 455 patients. The karyotype data and recurrent 
specific chromosome changes were downloaded from 
Mitelman Database. The karyotypic analysis was based 
on the International System for Human Cytogenetic 
Nomenclature (ISCN) [18]. According to ISCN, cells with 
a chromosome modal number between 35 and 45 are 
hypodiploid and between 47 and 57 hyperdiploid; cells 
with a modal number between 58 and 68 are hypotrip-
loid and between 70 and 80 hypertriploid; cells with a 
modal number between 81 and 91 are hypotetraploid 
and between 93 and 103 hypertetraploid. More than one 
type ploidy contained in one patient were considered as a 
chimeric ploidy status. As for recurrent specific chromo-
some change, gains and losses are assessed at the corre-
sponding ploidy level.

Ploidy status of ovarian cancer was analyzed among 
552 patients. The aneuploidy score (AS, the score for esti-
mating the cancer ploidy status and aneuploid degree) 
obtained from the CNV analysis using the ABSOLUTE 
algorithm (an algorithm assessing the CNV data, purity 
value and ploidy value of cancer using R package), can 
partially reflect the ploidy status of cell lines and tumor 
tissues [11, 16, 19]. AS was downloaded from cBioPortal 
(www. cbiop ortal. org). Patients were ranked by aneuploid 
score and the classification was performed using the 
quartile method according to previous cell line analysis 
[19]. The top quartile was categorized into the “highly-
aneuploid” or the “high AS” group with high aneuploid 
score, while the bottom quartile into the “near-diploid” 
or the “low AS” group with low aneuploid score.

Survival and clinicopathologic characteristics analysis
The survival data of 552 patients was downloaded from 
TCGA. The survival R package was used for survival 
analysis, including overall survival (OS), disease specific 
survival (DSS), disease free survival (DFS), and progres-
sion free survival (PFS). The clinicopathologic charac-
teristics were downloaded from TCGA, including the 

https://mitelmandatabase.isb-cgc.org/
https://mitelmandatabase.isb-cgc.org/
http://www.cbioportal.org
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International Federation of Gynecology and Obstetrics 
(FIGO) stage, tumor grade, age, metastasis.

Identification of DEGs and enrichment analysis
Comparison analysis of transcription data was prelimi-
narily performed using cBioPortal online tool between 
the highly-aneuploid versus the near-diploid. Limma R 
package was used for identification and analysis of the 
differentially expressed genes (DEGs) between the two 
groups. DEGs were determined by a  log2FC of 1 and an 
adjusted P value of 0.05. Gene Ontology (GO) analysis 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of DEGs were performed using Metas-
cape analysis tool [20]. Gene Set Enrichment Analy-
sis (GSEA) was also performed. For GSEA analysis, the 
thresholds for enrichment results were set to q = 0.05 and 
p-value = 0.05.

Immune‑related analysis
The immune infiltration of the two groups was analyzed 
using the single sample Gene Set Enrichment Analysis 
(ssGSEA) algorithm. The TMB (the number or density 
of non-synonymous mutations on the coding region) 
of the two groups was analyzed for indirectly accessing 
the probability of neoantigens. For estimating the over-
all immune infiltration and function, the Estimate Score 
(the score to estimate the immune microenvironment, 
which generated from the Immune Score (the score 
assessing the immune cell infiltration in tumor) and the 
Stromal Score (the score assessing the stromal cell infil-
tration)) of the two groups was analyzed using the Esti-
mate algorithm [21]. For estimating the immune evasion, 
especially the dysfunction and the exclusion of T cells, 
the Tumor Immune Dysfunction and Exclusion (TIDE) 
score (the score applied to assess the immune evasion 
and the response to immunotherapy, including the Exclu-
sion Score (assessing the T cell exclusion situation) and 
the Dysfunction score (assessing the T cell function)) 
of the two groups was analyzed using TIDE database 
(http:// tide. dfci. harva rd. edu/). The expression level of 60 
immune checkpoint genes was analyzed for the immuno-
therapy efficacy prediction [22]. For protein verification 
of MHC assembly and the markers of immune cells and 
immune checkpoints, the Human Protein Atlas data-
base (HPA) (https:// www. prote inatl as. org/) was used for 
the correlation analysis between aneuploid and immune 
function.

