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Abstract
Background To establish a prognostic risk profile for ovarian cancer (OC) patients based on cancer-associated 
fibroblasts (CAFs) and gain a comprehensive understanding of their role in OC progression, prognosis, and 
therapeutic efficacy.

Methods Data on OC single-cell RNA sequencing (scRNA-seq) and total RNA-seq were collected from the GEO and 
TCGA databases. Seurat R program was used to analyze scRNA-seq data and identify CAFs clusters corresponding to 
CAFs markers. Differential expression analysis was performed on the TCGA dataset to identify prognostic genes. A 
CAF-associated risk signature was designed using Lasso regression and combined with clinicopathological variables 
to develop a nomogram. Functional enrichment and the immune landscape were also analyzed.

Results Five CAFs clusters were identified in OC using scRNA-seq data, and 2 were significantly associated with 
OC prognosis. Seven genes were selected to develop a CAF-based risk signature, primarily associated with 28 
pathways. The signature was a key independent predictor of OC prognosis and relevant in predicting the results of 
immunotherapy interventions. A novel nomogram combining CAF-based risk and disease stage was developed to 
predict OC prognosis.

Conclusion The study highlights the importance of CAFs in OC progression and suggests potential for innovative 
treatment strategies. A CAF-based risk signature provides a highly accurate prediction of the prognosis of OC patients, 
and the developed nomogram shows promising results in predicting the OC prognosis.
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Introduction
Ovarian cancer (OC) is one of the most prominent and 
potentially lethal gynecological malignancies, with a 
reported 313,959 newly diagnosed cases and 207,252 
fatalities globally in 2020 [1]. Due to the lack of a mecha-
nism for early detection and specific early-warning symp-
toms, OC patients are often diagnosed at an advanced 
stage, resulting in a 5-year survival rate of only 47% [2]. 
Although conventional platinum-based chemotherapeu-
tic agents and cytoreductive resection can achieve com-
plete remission, the majority of patients will eventually 
develop treatment resistance [3]. Immunotherapy has 
made significant advances in the last two decades and 
has ushered in a new era in the treatment of various can-
cers [4]. Although the success rate of OC immunotherapy 
remains unsatisfactory, the use of immune-checkpoint 
inhibitors (ICIs), chimeric antigen receptor (CAR), and T 
cell receptor-engineered T cells is advancing rapidly [5].

The tumor microenvironment (TME) has recently 
been found to have an instrumental function in the car-
cinogenesis of OC [6]. A specialized subset of fibroblasts 
called cancer-associated fibroblasts (CAFs) performs 
a critical function in the microenvironment of solid 
tumors, where they can modulate cancer progression 
and metastasis [7]. It has been demonstrated that CAFs 
can promote cancer progression by secreting growth fac-
tors, cytokines, and chemokines, and by degrading the 
extracellular matrix (ECM) [8–10]. CAFs have also been 
shown to generate prometastatic cytokines in a paracrine 
manner, thereby facilitating the metastasis of OC cells 
[11]. Moreover, CAFs contribute to immune evasion by 
upregulating of immune checkpoint ligands and immu-
nosuppressive cytokines, hindering the infiltration of 
anti-tumor CD8 + T lymphocytes and provoking an anti-
tumor response through interaction with other immune 
cells [12]. Increasing evidence suggests that CAFs medi-
ate chemoresistance in OC [13]. Therefore, CAFs repre-
sent a promising therapeutic target for the treatment of 
OC [14].

The study aimed to fill a gap in our understanding of 
the role of CAFs in OC and to investigate their potential 
as a prognostic biomarker and therapeutic target. By ana-
lyzing scRNA-seq and transcriptomic data, the research-
ers could identify CAFs subclusters and develop a risk 
signature that was predictive of prognosis in OC patients. 
They also explored the relationship between the risk sig-
nature and the immune landscape of the tumor microen-
vironment and found that it was predictive of response 
to immunotherapy. Finally, the researchers developed a 
nomogram that integrated the CAF-based signature with 
other variables to aid in predicting the prognosis of OC 
patients in clinical settings.

