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Introduction
Ovarian cancer (OV) is a malignant tumor that seriously 
threatens women’s health, with the third highest inci-
dence and the highest mortality rate among all malignant 
tumors of the female reproductive system [1]. Due to 
the lack of effective screening strategies, ovarian cancer 
exhibits late onset of clinical symptoms, so about 60% of 
ovarian cancer patients are already advanced at the time 
of diagnosis [2]. Although surgery, chemotherapy, bio-
logical therapy, and gene therapy are widely used in the 
treatment of OV, the 5-year survival rate of OV patients 
is still as low as 35–38% [1, 3]. Therefore, exploring the 
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Abstract
Background  Recent studies have provided evidence supporting the functional role and mechanism of lactate 
in suppressing anticancer immunity. However, there is no systematic analysis of lactate metabolism-related genes 
(LMRGs) and ovarian cancer (OV) prognosis.

Results  Six genes (CCL18, CCND1, MXRA5, NRBP2, OLFML2B and THY1) were selected as prognostic genes and a 
prognostic model was utilized. Kaplan-Meier (K-M) and Receiver Operating Characteristic (ROC) analyses were further 
performed and indicated that the prognostic model was effective. Subsequently, the neoplasm_cancer_status and 
RiskScore were determined as independent prognostic factors, and a nomogram was established with relatively 
accurate forecasting ability. Additionally, 2 types of immune cells (Central memory CD8 T cell and Immature B 
cell), 4 types of immune functions (APC co inhibition, DCs, Tfh and Th1 cells), 9 immune checkpoints (BTLA, CTLA4, 
IDO1, LAG3, VTCN1, CXCL10, CXCL9, IFNG, CD27) and tumor immune dysfunction and exclusion (TIDE) scores 
were significantly different between risk groups. The expression of 6 genes were verified by quantitative Real-Time 
Polymerase Chain Reaction (qRT-PCR) and the expression of 6 genes were higher in the high-grade serous carcinoma 
(HGSC) samples.

Conclusion  A prognostic model related to lactate metabolism was established for OV based on six genes (CCL18, 
CCND1, MXRA5, NRBP2, OLFML2B and THY1) that could provide new insights into therapy.
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pathogenesis of OV is of great significance for the early 
detection, diagnosis and treatment [4, 5].

Numerous studies have shown that lactic acid plays 
an important role in suppressing anti-cancer immunity 
[6]. Choi SY et al. indicated that lactic acid and the lac-
tic acid-generating metabolic microenvironment have 
a wide range of effects on cancer, such as: angiogen-
esis, local invasion, distant metastasis and anti-cancer 
immune response. Cancer-generated lactic acid could 
thus be viewed as a critical, immunosuppressive metab-
olite in the tumour micro-environment [7]. Yuanyuan 
Zhou et al. also revealed that the anti-tumor effect in 
OV could be exerted via antagonize the Warburg effect 
by inhibiting glucose consumption and lactic acid pro-
duction [8]. Rahul Bhattacharya et al. also suggested that 
the lactate metabolism-related gene FGF9 can induce 
the invasion of OV cells by enhancing the expression 
of VEGF-A/VEGFR2 [9]. In addition, Jiangdong Xiang 
et al. found that the increased expression of LDH, a key 
enzyme that regulates lactate metabolism, is associated 
with high metastasis, high invasion and low survival rate 
of OV [10]. However, few studies have comprehensively 
analyzed the relationship between lactate metabolism 
related genes (LMRGs) and the prognosis of OV.

Bioinformatics technology is a promising instrument 
for understanding the mechanisms of tumorigenesis and 
progression, and has been widely used in the study of a 
wide range of tumors [11–14]. In this study, we down-
loaded the OV RNA-sequencing data and clinical data 
from the TCGA database, classified OV patients accord-
ing to the 15 lactate metabolism-related genes retrieved 
from the MSigDB database, and identified the genes asso-
ciated with OV. Process-related differentially expressed 
genes constructed a prognostic risk model, which could 
provide potential targets for the clinical diagnosis and 
prognosis of OV.