Statistical analysis
Difference of AS, ploidy value, age of 552 patients were 
analyzed with the Wilcoxon test. The FIGO stage and 
tumor grade were analyzed using the Chi-squared 
test. The protein level between the aneuploid and the 

near-diploid was analyzed using the unpaired t test. 
P < 0.05 was considered statistically significant.

Results
Ploidy analysis of ovarian cancer patients from Mitelman 
and CbioPortal database
The aneuploidy score of 552 ovarian cancer patients was 
obtained via cBioPortal online analysis, which is based on 
CNV data and ploidy estimation using the ABSOLUTE 
algorithm. Most ovarian cancer cell lines were aneuploid. 
Most ovarian cancers had relatively high aneuploid scores 
(Fig.  1A). Analysis of arm-level chromosome changes 
showed that the deletions of 8p, 16q, 17p and 22q, the 
amplifications of 3q, 8q,12p and 20q were more common 
arm-level chromosome alterations (Fig. 1B).

The karyotype data of 455 ovarian cancer patients was 
obtained from Mitelman database. According to the kar-
yotype analysis, ovarian cancer showed strong karyotype 
heterogeneity and most ovarian cancers were aneuploid 
(Fig.  1D). Only 16% patients maintained the diploid 
karyotype, while most patients contained complex kar-
yotypes. Approximately 30% ovarian cancers presented 
more than one ploidy status. Both the CNV data and kar-
yotype data showed the losses of chromosome 8 (chr 8), 
chr 15, chr 22, chr 19 and chr X, the gains of chr 12, chr 
20 were more common chromosome alterations (Fig. 1C 
and E). Comparison analysis of arm-level or whole chro-
mosome alterations showed that chromosome changes in 
ovarian cancer might be mainly contributed by the ane-
uploid subtype (Fig. 2).

Clinical value of aneuploid in ovarian cancer
For demonstrating the potential clinical value of ane-
uploid in ovarian cancer, comparison analysis of multiple 
clinicopathologic parameters was performed. It was sug-
gested that there was no significant difference of aneu-
ploidy score between early and advanced stage, although 
the AS of the late stage was slightly higher than the early 
stage (Fig. 3A). Patients over 55 years old showed signifi-
cantly higher AS than those under the age of 55 (Fig. 3A). 
High grade ovarian cancers (Grade 3 and Grade 4) had 
higher AS than low grade (Fig. 3A). The ploidy value of 
the highly-aneuploid or the high AS group (Mean = 3.77) 
was significantly higher than the near-diploid group or 
the low AS group (Mean = 1.97) (Fig. 3A). High AS indi-
cated worse overall survival, poor disease-free survival 
and poor disease specific survival than the low AS group 
(Fig. 3B-E).

Difference in expression profiles between the near‑diploid 
and the aneuploid ovarian cancer patients
To better understand the contribution of aneuploid 
in cancer initiation and progression, the DEGs were 

http://tide.dfci.harvard.edu/
https://www.proteinatlas.org/
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Fig. 1 Aneuploid score and karyotype information of ovarian cancer. A Aneuploid score of 552 ovarian cancer patients. The aneuploid score 
is obtained from cBioPortal using CNV data and ABSOLUTE algorithm. B Arm-level CNV of ovarian cancer (Blue = arm-level deletion; Red = arm-level 
amplification). C Whole chromosome-level CNV of ovarian cancer (Blue = chromosome loss; Red = chromosome gain). D Karyotype landscape 
of ovarian cancer. Terms from left to right are hypodiploid (chromosome number < 45), peridiploid (chromosome number between 45 to 47), 
hyperdiploid (chromosome number between 48 to 57), polyploid (chromosome number ≥ 58), Multiple ploidy (more than one ploidy status), 
respectively. E Recurrent chromosome changes in ovarian cancer (Blue = chromosome loss; Red = chromosome gain)
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identified and analyzed between the high AS group and 
the low AS groups. Compared with the near-diploid 
ovarian cancer, 411 genes were downregulated and 167 
genes were upregulated in the aneuploid group (Fig. 4A). 
To understand the potential bioprocess or biofunction of 
these DEGs, GO analysis and KEGG analysis were car-
ried out using the Metascape analysis tool. According to 
the enrichment analysis, genes upregulated in the aneu-
ploid group were mainly involved in pathways in “NABA 
core matrisome”, “Cell morphogenesis”, “Protein digestion 
and absorption”, and “positive regulation of transmem-
brane receptor protein serine kinase signaling pathway” 
(Fig.  4B). Genes downregulated in aneuploid ovarian 
cancer were particularly enriched in the immune-related 
bioprocesses, such as “MHC class II protein complex 