Materials and methods
Data assembly and processing
Gene Expression Omnibus (GEO) data set GSE184880 
was obtained, which contained scRNA-seq information 
from seven OC samples and five ovarian tissues. Ini-
tially, single cells were assessed to ensure that each gene 
was expressed in at least three cells and that each cell 
expressed a minimum of 250 genes to generate scRNA-
seq data. The percentages of mitochondria and rRNA 
were subsequently calculated utilizing the PercentageFea-
tureSet tool in the Seurat R package. Additional screen-
ing was performed on the single cells by setting them 
to express a minimum of 6,000 genes with UMI > 100. 
Finally, 40,810 cells were retained. From The Cancer 
Genome Atlas (TCGA), we retrieved the transcriptomic 
data, copy number variations (CNV) data of the Masked 
Copy Number Segment, single-nucleotide variant (SNV) 
data, and relevant OC clinical data. We accessed the OV 
project of the TCGA database (http://cancergenome.nih.
gov/) to extract the transcriptomes and clinical data of 
379 OC patients, whereas the information on 88 normal 
tissues was gathered from the GTEx database. Patients 
without adequate clinical data were excluded from the 
analyses. After excluding samples of normal tissue and 
tumors derived from the GEO database lacking data on 
follow-up and outcomes, the GSE140082 cohort contain-
ing 380 OC samples was retrieved for use as a validation 
dataset. The literature was searched for ten cancer-asso-
ciated pathways, including HIPPO, TP53, NOTCH, PI3K, 
TGF-Beta, RAS, NRF1, WNT, MYC, and Cell Cycle [15].

Definition of CAFs
We performed a re-analysis of the OC scRNA-seq data 
with the aid of the Seurat program [16] to characterize 
the CAFs’ signature fully. The first step was to exclude 
the cells that had either > 5000 or < 250 expressed genes, 
which was accompanied by log normalization of these 
genes. Next, the uniform various approximation and 
projection approach was used for the non-linear dimen-
sionality reduction, with 15 principal components 
and a resolution of 0.1. With the use of the FindNeigh-
bors and FindClusters functions, single cells were orga-
nized into a variety of distinct subgroups (dim = 30 and 
resolution = 0.1). Afterward, the RunTSNE function 
was adopted to execute t-distributed stochastic neigh-
bor embedding (TSNE) dimensionality reduction. The 
four marker genes, namely ACTA2, FAP, PDGFRB, and 
NOTCH3 were identified as being specifically expressed 
in fibroblasts and were annotated accordingly. The Find-
Clusters and FindNeighbors tools from the original 
method were employed to re-cluster the fibroblasts. Clus-
ters of fibroblasts were then subjected to dimensionality 
reduction using TSNE. With the FindAllMarkers tool, 
marker genes for each CAFs cluster were determined 
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by performing pairwise comparisons across clusters 
based on an adjusted p-value < 0.05, minpct = 0.35, and 
logFC = 0.5. Employing the clusterProfiler program, an 
enrichment analysis was completed with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) on the CAF 
clusters’ marker genes [17]. Subsequently, the CopyKAT 
in R program was utilized to discriminate between 
tumors, and normal cells present per sample by analyzing 
the CNV features across the CAFs clusters [18].

Discovery of CAFs-related hub genes
The limma program was employed to search for dif-
ferentially expressed genes (DEGs) between tumor tis-
sues and normal tissues with a |log2(Fold change) |>1 
and false discovery rate (FDR) < 0.05 [19]. We next used 
Pearson’s correlation to determine which DEGs were 
most strongly associated with each CAF cluster. We used 
this information to determine the most important genes 
involved in CAF with p < 0.05 and cor > 0.4. In addition, 
genes associated with prognosis were discovered via uni-
variate Cox regression analysis in the survival package at 
a p-value < 0.05. We conducted a least absolute shrinkage 
and selection operator (Lasso) cox regression analysis to 
minimize the number of genes, after which a multivari-
ate Cox regression analysis was conducted using a step-
wise regression technique. The equation below describes 
the risk signature generated from the output values of 
the multivariate Cox model: risk score=

∑n
i=1(bi × Expi)

, whereby the risk signature gene is denoted by i, the 
expression profile of gene i is denoted by Expi, and bi 
denotes the gene i coefficients in the multivariate model. 
Zero-mean normalization was then performed to clas-
sify the patients into low- and high-risk categories. The 
timeROC program was utilized to conduct a receiver 
operating characteristic (ROC) analysis of the risk signa-
ture’s prediction accuracy. The validation cohort was also 
subjected to similar analyses.

