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Abstract
Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily 
because it is often presents with non-specific or no symptoms during its early stages. For the advancement 
of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly 
differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker 
for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian 
cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially 
methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific 
methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR 
was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, 
and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely 
POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case 
of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal 
controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras 
signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the 
genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study 
demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub 
genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian 
carcinogenesis.
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Introduction
Ovarian cancer is the fifth most lethal gynecologic malig-
nancy in women globally, mainly affecting women aged 
55 to 74 years [1, 2]. It has varied heterogeneity on the 
molecular, histopathological, and clinical levels, and is 
linked with the highest fatality rates [3]. According to the 
American Cancer Society, a total of 19,710 new cases and 
13,270 deaths have been recorded in 2023 [4]. There is a 
strong correlation between survival rate and stage of epi-
thelial ovarian cancer. Early detection of ovarian cancer 
results in an elevated 5-year survival probability of up 
to 93%. However, due to the asymptomatic nature of the 
disease at the early stage (I/II), high recurrence rate, and 
lack of improved early diagnosis methods, the disease is 
diagnosed at an advanced stage (stage III/IV) leading to a 
5-year survival rate lesser than 35% [5].

At present, the current strategies for ovarian cancer 
detection involve pelvic examination, transvaginal ultra-
sonography, and imagining techniques like MRI and PET 
scans. The drawback of these methods is their limited 
sensitivity and specificity therefore, they are combined 
with other serum biomarkers like CA125 and HE4 [6]. 
Clinically, CA125 is an FDA-approved serum biomarker 
routinely used for monitoring treatment and disease 
recurrence with a sensitivity of 50–55% and specificity 
of 90% [7]. Nevertheless, this sensitivity and specificity 
are not efficient for early-stage diagnosis and moreover 
CA125 is found to be elevated in benign conditions and 
in other non-ovarian malignancies during pregnancy. 
Due to the lack of early detection methods and less speci-
ficity of imaging techniques, there is an urgent need to 
identify a set of more valuable and reliable molecular 
markers and to study their role in molecular mechanisms 
implicated in the development and progression of ovar-
ian cancer, which could further aid in the diagnosis of 
ovarian cancer.

DNA methylation is one of the most common and well-
studied epigenetic modifications. Hypermethylation at 
the tumor suppressor gene promoters plays a key role 
in the onset and progression of cancer. Its high stability 
and occurrence in the early stage of tumorigenesis make 
it a promising biomarker for early detection [8]. The first 
direct involvement of altered DNA methylation patterns 
in carcinogenesis was established in 1994 by Herman et 
al., in cases of renal carcinoma demonstrating promoter 
hypermethylation as a factor responsible for the silencing 
of tumor suppressor gene VHL [9]. Following that, other 
similar investigations were undertaken, with abnormal 
methylation at CpG islands in the promoter region as a 
probable mechanism in the transcriptional suppression 
of tumor suppressor genes such as RASSF1a, BRCA1, 
CDH1, DAPK, and OPCML in a variety of cancers 
[10–12].

Similarly, Barekati et al. explored the aberrant meth-
ylation pattern of BMP6, BRCA1, and P16 and suggested 
their use as biomarkers in breast cancer detection [13]. 
Promoter hypermethylation as a silencing factor of 
GSTM2 and PENK in prostate cancer and CFTR gene in 
breast cancer has been considered with high diagnostic 
relevance [14, 15].

MeDIP, coupled with massively parallel NGS, is a 
cost-effective method even suitable for minute clinical 
samples and has been demonstrated as an effective tech-
nique for methylation investigation [16, 17]. Many can-
cer studies employed this technique to identify DMGs 
(Differentially Methylated Genes), such as breast cancer 
[18], ovarian cancer [19], pancreatic cancer [20], and 
others. In this study, we have analyzed the methylation 
profile of ovarian cancer samples using methylated DNA 
immunoprecipitation combined with high-throughput 
sequencing (MeDIP-seq) by Illumina NextSeq 500 plat-
form, which employs an anti-cytosine antibody resulting 
in the enrichment of methylated DNA. After sequenc-
ing, differentially methylated regions were identified 
and further validated by targeted bisulfite sequencing 
to narrow down the CpG site-specific methylation. We 
have also investigated the expression profiles of selected 
hypermethylated genes using expression GEO datasets 
and validated them using Quantitative RT-PCR. Using 
bioinformatic analysis, we have identified hub genes and 
pathways that might be involved in ovarian carcinogen-
esis. Furthermore, a deeper knowledge of the molecular 
pathways involved in the progression and development of 
ovarian cancer is required.

Materials & method
Sample collection
The ovarian cancer patient samples were collected from 
King George Medical College, Lucknow, and stored at 
-80 °C until analysis. We used 65 epithelial ovarian tumor 
samples and 25 normal control samples obtained from 
healthy individuals. The majority of tumor samples were 
serous adenocarcinoma. The clinical information of all 
the tissue samples is shown in Supplementary Table 1. 
The study was approved by the Institutional Ethics Com-
mittee and informed consent was collected from partici-
pants before the study. (Ref. No. IEC/2021-22/05). The 
workflow of this study is shown in Fig. 1.