assembly”, “Inflammatory response”, “Cytokine signaling 
in immune system”, “Regulation of lymphocyte differ-
entiation” and “Regulation of lymphocyte proliferation” 
(Fig. 4C).

The GSEA analysis showed that genes upregulated 
in the aneuploid group were involved in the “Collagen 
chain trimerization”, “Collagens”, “Collagen biosyn-
thesis and modifying enzymes”, “Intrinsic component 
of postsynaptic membrane”, “Intrinsic component of 
synaptic membrane”, “Neurotransmitter uptake” and 
so on (Fig.  4D). The genes downregulated in the ane-
uploid group were highly enriched in immune-related 
gene sets, especially “KEGG-antigen processing and 
presentation”, “GO-antigen processing and presenta-
tion of peptide antigen”, “GO-antigen processing and 

Fig. 2 Comparison analysis of arm-level and whole chromosome changes between the highly-aneuploid and the near-diploid groups. (Red = the 
highly-aneuploid group with high aneuploid score; Blue = the near-diploid group with low aneuploid score)

(See figure on next page.)
Fig. 3 Correlation analysis between clinicopathologic parameters and aneuploid score. A AS comparison among patients with different 
clinicopathologic features. From left to right: early- and late-stage ovarian cancer (early stage = stage I and stage II, p > 0.05), age (cutoff = 55, 
P < 0.05), grade (low grade = grade 1, P > 0.05), and ploidy value(P < 0.05). B Comparison of overall survival between the aneuploid 
and the near-diploid groups (Red = high AS, Blue = low AS; p < 0.05). C: Comparison of disease-free survival between the highly-aneuploid 
and the near-diploid groups (p < 0.05). D Comparison of disease specific survival between the highly-aneuploid and the near-diploid groups 
(p < 0.05). E Comparison of progression-free survival between the highly-aneuploid and the near-diploid groups (p > 0.05)
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Fig. 3 (See legend on previous page.)
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presentation of exogenous peptide”, “GO-MHC protein 
complex”, the gene sets related to the antigen presen-
tation and “Hallmark-Interferon γ response”, “TNF-α 

signaling via NF-κB” (Fig.  4E). The Protein–protein 
Interaction analysis (PPI) showed that some inter-
actions existed among the down-regulated and the 

Fig. 4 Identification and functional analysis of the differentially expressed genes between the highly-aneuploid and the near-diploid groups. A 
The volcanic plot of the DEGs between high AS versus. low AS. B Enrichment analysis of the upregulated genes in high AS group. C Enrichment 
analysis of the the downregulated genes in high AS group. D Significant gene sets from the GSEA of the downregulated genes in high AS group. E 
Significant gene sets from the GSEA of the upregulated genes in highly-aneuploid group
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up-regulated genes in the aneuploid ovarian cancer. 
For the up-regulated genes, interactions were enriched 
in collagen-related bioprocess and connexon-related 

bioprocess (Fig.  5A). For the down-regulated genes, 
interactions were enriched in MHC protein complex 
and antigen presentation (Fig. 5B).