Results
Survival analysis and correlation analysis of clinical 
features between patients with 2 clusters
The The Cancer Genome Atlas (TCGA) samples were 
divided into 2 clusters according to the K = 2 (Fig. 1A and 
B). The Kaplan-Meier (K-M) curves was shown that there 
is a significant difference in survival between patients 
with cluster1 and cluster2 (p = 0.00012) (Fig.  1C), with 
cluster1 patients having a good prognosis than cluster2 
patients. 7 lactate metabolism-related genes (LMRGs) 
were different between the 2 clusters, containing 
ACTN3, C12orf5, HAGH, HIF1A, LDHC, PARK7 and 
TP53 (Fig. 1D). Furthermore, the correlation analysis of 
clinical features found that the OS was significantly asso-
ciated with different clusters (Fig. 1E).

Analysis of immune infiltration among different clusters
There are 3 immune cells with differences among differ-
ent clusters in the MCPcounter algorithm (monocytic 
lineage, Neutrophils and Fibroblasts) (Fig. 2A). 8 immune 
cells with differences among different clusters in the ssG-
SEA algorithm (Central memory CD8 T cell, Gamma 
delta T cell, Macrophage, Memory B cell, Natural killer 
cell, Natural killer T cell, Regulatory T cell and T follicu-
lar helper cell) (Fig. 2B).

Differential gene analysis
A total of 194 differentially expressed genes (DEGs) 
were acquired from the cluster2 VS cluster1 (137 up-
regulated and 57 down-regulated genes) (Fig.  3A). In 
GSE66957 and GSE119054 datasets, 14,647 DEGs (8,732 
up-regulated and 5,915 down-regulated genes) (Fig.  3B) 
and 2,440 DEGs (1,288 up-regulated and 1,152 down-
regulated genes) (Fig. 3C) were acquired between tumor 
and normal, respectively. Subsequently, 926 overlapping 
DEGs (693 up-regulated and 233 down-regulated genes) 
were acquired from the GSE66957 and GSE119054 data-
sets (Fig. 3D), and 15 key genes were obtained from the 
926 overlapping DEGs and 194 DEGs (Fig. 3E).

Construction and validation of 6-genes prognostic model
Among the 15 key genes, 6 genes (CCL18, CCND1, 
MXRA5, NRBP2, OLFML2B and THY1) were selected 
(Fig.  4A) as prognostic genes. The 353 patients of the 
training set were grouped into high- (176) and low-
risk (177) groups based on the median risk scores 
(1.006764082) (Fig.  4B). The expression of CCL18, 
MXRA5 and NRBP2 were negative correlated with risk 
scores, and the expression of CCND1, OLFML2B and 
THY1 positive correlated with risk scores (Fig. 4C). The 
overall survival (OS) (p = 0.027) of risk groups were dif-
ferent (Fig. 4D). The AUCs of 1-, 3-, 5-year were higher 
0.6, indicating that the prognostic model was effective 
(Fig. 4E). Additionally, the prognostic model was verified 
in the GSE26712 dataset, and the results of gene expres-
sion, K-M analysis and Receiver Operating Characteris-
tic (ROC) analysis were consistent with the training set 
(Fig. 5A-D).

Risk model was associated with neoplasm cancer status 
and survival status
To investigate the correlation between risk models and 
different clinicopathological features, the correlation was 
performed on the Fig.  6A-B. The results indicated that 
the risk model was associated with neoplasm cancer sta-
tus and survival status.
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Independent prognostic analysis of risk models and 
construction of nomogram
Cox analyses were utilized to selected independent prog-
nostic factors. The neoplasm cancer status and RiskS-
core were screened by univariate Cox analysis (p < 0.05) 

(Fig. 7A). Subsequently, the neoplasm cancer status and 
RiskScore were determined as independent prognostic 
factors (p < 0.05) (Fig.  7B), and a nomogram was estab-
lished (C-index = 0.671) (Fig.  7C). The calibration curve 
and ROC curve indicated that the constructed prediction 