DNA isolation from tissue samples
Genomic DNA was extracted from the frozen ovarian 
tissue samples using the standard protocol (proteinase K 
& phenol-chloroform extraction method). After homog-
enizing the tissue samples (10–30 mg) in 2 ml of SET buf-
fer (5 mM EDTA, 0.3  M sucrose, and 25 mM tris), the 
samples were centrifuged for 10 min at 6000 rpm. After 
removing the supernatant, the pellet was mixed with 1 ml 
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of lysis buffer (50 mM Tris, 10% SDS, 2.5 mM EDTA, 
and 100 mM NaCl) followed by Proteinase K digestion 
(50 µg/mL) for 12–16 h at 37 °C. The lysate was subjected 
to phenol: chloroform: isoamyl alcohol (25:24:1) at 25 °C. 
Subsequently, 1/30 volume of 3  M sodium acetate (pH 
5.0) and two volumes of cooled absolute ethanol were 
used to precipitate the DNA, followed by a 70% etha-
nol wash. Ultimately, 100–200  µl of TE (10 mM Tris–
HCl pH 8 and 1 mM EDTA) was used to re-suspend the 
DNA pellet, which was then kept at 4 °C for further use. 
DNA quality and concentration was further determined 
by agarose gel electrophoresis and spectrophotometry 
respectively.

Methylated DNA immunoprecipitation & sequencing
Covaris M220 was used to fragment isolated genomic 
DNA, producing a mean fragment distribution of 150 bp. 
End repair was performed on the generated fragments 
using the End Repair mix, followed by A-tailing and 
adapter ligation. The samples were then subjected to 
immunoprecipitation using antibodies against 5mC as 
per the manufacturer’s instructions (MagMeDIP kit). 
The methylated DNA was then enriched by a limited 
number of PCR cycles followed by AMPure XP beads 

purification. Quality check of the PCR enriched librar-
ies was done on Agilent 4200 Bioanalyzer. After obtain-
ing the Qubit concentration for the library and the mean 
peak size from the Bioanalyzer profile, PE Illumina librar-
ies were then loaded onto the Illumina NextSeq 500 plat-
form (Illumina, CA, USA) for sequencing.

Bioinformatic analysis
Data preprocessing and identification of differentially 
methylated regions
The Trimmomatic [v0.35] programme was used to 
remove adaptor sequences, ambiguous reads, and low-
quality sequences from the received MeDIP-Seq raw data 
to produce high-quality reads. High-quality (QV > 20) 
paired-end reads were mapped to the human reference 
Hg19 genome (GRCh37) using the BWA-Mem software. 
Further alignment files were analyzed by the samtools 
(V1.6) to convert the alignment output into the BAM 
file. Only those files with Properly Paired Read Pair Tag 
and Mapping Quality of 1 and above were retained, and 
the rest were excluded from the analysis. Direct screen-
ing was performed on Bam files to look for methylated 
areas. To analyze methylated genome regions, diffReps 
(v 1.55.6) was used with a sliding window of 1  kb, and 

Fig. 1 A workflow demonstrating the study design
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reads falling into this region were counted. Any overlap-
ping regions obtained were merged and re-evaluated. 
Additionally, diffReps computes the p-value and q-Val-
ues by performing the G-Test on the log fold change 
values and interpret the hyper/hypomethylation based 
on the normalized read count. For the annotation of 
methylated genomic fragments, tool region analysis (v 
1.0) was used, and all the information about genes were 
taken from Ensemble while performing annotation. The 
p-value < 0.05 and |log2FC| > 0.2 for hypermethylated 
and |log2FC| < 0.2 for hypomethylated genes were set as 
the cut-off criterion for further analysis.

Functional and pathway enrichment analysis
An online biological information database known as the 
Database for Annotation, Visualisation, and Integrated 
Discovery (DAVID, version 6.8; http://david.ncifcrf.gov) 
was utilized to examine the gene ontology of DMGs 
[21]. This offers functional analysis according to three 
categories: Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) pathway analysis, Cellular Components (CC), 
Molecular Functions (MF), and Biological Processes 
(BP). P-value < 0.05 was used as the cut-off criterion for 
statistical significance.

PPI network construction
Search Tool for the Retrieval of Interacting Genes 
(STRING) (http://string-db.org/; version 11.0) is an 
online database for identifying the interaction between 
different proteins based on information fetched from 
sources like text mining, experiments, databases, and 
predictive bioinformatics data [22]. To find out the rela-
tionship between DMGs, we have constructed a network 
using the STRING database and set a minimum interac-
tion score > 0.40, which indicates the medium confidence 
between the interactions of two proteins [23]. Cytoscape 
(https://cytoscape.org/; version 3.10.1) was then used to 
visualize the resulting network from STRING [24].

Validation with targeted bisulfite sequencing
Next, we validated the consistency of methylation level 
of 6 gene promoters through targeted bisulfite sequenc-
ing on the Illumina Nextseq 500 platform. For this, we 
included DNA of ten tumor and four normal control 
samples. First, the EZ DNA METHYLATION-GOLD 
kit was used for bisulfite conversion of all DNA samples. 
(#D5005, zymo). After conversion, primers were designed 
using Bisulfite Primer Seeker with provided contigs fol-
lowed by amplification of the bisulfite converted DNA 
by conducting the Bisulfite specific PCR. Amplified frag-
ments were checked on 2% agarose gel. Finally, libraries 
were constructed using the NEBNext Ultra II FS DNA 
Library Prep Kit for Illumina. Primer details are shown 
in Table 1. The library preparation involves the addition 
of 100ng amplicon to NEBNext Ultra II FS Enzyme Mix 
at 37 °C for 5 min to get the fragment size of 200-450 bp. 
After fragmentation, adapter ligation was done by mix-
ing NEBNext Ultra II Ligation Master Mix and NEBNext 
Adaptor for Illumina with fragmented DNA and enzyme 
at 37 °C for 15 min. Next, the cleanup of adapter-ligated 
DNA was performed, followed by PCR enrichment of 
adaptor-ligated DNA. After enrichment, library quality 
was accessed on a D1000 screen tape station, and concen-
tration was checked by Qubit, followed by sequencing. 
These libraries were sequenced in a 2*150  bp paired-
end run using the NovaSeq 6000 with v1.5 reagents (300 
cycles). After sequencing, raw data was generated and 
processed for downstream analysis. Reads were filtered 
using the Fastx toolkit and Fastp. Alignment to the refer-
ence genome to methylation calling and coverage estima-
tion is performed using a Bismark tool. Further, Methykit 
was used for the identification of methylated cytosines of 
the target genes. Homer was used for the annotation and 
visualization of DMRs, followed by the calculation of the 
beta value and the mean methylation percentage.