Fig. 5 Protein–protein Interaction Enrichment Analysis interactions. A PPI interaction of the up-regulated genes in the highly-aneuploid group. B 
PPI interaction of the down-regulated genes in the highly-aneuploid group
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Relationship between aneuploid and abnormal antigen 
presentation
Transcription data showed the potential correlation 
between aneuploid and abnormal expression of genes 
of MHC protein and genes related to antigen presenta-
tion. For further verification of the ploidy-MHC rela-
tionship, HPA database was used for analysis of protein 
level of different MHC class protein members. A total 
of 357 ovarian cancer patients had both the AS score 
and the MHC protein data. According to the quartiles, 
90 “highly-aneuploid” patients showed significantly 
lower protein level of MHC-I class member and MHC-
II class member than 90 “near-diploid” patients, includ-
ing HLA-A, HLA-B, HLA-C, HLA-DRA, HLA-DRB1, 
HLA-DRB5 (Fig. 6).

Immune infiltration between the aneuploid 
and the near‑diploid ovarian cancer patients
The transcription data and HPA external validation pre-
liminarily indicated the ploidy-immune association, 
which suggested that the aneuploid might participate in 
the immunosuppressive microenvironment. Hence, we 

analyzed the TMB, the immune score, the immune eva-
sion situation and the infiltration of 28 types of immune 
cells between the aneuploid and the near-diploid ovar-
ian cancer. Comparison analysis showed that there was 
no difference of TMB between the aneuploid and the 
near-diploid groups, although the TMB level in the ane-
uploid group seemed slightly lower than the near-diploid 
patients (Fig. 7A). The immune evasion analysis showed 
that the aneuploid ovarian cancers had a higher TIDE 
evasion score, mainly attributed to the exclusion instead 
of the dysfunction of T cells (Fig. 7B). Estimate score sug-
gested that the near-diploid patients had higher immune 
score (Fig. 7C). Comparison analysis of diverse immune 
cell infiltration suggested that the activated macrophage, 
activated dendritic cell, effector memory CD8 + T cell, 
CD4 + T cell, activated CD8 + T cell, type 1 helper cell 
and type 17 helper cell were significantly lower in the 
aneuploid ovarian cancer than the near-diploid cancer 
(Fig. 7D).

Meanwhile, the immunohistochemistry data of 
immune markers in the HPA database showed that 
the level of CD62L (Fig.  8D), a biomarker of naive and 

Fig. 6 Comparison of MHC protein level between the highly-aneuploid and the near-diploid ovarian cancer patients. A Comparison of MHC I 
protein level between the highly-aneuploid and the near-diploid groups. B Comparison of MHC II protein level between the highly-aneuploid 
and the near-diploid groups. * P < 0.05, ** P < 0.01, *** P < 0.001
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memory T cell, was lower in the aneuploid ovarian can-
cer than the near-diploid group, while the level of CD56 
(Fig.  8G), a biomarker of NK cell, was higher than the 
near-diploid patients. However, there was no signifi-
cant difference of immune checkpoints between the two 
groups, including PD-L1, PD-1 and cytotoxic T lympho-
cyte antigen 4 (CTLA-4) (Fig. 8I). Furthermore, analysis 
of 60 immune checkpoint genes showed that the tumor 
necrosis factor receptor super family (TNFRSF) showed 
significantly different expression between the two 
groups, which might be a promising target for the ane-
uploid ovarian cancer (Fig. 9).

Discussion
In this study, we first comprehensively analyzed the 
ploidy information of ovarian cancer combining the 
karyotype, ploidy value and aneuploid score of tumor tis-
sues. According to the results from both the G-banding 
in Mitelman database and the low-pass whole  genome 
sequencing in TCGA database, a high fraction of ane-
uploid was found in ovarian cancer. The ploidy-hetero-
geneity might provide significant clues for diagnosis and 
treatment of ovarian cancer.