Fig. 1  Lactate metabolism related genes (LMRGs) could classify the clinical and molecular features of ovarian cancer. (A) Consensus clustering cumula-
tive distribution function (CDF) for k = 2 to k = 10 (up). Relative change in area under CDF curve according to various k values (down). (B) Consensus 
clustering matrix of 353 OV samples from TCGA dataset for k = 2. (C) Survival analysis of OV patients in Cluster 1 and 2 in TCGA cohort. (D) Violin chart of 
the expression levels of LMRGs in two clusters. *p < 0.05; ****p < 0.0001. (E) Stacking diagrams of the correlations of clinical features between two clusters
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model could be used as an effective model with relatively 
accurate forecasting ability (Fig. 7D and E).

Immune-related analysis between the risk groups
Since the immune microenvironment is closely related to 
tumorigenesis and progression, we performed immune 
infiltration analysis and assessed the effect of immuno-
therapy response. The results revealed that the expres-
sion of 2 types of immune cells (Central memory CD8 
T cell and Immature B cell) (Fig. 8A), 4 types of immune 
functions (APC co inhibition, DCs, Tfh and Th1 cells) 
(Fig.  8B), 9 immune checkpoints (BTLA, CTLA4, 
IDO1, LAG3, VTCN1, CXCL10, CXCL9, IFNG, CD27) 
(Fig.  8C) were significantly different between high- and 
low-risk groups. In addition, the tumor immune dysfunc-
tion and exclusion (TIDE) score (Fig.  8D) was signifi-
cantly higher in the high-risk group than in the low-risk 
group, indicating that the high-risk group was less sensi-
tive to immunotherapy.

Functional enrichment analysis
There were 51 DEGs in High_risk VS Low_risk. These 51 
DEGs were enriched in 152 Gene Ontoloty (GO)-biolog-
ical process (BP) terms and 12 KEGG pathways (Fig. 9A 
and B). These GO-BP terms and Kyoto Encyclopedia 
of Genes and Genome (KEGG) pathways were related 
with immune functions and pathways, such as negative 
regulation of T cell proliferation, negative regulation of 
immune system process, positive regulation of humoral 
immune response, negative regulation of T cell receptor 
signaling pathway and PI3K-Akt signaling pathway.

Moreover, the different enrichment GO terms and 
KEGG pathways of the High_risk VS Low_risk were 
related various cell signal transduction and metabolism, 
such as aortic valve morphogenesis, late endosome to lys-
osome transport, negative regulation of B cell mediated 

immunity, insulin signaling pathway, glycosaminogly-
can biosynthesis chondroitin sulfate, and glyoxylate and 
dicarboxylate metabolism (Fig. 9C and D).

Quantitative real-time polymerase chain reaction (qRT-
PCR)
The expression of 6 genes (CCL18, CCND1, MXRA5, 
NRBP2, OLFML2B and THY1) were verified by qRT-
PCR (Fig.  10). In addition, the expression of 6 genes 
were higher in the high-grade serous carcinoma (HGSC) 
samples.

Discussion
In recent years, great progress has been made in identify-
ing useful biomarkers in carcinoma and para-carcinoma 
tissue for diagnosis, prognosis prediction, and treat-
ment of cancer. In this study, we first downloaded the 
mRNA transcriptome and clinical data of OV from the 
public database, OV patients were divided into two sub-
types through consensus clustering based on the expres-
sion matrix of genes related to lactate metabolism. These 
results suggest a significant correlation between survival 
status and the different subtypes. Additionally, seven lac-
tate metabolism-related genes, ACTN3, C12orf5, HAGH, 
HIF1A, LDHC, PARK7, and TP53, were significantly dif-
ferent in different subtypes. In this study, a total of 15 
key genes related to the occurrence and development of 
OV were screened, of which 6 genes, CCL18, CCND1, 
MXRA5, NRBP2, OLFML2B, and THY1, were identified 
as prognostic biomarkers for OV, including only NRBP2 
was down-regulated in cluster2 OV tissues. Related lit-
erature showed that CCL18, CCND1, MXRA5, and 
THY1 were up-regulated in OV tissues [15–18], which 
is consistent with our research results. Although there 
is no study on the expression of OLFML2B and NRBP2 
in OV, Houriiyah Tegally et al. showed that OLFML2B is 