Development of a risk signature and nomogram
To develop a nomogram model suitable for clinical appli-
cation, we initially conducted univariate and multivari-
ate analyses on clinicopathological and risk signature 
parameters. With the rms program, the factors in the 
multivariate model with a p-value of < 0.05 were utilized 
to construct a nomogram for estimating the prognosis 
of OC individuals [20]. The generation of the calibration 
curve aided in evaluating of the model’s ability to make 
accurate predictions. Decision curve analysis (DCA) was 
conducted to assess the model’s reliability.

Immune landscape analysis
The CIBERSORT algorithm [21], a method for evaluating 
immune cell infiltration, was employed to probe the dis-
tributions of 22 subtypes of immunocytes in the TCGA 

cohort. To additionally evaluate the TME, we used the 
ESTIMATE method to calculate stromal and immune 
scores [22].

Analysis of genetic mutations associated with CAFs
The “maftools” R software was utilized for the purpose of 
constructing the genomic landscape of CAF-associated 
genes with SNV and CNV from the TCGA datasets.

Prediction of immunotherapy sensitivity
To investigate the direct predictive value of the risk score 
on PD-1 therapy response, we utilized the IMvigor210 
cohort, which comprised 298 patients with urothelial 
carcinoma and included transcriptomic data along with 
treatment response to immunotherapy [23].

Validation using data in the cancer cell line encyclopedia 
(CCLE)
To validate the markers at the cellular level, we retrieved 
the mRNA expression patterns of those markers in 41 
fibroblasts and 69 OC cell lines from the CCLE platform 
(https://portals.broadinstitute.org/ccle) [24]. We used a 
heat map to analyze the differences in the expression of 
these markers between fibroblasts and OC cell lines.

Statistical analysis
The R software (v4.2.2) was applied to conduct all statisti-
cal data analyses. Pearson or Spearman correlations were 
utilized to create the matrices of correlation. All pairwise 
comparisons between the two groups were made via the 
Wilcoxon test. K-M curves and the Log-rank test were 
conducted to evaluate the significance of survival dif-
ferences. The significance criterion was established at 
P < 0.05.

Result
Evaluation of CAFs in scRNA-seq samples
After preliminary screening, the scRNA-seq data yielded 
40,810 cells. Figure S1 displays the detailed results of 
data preprocessing. Additionally, dimensionality reduc-
tion and log-normalization yielded 16 subpopulations, 
and using four marker genes-NOTCH3, PDGFRB, FAP, 
and ACTA2-five CAFs groups were found (Figures S2A, 
B). The cells of 5 CAFs clusters were extracted for further 
clustering and dimensionality reduction. The same clus-
tering algorithm was applied to the CAFs clusters, iden-
tifying of five CAFs clusters (Figures S2C, D). None of 
the five CAFs subpopulations showed expression of the 
epithelial cell-specific gene, thereby validating the reli-
ability of CAFs detection (Figure S3). The TSNE plot for 
the whole set of 12 distributions is presented in Fig. 1A. 
Consequently, five CAFs clusters were established and 
then analyzed (Fig. 1B). Overall, 1476 DEGs were found 
across the five CAFs clusters, and Fig.  1C displays the 

https://portals.broadinstitute.org/ccle
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Fig. 1 The identification of CAF clusters based on scRNA seq data of OC patients. (A) TSNE plot of the distribution of 12 samples; (B) TSNE plot of the 
distribution of five fibroblasts after clustering; (C) dot plot of the top 5 marker gene expression of subgroups; (D) subgroups in cancer tissue and Propor-
tion and cell number of adjacent tissue; (E) kegg enrichment analysis of 5 fibroblast subsets; (F) TSNE distribution map of malignant and non-malignant 
cells predicted by copykat package
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distribution of the five leading DEGs (detected as the 
gene markers of CAF clusters) throughout the five clus-
ters. Moreover, Fig.  1D depicts the distribution of the 
five clusters per cohort. The KEGG analysis findings in 
Fig. 1E illustrated the enrichment of these DEGs in sev-
eral different pathways, including the cGMP-PKG signal-
ing pathway, PI3K-Akt signaling pathway, focal adhesion, 
etc. Furthermore, 1533 cancer and normal cells are dis-
tributed throughout the five CAFs clusters based on their 
CNV features (Fig. 1F).