Mutation might not be appropriately used for the pre-
cision management of ovarian cancer. Except for TP53 

Fig. 7 Comparison of immune function and infiltration between the highly-aneuploid and the near-diploid ovarian cancer patients. A Comparison 
of TMB between high AS and low AS (Red = high AS, Blue = low AS; P > 0.05). B Comparison of immune evasion situation between high AS and low 
AS (Red = high AS, Green = low AS). From left to right: TIDE score (P > 0.05), Exclusion score (P < 0.05), Dysfunction score (p > 0.05). C Comparison 
of estimate score between high AS and low AS (Red = high AS, Blue = low AS). From left to right: ESTIMATE score (P > 0.05), Tumor purity (P > 0.05), 
Immune score (p < 0.05) and Stromal score (P > 0.05). D Comparison of immune infiltration between high AS and low AS (Red = high AS, Blue = low 
AS)
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mutation, few other tumor suppressor or oncogene 
mutations existed in ovarian cancer, with less than 10% 
frequency in patients [15]. It was suggested that ovarian 

cancer might be categorized into “C” type cancer, domi-
nated by copy number variations, instead of mutations 
[14, 23]. Our previous analysis showed that there was no 

Fig. 8 Comparison of immune infiltration and immune checkpoints between the highly-aneuploid and the near-diploid ovarian cancer patients. 
A Immune cell biomarker: CD45 (P > 0.05). B CD3 (P > 0.05). C CD8 biomarker (P > 0.05). D Biomarker of memory T cell: CD62L (P < 0.05). E Cytotoxic 
biomarker of T cell: GZMB (P > 0.05). F Activation biomarkers of T cell: CD69 (P > 0.05), CD25 (P > 0.05). G NK cell biomarker: CD56 (P < 0.05). H 
Macrophage biomarkers: CD68 (P > 0.05), CD206 (P > 0.05), CD163 (P > 0.05). I Immune checkpoints: PD-L1(P > 0.05), PD-1(P > 0.05), CTLA-4(P > 0.05)
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difference between the aneuploid and the near-diploid 
patients in the frequency of the common mutations in 
serous ovarian cancer or the mutations highly appear-
ing in any group [24]. These data indicated that ploidy 
and CNV level might be suitable for the identification of 
ovarian cancer subtypes, and therefore, might help the 
personalizing therapy tailored to each subtype.

Arm-level and whole chromosome alterations were 
also analyzed in our research. Ovarian cancer had a 
large scale of arm-level or whole chromosome changes. 
Overall, losses might occur more frequently than gains, 
regardless of arm-level or whole chromosome variation. 
For arm-level changes, CNV data showed that 17p loss, 
8p loss, 16q loss and 22q loss are more common than 
other arm-alterations in ovarian cancer, consistent with 
previous cytogenetic data [25]. These data indicated the 
locus of other potential suppressor genes, except for 

TP53 on 17p, which might be useful for further antican-
cer exploration. Chr8 loss, chr15 loss, chr22 loss, chr 19 
loss, chr X loss and chr 12 gain, chr 20 gain are common 
recurrent chromosome changes, which might partially 
drive the ovarian cancer initiation and progression. Com-
parison analysis suggested that the aneuploid subtype, 
instead of all ovarian cancer patients, mainly contributed 
to these common chromosome alterations in ovarian 
cancer.

The potential correlation between ploidy and clinico-
pathologic parameters supported the tumor-promoting 
role of aneuploid in ovarian cancer. It seems that the 
aberrant ploidy might play a dual role in cancer, tumor-
inhibiting or tumor-promoting role, according to the 
information reflected by clinical samples and experi-
ments [26]. However, overall, aneuploid and polyploid 
might be helpful for the evolutionary selection during 

Fig. 9 Comparison of immune checkpoints expression between the highly-aneuploid and the near-diploid ovarian cancer patients
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cancer progression with their strong adaptive capac-
ity [27]. In this study, aneuploid cancer correlates with 
higher grade and poor survival, consistent with previ-
ous cohort in ovarian cancer [13]. For further clarify-
ing the role of the nondiploid in ovarian cancer, more 
experiments are needed using cell lines and paired 
ploidy models. Even so, the ploidy-clinical association 
in this study indicated that the aneuploid score, which 
can be calculated through low-pass whole  genome 
sequencing and ABSOLUTE algorithm, might be used 
as a convenient biomarker for diagnosis or precision of 
ovarian cancer [16].