RNA extraction
The trizol reagent was utilized to extract total RNA from 
both normal and tumor samples. Liquid nitrogen was 
used to grind 100–200 mg of tissue. These crushed sam-
ples were mixed with 1 ml of trizol. After that, 400 µl of 
chloroform was added and was allowed to incubate for 
15  min room temperature followed by centrifugation 
at 12,000  rpm at 4oC. Isopropanol was added in equal 
amounts to the supernatant and tubes were incubated 
for 15  min at room temperature. Further samples were 
centrifuged at 12,000 rpm at 4oC and pellets were washed 
using 80% ethanol. The pellet was air dried, followed by 
the addition of 25  µl of DEPC water and was stored at 
-80  °C. The purity and the concentration of the sample 
were measured using a micro-volume spectrophotometer 
(DeNovix DS-11).

Table 1 Sequence information of differentially methylated gene 
primers for targeted sequencing
STK4: Forward primer  A G T A G A G A C G G G G T T T T A T C
Reverse primer  C T A A T A C C C A C C A C C T A A A A
BMP2: Forward primer  T A T G T T G T G G A G G T T T T T T T G
Reverse primer  T C T A T C C C A A A T C A C A A A A C T
CRKL: Forward primer  T G A A A A G G G A G T G A G T T A G T A G
Reverse primer  T A C C T C A A C C T C C C A A A A T A C
PLXND1: Forward primer  C G G T T T T A C G A A G T A G G C
Reverse primer  C C C G A T A C C G C T A C T A T T A C
POLR3B: Forward primer  T T G A T A G T T G G G G T T T A G G
Reverse primer  C G C A C T T C A C T A A A C A A C T C
GIGYF2: Forward primer  T T A G G A T G G T A A T T G C G A A G
Reverse primer  A A A C C G A C C T A A C A C T A C C C

http://david.ncifcrf.gov
http://string-db.org/
https://cytoscape.org/
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Expression analysis through quantitative real-time RT-PCR
We isolated total RNA from normal (n = 16) and ovarian 
cancer tissues (n = 46). Table 2 displays the details of the 
samples used. 1 µg of total RNA was reverse transcribed 
using the QuantiTect reverse transcription kit (Qiagen). 
To analyze DMG expression, a real-time PCR machine 
(Applied Biosystems StepOne Plus) was employed. 
cDNA samples were used as the template for quantitative 
PCR with SYBR green master mix (Thermo Fisher, Scien-
tific), with a final volume of 10ul. For the analysis of the 
PCR data, Excel, Graph Pad Prism (8.0.1), and StepOne 
software v2.3 were used. RT-PCR primers (Table 3) were 
designed using the Primer Blast (NCBI) and subsequently 
validated using insilico PCR, and net primer software. To 
avoid replication errors, each reaction was carried out 
in triplicates. β-actin served as a reference gene. PCR 
cycling conditions are as follows; ten minutes at 95 °C, fif-
teen seconds at 95 °C (melting), and thirty seconds at 55 
to 58  °C (annealing and extension). Target gene relative 
expression was determined by applying the Livak method 
(2-∆∆Ct). To ascertain statistical significance, we used 
one-way ANOVA, the mean, standard deviation, and the 

Student’s t-test with a two-tailed distribution. Statistical 
significance was determined using p-values of 0.05.

Results
MeDIP-seq analysis of genomic DNA
In this study, we performed the MeDIP-Seq analysis 
of the genomic DNA of ovarian cancer patients (n = 4), 
benign (n = 1), and healthy controls (n = 3). We observed 
the size distribution of g-DNA centered on 295 bp with a 
range of 212–418 bp. The MeDIP-Seq libraries were con-
structed with the genomic DNA derived from patients, 
and healthy controls were subjected to next-generation 
sequencing. The MeDIP-seq libraries were sequenced 
with Illumina NextSeq 500. After sequencing, low-qual-
ity sequences and adapter sequences were removed. 
Consequently, on average, 63 million and 72 million raw 
sequenced reads were acquired for patients and controls 
respectively, of which 79.02% and 89.8% were aligned to 
the reference genome (Human hg37) (Table  4). Under 
accession number GSE244405, the raw MeDIP-Seq data 
is available to the NCBI database. We observed the dis-
tinct methylation pattern revealed through principal 
component analysis (Fig. 2A). The volcano plots depicted 
the distribution of DMGs (Fig. 2B).