Expression profiles of cancer-associated pathways in CAFs
We analyzed the features of 10 tumor-related pathways 
in the five CAFs clusters to clarify the links between the 
clusters and tumor development. Figure  2A depicts the 
GSVA scores of the 10 tumor-related pathways across 
the various CAFs clusters. Notably, CAF_1, CAF_2, and 
CAF_3 had a significantly greater proportion of cancer 
cells than the other two clusters (Fig.  2B). Additionally, 
we compared cancerous and non-cancer cells within 
each CAF cluster using GSVA scores for the 10 tumor-
related pathways and found some modest variations 
(Fig. 2C–G). We initially computed the ssGSEA score of 
the marker genes of each CAF cluster using the TCGA 
dataset (Fig.  1C displays the five most significant DEGs 
from CAF clusters) to identify any associations of the 
CAFs clusters with prognosis. As shown by the data, 
tumor samples scored considerably higher on the CAF_1 
and CAF_3 clusters in contrast with normal samples, 
whilst other CAFs clusters showed the reverse pattern, 
with greater scores in normal tissues compared to tumors 
(Fig. 3A). The OC samples from the TCGA dataset were 
classified into high- and low-CAF score groups as per 
the optimal cut-off value analyzed by the survminer R 
package. Samples with higher CAFs scores fared poorly 
in both the CAF_0 and CAF_1 clusters in contrast with 
those in the low-CAF score group, whereas there was no 
correlation between the CAF_2, CAF_3, and CAF_4 clus-
ters and a poor outcome in OC individuals (Fig. 3B–F).

Discovery of CAFs-associated hub genes
We began by screening DEGs between tumor and nor-
mal tissues to develop a risk signature. Figure 5A dem-
onstrates the identified 5808 DEGs, with 2769 DEGs 
showing an upregulation and 3039 DEGs showing a 
downregulation. In addition, 530 genes, in particular, 
were strongly correlated with the prognosis-associated 
CAFs clusters. Moreover, univariate analysis was under-
taken to determine the prognostic significance of each 
gene and 66 genes was shown to be prognostic genes 
(Fig. 4A, B). After conducting Lasso Cox regression anal-
ysis to minimize the number of genes, only 14 remained 
with a lambda value of 0.0412 (Fig.  4C, D). Following 
the execution of multivariate analysis using the stepwise 

regression approach, we ultimately selected seven genes 
to construct the risk signature, including WD repeat 
domain 77 (WDR77), V-set, and immunoglobulin 
domain containing 4 (VSIG4), selectin L (SELL), man-
nosidase alpha class 2  A member 1 (MAN2A1), C-X-C 
motif chemokine ligand 9 (CXCL9), calcium voltage-
gated channel subunit alpha1 C (CACNA1C), and ETS 
transcription factor ELK3 (ELK3) (Fig. 4E). The ultimate 
equation for the 7-gene signature is as follows: risk score 
= (0.174*ELK3) + (0.397*CACNA1C) +(-0.181*CXCL9) 
+ (0.262*MAN2A1) + (-0.271*SELL) + (0.262*VSIG4) + 
(-0.158*WDR77). After applying the z-mean normaliza-
tion, we determined each sample’s risk score and cat-
egorized them as either high or low risk predicated on 
that score. In the TCGA dataset, the AUC values for the 
model for 1- to 5-year survival varied from 0.65 to 0.69. 
However, in the GEO dataset, they varied from 0.65 
(Fig.  4F, G). The Kaplan-Meier (KM) survival analyses 
illustrated that high-risk patients exhibited considerably 
worse survival status than those at low-risk in both the 
TCGA and GEO datasets (Fig. 4H, I).

Analysis of mutations and pathways in the hub genes
The next step involved analyzing the SNV mutations in 
each of the seven genes used to develop the risk signa-
ture. A larger number of samples were found to contain 
SNV mutations in CACNA1C, VSIG4, CXCL9, ELK3, 
and MAN2A1, but no SNV variants were found in 
SELL or WDR77 (Figure S4A). We examined the prob-
ability that these important genes would co-occurrence 
along with the top 10 highly mutated genes. Figure S4B 
shows that whereas mutations in the aforementioned 5 
genes did not show a statistically significant likelihood 
of co-occurrence, mutations in CSMD3 and CACNA1C 
did. We discovered that relatively few samples showed 
gain/loss of CNV in any of the 7 genes (Figure S4C). We 
investigated the links between the risk genes and various 
molecular signatures of OC to comprehend the nature 
of these links. The findings indicated that Homologous 
Recombination Defects, Fraction Altered, and the Num-
ber of Segments were strongly negatively correlated with 
ELK3, while CXCL9 and SELL were considerably posi-
tively associated with these same measures (Figure S4D). 
We also examined the possible pathways linked to each 
risk gene. Finally, as illustrated in Fig. 5A and B, the JAK-
STAT, the Toll-like receptors receptor, the chemokine 
signaling, etc., were among the 28 pathways substantially 
linked to these seven genes.