In this study, we found the ploidy-MHC association 
and first analyzed the correlation between aneuploid and 
the infiltration of multiple immune cells on the basis of 
expression and protein level in ovarian cancer. Immu-
notype classification showed that most ovarian cancers 
belonged to T cell “exclusion” phenotype or T cell “cold” 
phenotype [28]. Our research suggested that the highly-
aneuploid might contribute to the immune “desert” in 
ovarian cancer. Aneuploid correlated with abnormal 
expression of MHC I and MHC II class, which indicated 
an abnormal capacity of antigen processing and presen-
tation in the nondiploid ovarian cancer. Transcription 
and protein data showed that there was less infiltration of 
macrophage, activated dendritic cell, activated CD8 + T 
cell, central memory T cell in the aneuploid than the 
near-diploid ovarian cancer. Meanwhile, the TIDE anal-
ysis showed that T cell exclusion was significantly more 
frequent in the aneuploid than in the near-diploid. This 
supported that nondiploid cancer cells might promote 
immune evasion via low HLA abundance, and the exclu-
sion and dysfunction of T cells in ovarian cancer. The 
ploidy-immune association might provide clues for 
mechanisms of immunosuppressive microenvironment 
in ovarian cancer, although the underlying crosstalk 
between nondiploid cancer cells and immune cells still 
remains to be clarified.

The potential ploidy-immune relationship also pro-
vided some inspirations for ovarian cancer immuno-
therapy. Recently, a phase I clinical trial of patients with 
non-small cell lung cancer suggested that the concur-
rent radiotherapy and ICB showed better efficacy than 
sequential regimen, depending on the existing highly-
aneuploid cancer cells before treatment [29]. Surpris-
ingly, radiotherapy alone decreased fraction and function 
of T cells and adaptive immune. But the concurrent regi-
men might realize immune activation. This reminds us of 
the genetic vulnerability of the highly-aneuploid cancer 
cells [27].

Radiation therapy causes DNA damage and plays a 
therapeutic role through breaking DNA of cancer cells 
[30]. Similarly, the poly ADP-ribose polymerase inhibitor 

(PARP inhibitor) realized anticancer efficacy through 
synthetic lethality in patients with BRCA1 or BRCA2 
mutation [31]. The synthetic lethality was thought to be 
caused by both the existing disability of DNA damage 
repair in cancers with BRCA mutation and the induced 
DNA damage by PARP inhibitor. The broken DNA from 
PARP inhibitor and radiation might trigger the immuno-
genic cell death through increasing the neoantigen and 
activating T cell and NK cell via cGAS-STING signaling 
[32]. However, recent ploidy research in ovarian cancer 
might enlarge the population of PARP inhibitor [33]. This 
research suggested that aneuploid showed sensitivity on 
PARP due to its existing genome instability, similar to 
synthetic lethality by PARP and BRCA mutation. Com-
bining the superior PARP response and the increased 
ICB efficacy in the aneuploid than the near-diploid, ane-
uploid cancer cells might provide potential neoantigen 
for immune activation and cancer therapy.

The largest limitation of this study is that the interac-
tion between aneuploid cancer cells and immune cells 
was not verified via experiments. Despite this limitation, 
the ploidy information and ploidy-immune analysis in 
this study still provide inspirations for immune activation 
and cancer therapy in ovarian cancer.

Conclusions
In conclusion, we first comprehensively analyzed the 
ploidy information and recurrent arm-level or whole 
chromosome changes in ovarian cancer combining the 
karyotype and sequence data. Differentially expressed 
genes between the near-diploid and the aneuploid can-
cers were identified and analyzed. Upregulated genes 
in aneuploid patients were enriched in collagen-related 
signaling, whereas decreased genes were involved in 
immune function. Furthermore, the ploidy-immune rela-
tionship was explored and verified through enrichment 
analysis and the Human Protein Atlas database.

Overall, aneuploid was widespread and prominent in 
ovarian cancer, which might be used for survival predic-
tion and precision management. The ploidy-immune 
association indicated that aneuploid might shape the 
immunosuppressive microenvironment in ovarian cancer. 
Future works need to focus on the interaction between 
nondiploid cancer cells and immune cells. Moreover, the 
ploidy-related vulnerability might promote the antican-
cer therapy development and immune activation, which 
remains to be explored in experimental studies.
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