Table 2 Detalis of cDNA samples used for QRT-PCR expression 
analysis
Tissue (n = 62)
Variables Case Control
Age, n(%)
≤ 45 15(24.19%) 4(6.45%)
≥ 45 31(50%) 12(19.35%)
Histological type, n(%)
Mucinous 7(15.21%) -
Serous 30(65.21%) -
Clear Cell 5(10.86%) -
Endometroid 4(8.69%) -
FIGO stage, n(%)
I-II 19(41.30%) -
III-IV 27(58.69%) -
Serum CA125 (U/ml)

0.17 ± 980 12.3 ± 38.5

Table 3 Primer details of hypermethylated genes for expression analysis by QRT-PCR
Gene Primer Sequence (5’-3’) Length Tm GC% Product Length
STK4 Forward-  A C G G T A C A G C T G A G G A A C C C

Reverse- G C T G C C A T A G G A C C C T T C T C C
20
21

61.54
62.26

60.00
61.90

123 bp

BMP2 Forward-  G G G A C C C G C T G T C T T C T A G C
Reverse- C G C A A C T C G A A C T C G C T C A G

20
20

62.30
61.67

65.00
60.00

158 bp

CRKL Forward-  A C C C C G A C T C A C C T T G T G T G
Reverse- G T G C A G A A C T C A A G C T C G C C

20
20

61.33
62.41

60.00
60.00

164 bp

PLXND1 Forward-  T G G G A A A C T G A T G G G G A T C G T
Reverse-  A G C A C G T A G G A G A A G C G G T C

21
20

61.18
61.94

52.38
60.00

117 bp

POLR3B Forward- G C A G T T T G C T T G G T G C A G G G
Reverse- C G T C C A T G C T G C T C A C G A A G

20
20

62.70
61.69

60.00
60.00

75 bp

GIGYF2 Forward-  C T G G G T C A G C C T T T A T G C C A A G
Reverse- G C T A G T C G C C A A C C T C C A T C

22
20

61.53
60.53

54.55
60.00

158 bp

Table 4 MeDIP-seq statistics summery of ovarian cancer and 
normal samples
Sample Total num-

ber of Reads
Number of 
mapped 
reads

Mapped 
reads 
rate

Number of 
bases

T1 6,24,76,582 11,62,17,593 93.01% 9,37,77,27,760
T2 7,31,78,135 13,60,78,453 92.98% 10,98,61,26,578
T3 5,66,04,730 3,25,19,194 57.44% 8,35,14,58,223
T4 6,15,20,612 4,39,16,362 71.38% 9,08,70,06,821
N1 7,23,08,042 13,32,98,461 92.17% 10,85,75,37,884
N2 8,00,52,434 14,83,76,154 92.67% 12,01,84,82,958
N3 6,37,61,008 5,39,17,982 84.56% 8,97,38,86,283
B1 6,22,02,086 4,99,57,304 80.31% 8,69,94,85,398
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Differentially methylated regions in ovarian cancer 
samples
Genome-wide DNA methylation data analysis of ovar-
ian cancer and healthy patients ended with 4274 DMRs 
by applying criteria p-value < 0.05 and fold change > 0.1. 
Out of which, 2080 were hypomethylated, and 2194 
were hypermethylated, indicating the presence of more 
hypermethylated fragments. The DMRs were found to 
be located in promoter 1k (0.7%), promoter 3k (1.82%) 
and proximal promoter (0.23%), Gene body (21.78%), 
Gene desert (5.76%) intergenic regions (52.5%), peri-
centromeric region (10.83%), and subtelomeric regions 
(6.36%) (Fig.  2D). Chromosome-wise distribution of 
DMRs is shown in Fig. 2C. Most of the DMRs were con-
centrated in the gene body and intergenic regions and a 
small fraction were in the promoter region. We obtained 
120 DMRs present in the promoter regions, including 
68 hypermethylated and 52 hypomethylated DMRs. We 
further sorted the top 40 hypermethylated DMRs based 
on p-value < 0.05 and fold change > 0.3, literature survey, 
and the number of hypermethylated fragments. Some 
of the reported hypermethylated genes in ovarian can-
cer are BRCA1, RASSF1A, TGFBI, DOK1, RUNX3, and 
CAMK2N1 [25–27]. The significant differential methyla-
tion profile of the top 40 genes is shown through a heat-
map (Fig. 2E).

Gene ontology and pathway analysis of DMGs
We conducted a GO (gene ontology) analysis of DMGs 
that was performed via the DAVID functional anno-
tation tool to investigate the biological significance of 
hypermethylated genes. The result from the GO analy-
sis includes three functional groups –Biological Process, 
Molecular Function, and Cellular components. In the 
biological process category, results indicated that most of 
the DMGs were associated with cell morphogenesis, sig-
nal transduction, and positive regulation of protein phos-
phorylation (Fig. 3A). Under molecular function analysis, 
DMGs were mainly involved in actin binding, cadherin 
binding, protein kinase activity, and protein serine/threo-
nine kinase activity (Fig. 3B). Moreover, in cellular com-
ponent analysis, DMGs were predominantly involved in 
the plasma membrane, cytoplasm, cytosol, and synapse 
(Fig. 3C). Furthermore, in the category of KEGG pathway 
analysis, DMGs are significantly enriched in focal adhe-
sion, regulation of actin cytoskeleton, calcium signalling 
pathway, MAPK, and Ras signaling pathway (Fig.  3D). 
The results obtained from GO and KEGG pathway 
analysis are shown in Fig. 3 and detailed information in 
Table 5.