Association of hub genes with immunity
Based on our findings, we found that ELK3, CXCL9, 
MAN2A1, SELL, and VSIG4 all had positive associations 
with the stromal, immune, and estimate scores, whereas 
WDR77 had negative associations with all three (Figure 
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S5A). We then evaluated the three scores among groups 
that were differentiated by their median expression levels. 
Results demonstrated a considerable variation between 
the high-expression and low-expression groups regard-
ing the immune score for the ELK3, CACNA1C, CXCL9, 
MAN2A1, SELL, and VSIG4 genes, with the former 
exhibiting significant upregulation (Figure S5B). Strong 

inverse correlations were observed between M0 macro-
phages and CXCL9, MAN2A1, SELL, and VSIG4 (Figure 
S5C). Furthermore, analysis of correlations indicated that 
CXCL9, SELL, and VSIG4 exhibited a substantial positive 
correlation with most T cells (Figure S5D).

Fig. 2 The characteristics of tumor-related pathways in CAF clusters. (A) Heatmap of 10 tumor-related pathway scores enriched in CAF cells; (B) Compari-
son of CAF clusters in malignant and non-malignant cells; Comparison of GSVA score of each pathway between malignant and non-malignant cells in 
CAF_0 (C), CAF_1 (D), CAF_2 (E), CAF_3 cluster (F), and CAF_4. (*P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001). ns, not significant

 



Page 7 of 15Shen et al. Journal of Ovarian Research           (2024) 17:82 

Risk signature sensitivity to PD-L1 blockade 
immunotherapy
T-cell immunotherapy has made remarkable progress and 
is promising in treating cancer [25]. As a consequence, 

we evaluated the IMvigor210 risk signature’s predictive 
usefulness for immune-checkpoint therapy. Among the 
348 patients in the IMvigor210 cohort, response to anti-
PD-L1 receptor blockers varied, with outcomes ranging 

Fig. 3 The associations between the five CAF cluster and prognosis of OC patients. (A) Comparison of five CAF scores in cancer and normal tissues; K-M 
curves of the high and low CAF score groups in the five CAF cluster (B). **P < 0.01, ****P < 0.0001
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from complete response (CR) and partial response (PR) 
to stable disease (SD) and progressive disease (PD). As 
depicted in Fig.  6A, risk scores were higher in SD/PD 
patients as compared to CR/PR patients. A more signifi-
cant proportion of people with SD/PD were found in the 
high-risk group compared to those in the low-risk cate-
gory (Fig. 6B). Compared to the high-risk group, the low-
risk group in the IMvigor210 cohort saw more favorable 

clinical outcomes and had substantially improved overall 
survival (OS) (Fig. 6C). Figure 6D shows a substantial dif-
ference in survival duration across various risk groups for 
patients in Stages I and II but not for those in Stages III 
and IV (Fig. 6E). Evidence from this study revealed that 
the risk score was more accurate for individuals at an ear-
lier stage.

Fig. 4 Identification of the hub predictive genes to construct a risk signature. (A) Volcano plot of differentially expressed genes of cancer and normal 
tissues in TCGA cohort; (B) Volcano plot of prognosis-related genes identified from univariate Cox regression analysis; (C) The trajectory of each indepen-
dent variable with lambda; (D) Plots of the produced coefficient distributions for the logarithmic (lambda) series for parameter selection (lambda); (E) The 
multivariate Cox coefficients for each gene in the risk signature. (F) and (G) ROC curves of risk model constructed by 6 genes in TCGA cohort and GEO 
cohort; (H) and (I) K-M curves of risk model constructed by 6 genes in TCGA cohort and GEO cohort
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Detection of independent risk variables and formulation of 
a risk model
Through univariate and multivariate analyses, we incor-
porated the clinicopathological features and risk score 
to enhance the risk signature’s predictive performance 
power. The risk signature emerged as the most influen-
tial prognostic predictor of OC in a multivariate model 
[hazard ratio (HR) = 1.632, 95% confidence interval (CI): 
1.424–1.870, P < 0.001] (Fig.  7A, B). Consequently, the 
variables displayed in Fig.  7C (age, lymphatic invasion, 
residual disease, venous invasion, and risk score) were 
used to develop a nomogram. The nomogram’s ability to 
accurately predict real-world survival rates was proved 
via a calibration plot (Fig. 7D). Figure 7E further demon-
strates that DCA found the nomogram to be more dis-
criminative than the risk score and stage in identifying 
high-risk patients. Among the TCGA dataset, the AUC 
values of the risk score and nomogram were shown to be 
elevated in contrast with those of any other indicator, as 
evidenced by timeROC analysis (Fig. 7F).