Fig. 2 The genome-wide methylation profile of MeDIP-sequencing data of normal and ovarian cancer samples. (A) Principle component analysis of the 
genome-wide methylation profiles of Ovarian cancer and normal samples. (B) volcano plot shows the methylation profle of 2080 hypermethylated and 
2194 hypomethy;ated DMRs (differentially methylated regions). (C) Chromosome wise distribution of hyper and hypomethylted DMRs. (D) Percentage of 
hyper and hypomethylated DMRs across different genomic regions. (E) Hierarchical clustering heatmap of common DMRs (68 hyper and 52 hypomethyl-
ated DMRs) of promoter region between normal and ovarian cancer samples
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PPI network of hub genes
To further explore the interaction between DMGs, a 
protein network comprising 118 DMGs was created 
using the STRING database and Cytoscape. In this net-
work, isolated nodes have been removed, resulting in a 
fully formed network containing 86 nodes and 134 edges 
(Fig. 4). The generated network was imported into Cyto-
scape and analyzed by a network analyzer, resulting in 
distinguishable nodes based on degree value. The top 10 
nodes were filtered based on degree value and between-
ness centrality, and nodes with higher values (degree ≥ 10) 
were subsequently considered as hub nodes [28]. The top 
6 hub nodes were CRKL, BMP2, POLR3B, PLXND1, 
STK4 and GIGYF2. Among them, POLR3B and GIGYF2 
are novel targets and were not reported previously in OC. 
The details of these hypermethylated genes are shown in 
Table 6.

Validation by targeted bisulfite sequencing
We performed the targeted bisulfite sequencing to check 
the consistency of region-specific methylation among 
CpG sites in all six hypermethylated genes obtained from 
MeDIP-Seq data. Gene location obtained from MeDIP-
Seq data was analyzed through NCBI. Depending upon 
the number of CpG sites and maximum length (1000 bp), 
regions of promoters were selected for targeted sequenc-
ing (Table 7). Targeted sequencing data analysis demon-
strated a significant difference in the methylation status 
of 3 sites of the POLR3B DMR region (900 bp). Of them, 
two non-CpG sites [CpT-106,751,607 (p-value = 0.0019); 
CpA-106,751,607 (p-value = 1.61724E-30)] were 

significantly hypermethylated and one CpG site 
(CpG-106,751,805) was significantly hypomethylated 
(P-value = 4.07216E-07). In CRKL, one non-CpG site 
(CpT-21,268,802 (p-value = 0.0130)) was significantly 
hypomethylated. The results are shown in Fig. 5; Table 8. 
We observed significant CpG methylation along with 
non-CpG methylation (CpA and CpT). According to the 
literature, CpA accounts for 25% of methylation of all 
methylated cytosines and is one of the most frequent one 
after CpG, followed by CpT [29].

Expression analysis of DMGs
We conducted RNA sequencing of 4 tumors and 4 nor-
mal samples (Accession No. GSE244405). Only the 
POLR3B gene showed significant downregulation in 
RNA-Seq data. Further, we looked for the expression pat-
tern of these hypermethylated genes in GEO expression 
datasets (GSE54388, GSE38666, GSE4122). The results 
revealed significant downregulation of all genes STK4, 
GIGYF2, POLR3B, BMP2, and CRKL except PLXND1 
(Table 9).

We also performed validation through quantitative 
RT-PCR analysis and observed that all hypermethylated 
genes [(POLR3B (p = 0.0011), STK4 (p = 0.0008), BMP2 
(p = 0.0003), GIGYF2 (p = 0.0097), CRKL (p = 0.0401)] 
exhibited significant downregulation except PLXND1. 
The results are shown in Fig. 6.

Fig. 3 Functional investigation of differenetially methylated genes using DAVID tool (A) Biological function (B) Molecular function (C) Cellular compo-
nent and (D) KEGG pathway
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Category Term Count P-Value
KEGG_PATHWAY Focal adhesion 10 2.20E-03

Regulation of actin cytoskeleton 10 4.90E-03
Calcium signaling pathway 10 9.20E-03
MAPK signaling pathway 11 9.90E-03
Ras signaling pathway 9 1.80E-02
HIF-1 signaling pathway 6 1.90E-02
ErbB signaling pathway 5 3.10E-02

GOTERM_BP_DIRECT cell morphogenesis 8 2.40E-04
positive regulation of protein phosphorylation 10 2.10E-03
protein autophosphorylation 9 2.60E-03
synapse assembly 6 2.70E-03
eye development 5 2.80E-03
modulation of synaptic transmission 6 5.00E-03
protein targeting to lysosome 4 5.80E-03
signal transduction 29 5.80E-03
response to thyroid hormone 3 5.80E-03
brain development 10 7.90E-03
homophilic cell adhesion via plasma membrane adhesion molecules 8 8.30E-03
establishment of cell polarity 4 1.20E-02
peptidyl-tyrosine phosphorylation 5 1.40E-02
central nervous system development 7 1.40E-02
detection of calcium ion 3 1.40E-02
animal organ development 4 1.40E-02
positive regulation of epithelial cell proliferation 5 1.50E-02
response to nicotine 4 1.50E-02
actin filament organization 7 1.60E-02
endocytosis 8 2.40E-02
positive regulation of bone resorption 3 2.50E-02
epidermis development 5 2.60E-02
neuromuscular synaptic transmission 3 3.10E-02
transmembrane receptor protein tyrosine kinase signaling pathway 6 3.30E-02
negative regulation of cell migration 7 3.60E-02
animal organ morphogenesis 6 3.60E-02
glial cell differentiation 3 3.90E-02
fibroblast growth factor receptor signaling pathway 4 4.10E-02
multicellular organism development 6 4.20E-02
regulation of cytoskeleton organization 3 4.20E-02
positive regulation of osteoclast differentiation 3 4.20E-02
cell-cell adhesion 7 4.40E-02
regulation of cell shape 6 4.80E-02
protein dephosphorylation 6 4.90E-02

Table 5 Gene ontology and pathway analysis of hypermethylated genes using DAVID tool. 6 A) KEGG pathway, 6B) Biological process 
(BP), 6C) Cellular component (CC) and 6D) Molecular function (MF)
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Discussion
Regardless of significant progress in surgical and medical 
therapy, ovarian cancer still holds the highest mortality 
rate among all other gynecologic malignancies. Chal-
lenges persist in detecting ovarian cancer at an early stage 
as there are no distinct clinical signs, no accurate and 
efficient early detection biomarkers, and no potent treat-
ment strategies for advanced-stage patients. Therefore, it 
is vital to comprehend the molecular mechanisms behind 
the tumor progression, which could be further investi-
gated to improve the overall survival rate of ovarian can-
cer patients and thereby prevent disease recurrence.

Methylation plays an essential role in tumorigene-
sis, and aberrant methylation is thought to be the most 
frequent initial molecular change in carcinogenesis. 

Therefore, the examination of site-specific methylation 
profiles has a great potential to narrow down a panel of 
epigenetic biomarkers for early diagnosis of ovarian can-
cer [30, 31]. Moreover, many studies have also reported 
the association of promoter hypermethylation with gene 
silencing, thereby making it a significant aspect of bio-
marker-related studies. Costello et al. first reported the 
existence of a specific hypermethylation pattern in CpG 
islands in many types of malignancies, including ovarian 
cancer, and was later verified by Esteller et al. [28].

In this study, we used MeDIP-Seq, a cost-effective high-
throughput method, to investigate the differential meth-
ylation pattern in epithelial ovarian cancer to explore the 
candidate DMGs and potential pathways regulated by 
them which on further validation could act as effective 

Category Term Count P-Value
GOTERM_CC_DIRECT synapse 20 8.80E-05

cytoplasm 96 3.10E-03
neuron projection 13 3.40E-03
axon terminus 5 7.30E-03
axon 12 7.90E-03
adherens junction 8 9.80E-03
plasma membrane 88 9.90E-03
sarcolemma 6 1.30E-02
neuronal cell body 11 2.30E-02
cytosol 89 2.40E-02
presynaptic membrane 6 2.60E-02
integral component of postsynaptic density membrane 4 2.90E-02
postsynaptic density membrane 5 3.80E-02
extrinsic component of postsynaptic membrane 2 3.90E-02
cell-cell junction 7 4.00E-02
cell projection 7 4.00E-02
glutamatergic synapse 11 4.40E-02

GOTERM_MF_DIRECT actin binding 13 2.50E-03
cadherin binding 12 4.20E-03
protein phosphatase binding 6 7.60E-03
heterocyclic compound binding 3 7.70E-03
alpha-catenin binding 3 9.30E-03
dystroglycan binding 3 9.30E-03
protein kinase activity 12 1.50E-02
SH2 domain binding 4 1.80E-02
small GTPase binding 10 1.90E-02
protein kinase activator activity 4 1.90E-02
clathrin binding 4 2.30E-02
calmodulin binding 8 2.30E-02
phospholipid scramblase activity 3 2.40E-02
phosphatidylinositol-3-phosphate binding 4 2.40E-02
SH3 domain binding 6 2.90E-02
3’,5’-cyclic-nucleotide phosphodiesterase activity 3 3.20E-02
protein tyrosine kinase binding 4 3.30E-02
enzyme binding 11 3.50E-02
protein serine/threonine/tyrosine kinase activity 12 3.90E-02
structural molecule activity 7 4.90E-02

Table 5 (continued) 



Page 10 of 16Gautam et al. Journal of Ovarian Research           (2024) 17:83 

potential targets for ovarian cancer detection and treat-
ment. Through MeDIP-Seq analysis, 4,768 DMRs were 
listed comprising a higher proportion of hypermethylated 
DMRs than hypomethylated ones. Furthermore, a signifi-
cant proportion of hypermethylation DMRs was found in 
the intergenic region and gene body, while a small per-
centage was present in the promoter region. The top 40 
hypermethylated DMRs, existent in the promoter region 
were considered for further analysis. Functional analysis 
revealed that these DMGs were strongly related to vari-
ous biological processes, such as positive regulation of 

Table 6 Details of top six hypermethylated genes obtained from MeDIP-sequencing
Hyper-
methylated 
Genes

Gene name Feature log2FoldChange p-value Status in ovarian cancer

POLR3B RNA polymerase III subunit B Promoter 1k 0.66 0.006106 Not reported in ovarian cancer
PLXND1 Plexin D Promoter 1k 0.69 0.000595 Only 1 study reported mentioning regulation of 

Epithelial-Mesenchymal transition by PLXND1
GIGYF2 Grb 10-interacting GYF 

protein 2
Promoter 1k 0.33 0.033441 Not reported in ovarian cancer

STK4 Serine/Threonine kinase 4 Promoter 3k 0.5 0.019861 Reported as downregulated in OC
CRKL CRK-like proto oncogene Promoter 3k 0.78 0.003422 Two studies were reported demonstrating the 

regulation of EMT through ERK signalling pathw-
way. Another study reported its overexpression.

BMP2 Bone morphogenetic protein 
2

Promoter 3k 0.5 0.023133 Few studies were reported. One of them had 
shown a downregulated expression.