Key gene validation in CCLE databases
We used the CCLE repository to confirm that fibroblast 
cell lines exhibited elevated mRNA expression levels of 
numerous genes (MAN2A1, CACNA1C, and ELK3) in 
contrast with OC cell lines (Wilcoxon test, all p < 0.001; 
Fig. 8A and B).

Discussion
CAFs play a critical role in promoting the growth of OC 
cells by inducing tumor cell proliferation, angiogenesis, 
and immune suppression [26]. Studies have shown that 
CAF-secreted IL-8 can enhance OC stemness and malig-
nancy, while exosomes from omental CAFs can increase 
peritoneal metastasis [27]. The gene GLIS1, which is 
upregulated in metastatic CAFs, can also promote OC 
cell migration and invasion [28]. However, much is still 
to be learned about the role of CAF-related genes in OC, 
and many researchers have focused on the impact of 
single genes. By studying gene signatures associated with 
CAFs, it may be possible to better understand the mecha-
nisms behind OC progression and develop more targeted 
treatment strategies.

In this work, we analyzed the diversity of CAFs and 
conducted a comprehensive characterization and cat-
egorization of CAFs of OC using scRNA-seq data. The 
TME was divided into five CAFs clusters, each of which 
had unique characteristics and may have helped regulate 
some aspect of TME biology. A growing body of research 
has established the predictive significance of a CAF-
associated gene signature in OC. Our findings showed 
that a score calculated from DEGs for the five clusters 
consistently illustrated that two clusters strongly corre-
late with the prognosis of OC individuals. Furthermore, 
CAF’s predictive performance could be attributed to the 
variations in WNT and NOTCH pathways we observed 
across CAFs groups. OC onset and progression may be 

Fig. 5 Identification of pathways that the risk genes involved in. (A) Gene-pathway correlation heatmap; (B) Enrichment score heatmap for key pathways. 
*P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 6 The responsiveness of risk score to PD-L1 blockade immunotherapy in IMvigor210 cohort. (A) Differences in risk scores among immunotherapy 
responses in the IMvigor210 cohort; (B) Distribution of immunotherapy responses among risk score groups in the IMvigor210 cohort; (C) Prognostic dif-
ferences among risk score groups in the IMvigor210 cohort; (D) Prognostic differences between risk score groups in early stage patients in the IMvigor210 
cohort; (E) prognostic differences between risk score groups in advanced patients in the IMvigor210 cohort. ****P < 0.0001
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enhanced by inhibiting apoptosis and promoting cell pro-
liferation and differentiation via the stimulation of the 
WNT signaling pathway [29]. Additionally, The Notch 
signaling pathway is proven as a prominent component 
of OC implicated in the proliferation, migration, inva-
sion, and treatment resistance [30].

Numerous studies have demonstrated that increased 
CAFs can act as an unfavorable prognostic factor in OC 
patients. Within the context of fibroblast biology and 
the tumor microenvironment in OC, CAFs, a group of 
non-immune-related tumor cells, may actively contrib-
ute to the proliferative, migratory, and metastatic capaci-
ties of tumor cells. Based on the high predictive value of 
two CAFs clusters, we have developed a CAF-based risk 
signature comprising seven genes. Of note, one of these 

genes, CXCL9, which acts as a ligand of CXCR3, has been 
reported to have a controversial role in tumor initiation 
and progression, exhibiting both positive and negative 
prognostic values depending on the type of tumor [31]. 
Interestingly, patients with OC who display elevated lev-
els of CXCL9 have shown significantly higher relapse-free 
survival rates than those with low levels [32]. In response 
to Ras signaling, the transcriptional inhibitor ELK3 is 
transformed into a transcriptional activator by the phos-
phorylation of extracellular signal-regulated kinase 1/2 
(ERK1/2) [33]. ELK3 overexpression has been observed 
in both OC cell lines and human malignancies [34]. 
CACNA1C, which encodes the alpha-1 subunit of a volt-
age-dependent calcium channel, has been linked to the 
modulation of cell adhesion, collagen fibril organization, 

Fig. 7 The development of a nomogram for predicting the prognosis of OC. (A, B) Univariate and multivariate Cox analysis of risk score and clinico-
pathological characteristics; (C) Nomogram model integrating the risk score and stage was constructed; (D) Calibration curves for 1, 3, and 5 years of 
nomogram; (E) Decision curve for nomogram; (F) Comparison of predictive capacity of clinicopathological features and the nomogram using time-ROC 
analysis. ***P < 0.001
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cell-matrix adhesion, cell response to amino acid stimu-
lation, and negative control of cell proliferation [35]. 
Previous research has shown a significant decrease in 
CACNA1C expression levels in OC tissues compared 
to healthy tissues [36]. The Golgi enzyme MAN2A1 is 
essential for transforming high mannose into a complex 
N-glycan structure to complete the glycosylation of pro-
tein membranes [37]. When fused with FER, MAN2A1 
transforms into an oncogene; around 80% of prostate 
cancer patients with MAN2A1-FER have exhibited a dis-
mal clinical prognosis according to earlier studies [38]. 
VSIG4, a novel macrophage protein linked to the B7 fam-
ily, can inhibit T cell activation and may be involved in 
the onset and progression of cancer [39]. By suppressing 
the activity of complement pathways or T cells and pro-
moting the development of regulatory T cells, VSIG4 can 
maintain immune system homeostasis, thereby inhibiting 

the progression of immune-induced inflammatory dis-
eases but promoting cancer advancement [40]. However, 
there is a scarcity of functional validation for the seven 
genes implicated in the CAFs of OC, necessitating fur-
ther investigations of the 7 CAFs markers.

New research indicates that CAFs may enhance tumor 
development through their interactions with the TME 
[41]. Our analysis revealed that six the prediction genes 
positively correlated with the immune score. In contrast, 
while one risk gene had a negative correlation, suggest-
ing possible interactions between these genes and the 
TME in OC. This highlights the potential of these genes 
as treatment targets for OC. The TME comprises various 
immune cells that work together to create an anti-tumor 
immune response. CAFs can create an immunosuppres-
sive TME that helps cancer cells evade immune surveil-
lance by interacting with immune cells. Our research 

Fig. 8 Differential expression of the 7 genes in OC in CCLE database. (A, B) The level of ELK3, CACNA1C, CXCL9, MAN2A1, SELL, VSIG4, and WDR77 in most 
ovarian cancer cell lines based on the CCLE database
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showed that the prognostic genes of the risk signature 
were positively correlated with many types of T cells, 
which play a critical role in tumor growth and are prom-
ising targets for immunotherapies such as ICI and CAR-T 
cell therapy [42]. The risk signature may also identify 
patients most likely to respond to immunotherapies.

Furthermore, the results demonstrated that a CAFs-
based signature might predict a patient’s response to 
anti-PD-L1 immunotherapy. Our findings provide valu-
able insights into CAFs’ role in reshaping the cancer 
niche and immune state in TME. Nevertheless, further 
studies are warranted to clarify the significance of CAFs-
TME crosstalk in OC and its potential for use in OC 
immunotherapy.

However, it is important to note that our study has sev-
eral limitations. First, we utilized retrospective data from 
public repositories to establish the CAFs clusters and risk 
signature. Therefore, it will be imperative to validate its 
effectiveness in additional prospective and multicenter 
studies involving OC patients in the future. Second, the 
CAF-based risk signature was only assessed for its poten-
tial prognostic value; further investigation is needed to 
elucidate the underlying mechanisms by which this sig-
nature contributes to the initiation and progression of 
OC.

Conclusion
Overall, the findings of our study suggest that CAFs play 
a critical role in the onset and progression of OC, and the 
CAF-based risk signature could function as a useful prog-
nostic tool for predicting the survival outcomes of OC 
patients. Moreover, the signature can also potentially aid 
in identifying patients who are most likely to benefit from 
immunotherapies. However, further studies are needed 
to validate the effectiveness of the signature in larger, 
multi-center OC cohorts and to elucidate the underly-
ing mechanisms and biological processes involved in the 
CAFs-TME crosstalk in OC.
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