Table 7 Information of differentially methylated gene fragment 
used for targeted sequencing
Gene 
Name

Total 
Number of 
CpG

Total 
length

Region

STK4 11 650 bp chr20:43,597,001–43,597,650
BMP2 6 750 bp chrX:6,750,901-6,751,650
CRKL 14 1000 bp chr22:21,268,451 − 21,269,450
PLXND1 127 1000 bp chr3:129,324,301 − 129,325,300
POLR3B 65 900 bp chr12:106,751,401 − 106,752,300
GIGYF2 69 850 bp chr2:233,561,551 − 233,562,400

Fig. 4 Protein-Protein interaction network of DMRs of promoter region analysed using STRING online database and cytoscape tool
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protein phosphorylation, signal transduction, actin bind-
ing, and protein serine/threonine/tyrosine kinase activity. 
Pathway enrichment analysis revealed that most DMGs 
were mainly associated with the MAPK signaling path-
way, regulation of actin cytoskeleton, calcium signaling 
pathway, focal adhesion, and Ras signaling pathway. The 
majority of them have a tight relationship with the onset 
and development of ovarian cancer.

As reported by previous studies, focal adhesions are 
essential because they act as a bridge between the inter-
nal structure (actin cytoskeleton) and the extracellular 
matrix of the cell. This connection is crucial for motil-
ity, differentiation, survival, and cytoplasmic signalling of 
the cell [32]. MAPK pathway also plays a crucial role in 

Table 8 Results of targeted sequencing showing methylation details of non-CpG sites of POLR3B and CRKL hypermethylated gene
Gene Gene start Gene end Methylation Position Control Methylation % Treatment Methylation % pValue
POLR3B 106,751,601 106,751,610 106,751,607 0 9.523809524 0.001953564
POLR3B 106,751,701 106,751,710 106,751,705 0 99.89007179 1.61724E-30
POLR3B 106,751,801 106,751,810 106,751,805 89.33610575 33.33333333 4.07216E-07
CRKL 21,268,801 21,268,810 21,268,802 100 66.66666667 0.013078531

Table 9 Expression values of hypermethylated genes obtained 
from GEO expression datasets, RNA-seq data (GSE212991) and 
validated values from QRT-PCR
Hypermeth-
ylated Gene

Expression Values (p-Value)
GSE54388 GSE38666 RNA-seq QRT-

PCR
POLR3B 0.382 0.00598 0.0006585 0.0011
CRKL 0.624 0.0113 -- 0.0401
STK4 0.000791 0.75 -- 0.0008
GIGYF2 0.0175 0.68 -- 0.0097
BMP2 1.62E-07 8.11E-09 -- 0.0003
PLXND1 0.557 -- -- 0.0925

Fig. 5 The methylation level of CpG and non-CpG sites of POLR3B and CRKL between tumor and normal samples obtained from targeted sequencing
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the development of ovarian cancer as it is integrated into 
many cellular processes like apoptosis, cell growth, and 
proliferation which are the critical hallmarks of cancer 
development [33]. Low-grade serous ovarian carcinoma 
(LGSOC) often contains active MAPK mutations [34]. 
In human malignancies, including ovarian cancer, Ras is 
one of the most frequently altered signaling pathways. 
Ras is involved in several other pathways that control cell 
migration, cell adhesion, survival, cell growth, and differ-
entiation. Among ovarian cancers, KRAS mutations are 
commonly detected as one of the most frequent abnor-
malities [35]. Therefore, it is interesting to study these 
pathways as they are associated in numerous processes of 
cell development and growth.

Protein-protein network analysis is essential to analyze 
the interactions between DMGs for molecular evalua-
tion of numerous diseases. Therefore, to interpret the 
centrality role of DMGs, the PPI network of the top 40 
DMGs was constructed. Further top 6 hypermethylated 
hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, 
CRKL, and BMP2 were identified in this study.

Validation of the methylation level of DMRs at indi-
vidual CpGs of the promoter region through targeted 
bisulfite sequencing on the NGS platform was carried 
out. Cytosine methylation in CpG is essential for cellular 

development and proliferation. However, non-CpG 
(CpA, CpT, and CpC) methylation is also present in dif-
ferent cell types and stages of cell development. Most 
of the non-CpG methylation is found in stem cells and 
pluripotent cells. The function of non-CpG methyla-
tion is still unclear however it is associated with altered 
gene expression. CpA methylation is reported to be the 
highest (about 12%) followed by CpT and CpC [36]. A 
few studies have demonstrated the functional associa-
tion of non-CpG methylation in breast cancer, brain lym-
phoma, and prostate cancer [37]. Some cancer-related 
genes also showed methylation at non-CpG sites like 
NOTCH3, GSTP1, and TP53 [38–40]. In primary effu-
sion lymphoma, the B-cell-specific B29 gene gets silenced 
due to non-CpG promoter methylation. Methylation was 
reported in densely clustered non-CpG regions in lung 
carcinoma [41, 42]. Studies highlighting the non-CpG 
methylation in cancer underscore the importance of 
investigating and comprehending the functional role of 
site-specific non-CpG methylation in the context of can-
cer epigenetics.

Targeted bisulfite sequencing analysis of POLR3B and 
CRKL gene revealed significant non-CpG methylation at 
particular loci. This study attempts to contrast non-CpG 

Fig. 6 The relative mRNA expression of top six hypermethylated genes using QRT-PCR between normal (n = 16) and ovarian cancer (n = 46) samples. The 
error bars associated with the data represent the standard error of the mean, and the height of each box represents the mean value of sample-specific 
fold change (2−△△ct) values. To calculate p-values, Student’s t-test was employed. *p < 0.05, **p < 0.01, ***p < 0.001, ns- non significant
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methylation at CpG islands between ovarian cancer and 
normal ovarian tissues.

In this study, two novel hypermethylated genes 
(POLR3B and GIGYF2) are reported with their expres-
sion levels in EOC. Limited reports are available related 
to expression levels of the other four hub genes (STK4, 
BMP2, CRKL, and PLXND1). POLR3B (RNA poly-
merase III subunit B) is the largest subunit of RNA pol III 
and participates in the transcription of rRNA and tRNA 
genes. Luo et al. identified a biomarker panel having 
POLR3B, which could significantly differentiate the stage 
I tumor patients in lung adenocarcinoma [43]. Similarly, 
Han et al. discovered 9 gene panel biomarkers contain-
ing POLR3B as a prognostic indicator of bladder cancer 
[44]. Targeted bisulfite sequencing results confirmed a 
significant difference in the methylation status of 3 sites 
of the POLR3B DMR region (a CpG island of 900  bp). 
Two non-CpG sites [CpT and CpA] were significantly 
hypermethylated and one CpG site was significantly 
hypomethylated. POLR3B hypermethylation was also 
correlated with its expression in our study.

GIGYF2 (Grb 10- interacting GYF protein 2) is known 
to regulate multiple signaling pathways involved in neu-
ral development. Zhu et al. reported the downregulation 
of GIGYF2 resulting in suppression of gastric cancer and 
gliomas [45, 46]. Promoter methylation of GIGYF2 was 
correlated with its downregulation in the present study.

PLXND1 (Plexin D1) is a receptor for semaphorin, 
SEMA3E, which is crucial in regulating migration and 
cell proliferation and scores a strong therapeutic poten-
tial [47]. Li et al. reported the prognostic significance of 
PLXND1 in hepatocellular carcinoma [48]. PLXNDI, in 
conjugation with SEMA3E, enhances the Epithelial-Mes-
enchymal Transition by activating the PI3/Akt signaling 
pathway in colorectal cancer and through SEMA3E in 
endometrioid cancer [49, 50]. Association of PLXND1 
with angiogenesis and cell migration is reported in cervi-
cal and prostate cancer respectively [51, 52].

CRKL (CRK-like proto-oncogene) is a cell signaling 
protein with one SH2 domain and two SH3 domains, 
facilitating interactions between proteins. Overexpres-
sion of CRKL may promote proliferation and invasion 
through the ERK signaling pathway in pancreatic can-
cer, breast cancer, small-cell lung cancer, gastric cancer, 
and myeloma [53–57]. CrkL is reported to control the 
CCL19/CCR7-induced EMT through the ERK signaling 
pathway in EOC [58, 59]. Our results indicate CRKL as 
a hypermethylated gene but on validation through tar-
geted sequencing, one hypomethylated non-CpG site 
(CpT-21,268,802 (p-value = 0.0130) turned out to be very 
significant in discriminating ovarian cancer from non-
cancerous state.

BMP2 (Bone morphogenetic protein 2) is a member 
of TGF-β (tumor growth factor-β). BMP2 is the most 

extensively investigated protein contributing to the devel-
opment of bones, EMT, and multiple signaling pathways 
[60]. High BMP2 expression is a promising therapeutic 
target in lung cancer [61]. In contrast, the downregula-
tion of BMP2 in colorectal cancer further impedes DNA 
replication and chemotherapy resistance [62]. BMP2 
causes the invasion and proliferation of gastric cancer 
cells through the activated PI3/Akt signalling pathway 
[63, 64]. Contrasting reports on the correlation between 
overexpressed BMP2 and poor prognosis and reduced 
BMP2 expression with a worse prognosis have been doc-
umented [65, 66]. Fukuda et al. observed elevated BMP2 
expression in ovarian cancer patients after chemotherapy 
[67].

STK4 (Serine/Threonine Kinase 4) is a key member 
of the hippo signaling pathway. It is also engaged in the 
AKT signaling pathway. Ready et al. reported that STK4 
inhibits cancer cell proliferation by regulating crucial 
oncogenic pathways, encompassing DNA repair and cell 
cycle regulation [68–72]. Peng et al. showed that STK4 
methylation mediated downregulation consequently 
facilitate the progression of thyroid carcinoma by activat-
ing the Hippo signaling pathway [73]. Promoter hyper-
methylation of STK4 was also reported in in human 
sarcomas and pancreatic cancer [74, 75].

Our study presents hypermethylated CGI of POLR3B, 
GIGYF2, and PLXND1 with the H3k27 mark. Our pre-
liminary results highlight targets (PLXND1, POLR3B, 
CRKL, GIGYF2, BMP2, and STK4) showing a negative 
correlation between promoter methylation gene expres-
sion. We also reported significant downregulation of 
these hypermethylated genes when analyzed through two 
GEO datasets (GSE5388 and GSE38666) and RNA-seq 
data (GSE212991).

Conclusion
This investigation showcased a comprehensive genome-
wide methylation profile of epithelial ovarian cancer 
(EOC) and identified six hypermethylated/downregu-
lated genes, (POLR3B, PLXND1, GIGYF2, CRKL, STK4, 
and BMP2) as potential diagnostic targets. The study 
also emphasized the potential of non-CpG sites to dis-
criminate ovarian cancer from the disease-free normal 
sample. Network analysis highlighted the pathways cru-
cial to cancer development, including the focal adhesion, 
Ras signaling pathway, and MAPK signaling pathway. 
POLR3B and GIGYF2, identified as novel hypermeth-
ylated genes, might serve as promising biomarkers for 
diagnosing and predicting the prognosis of ovarian can-
cer. These newly identified hypermethylated/downregu-
lated genes warrant further investigations regarding their 
potential as therapeutic targets.
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