Fig. 2  Immune infiltration analysis. (A) Box plot of the expression levels of 10 immune cell types between two clusters by MCPcounter algorithm. 
*p < 0.05; **p < 0.01. (B) The expression levels of 28 immune cell types in two clusters were assessed by ssGSEA. The differences in two groups were com-
pared using Wilcox test. *p < 0.05, **p < 0.01
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over-expressed in gastric cancer and other cancers [19], 
Zhiyu Li et al. also showed that NRBP2 was significantly 
down-regulated in breast cancer tissues [20]. These stud-
ies have verified the reliability of our results.

The Cox regression analysis results showed that 
CCL18, MXRA5, and NRBP2 were protective factors for 
OV, while CCND1, OLFML2B, and THY1 were risk fac-
tors. Na Li et al. also constructed an OV risk model based 
on 5 biomarkers, among which CCL18 is also a protective 

factor [21]. Cecile Chenivesse et al. showed that CCL18 
is a cytokine that exhibits chemotactic activity on vari-
ous immune cells such as T cells, CD4 T cells, and CD8 
T cells, and plays a role in humoral and cell-mediated 
immune responses [22]. In our study, there were sig-
nificant differences in central memory CD8 T cells and 
immune B cells between high and low-risk groups, 
which may be potentially related to the over-expression 
of CCL18. Leilei Liang et al. also divided OV into two 

Fig. 3  Identification of 15 key genes. (A) Volcano plot showed 137 up-regulated (red) and 57 down-regulated genes (blue) in two clusters, and the heat-
map showed their expresion levels. (B) Volcano plot showed 8732 up-regulated (red) and 5915 down-regulated genes (blue) between OV and normal 
samples in GSE66957 dataset, and the heatmap showed their expression levels. (C) Volcano plot showed 1,288 up-regulated and 1,152 down-regulated 
genes between OV and normal samples in GSE119054 dataset, and the heatmap showed their expression levels. (D) Venn diagram showed 926 overlap-
ping genes by overlapping differentially expressed genes (DEGs) from GSE66957 and GSE119054 datasets. (E) 15 key genes were obtained by intersecting 
194 DEGs between two clusters and 926 overlapping genes
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subtypes based on 97 invasion-related genes, obtained a 
risk model constructed from 6 biomarkers, and proved 
that high expression of MXRA5 was associated with 
low-risk and had a protective effect [23]. NRBP2 is one 
of the pseudokinases discovered during neural differen-
tiation gene screening, which can inhibit the progression 
of various cancers such as medulloblastoma and hepato-
cellular carcinoma [24]. Zhiyu Li et al. have characterized 
NRBP2 overexpressing in breast cancer, revealing that 
such overexpression significantly inhibited cell prolifera-
tion and invasion, and inhibited epithelial-mesenchymal 
transition in cells in vitro. Conversely, knockdown of 
NRBP2 reversed these effects. They further illustrated 
that the anti-tumor effect of NRBP2 may be mediated 
by the AMPK/mTOR pathway [20]. CCND1, also known 
as cyclin D1, can sense the signal stimulation inside and 
outside the cell, bind and activate the cyclin-dependent 
kinase CDK4/6 to start the cell cycle, and is considered 
a mitotic cell sensor. Its abnormal expression will lead to 
cell cycle disorder and cellular dysfunction [25]. In addi-
tion, J Dai et al. further demonstrated that cisplatin treat-
ment could mitigate the overexpression of CCND1 in OV 
cells [16]. Besides, Harindra R Abeysinghe et al. proved 

that the expression of THY1 is associated with OV tumor 
suppression through mouse experiments, signifying a 
positive prognostic factor for OV [26]. These studies 
have verified the reliability of the risk model based on the 
above six biomarkers. After that, based on the neoplasm 
cancer status score and risk score, the nomogram was 
established to predict the 1-, 3-, 5-year survival rates of 
OV patients, which would further embody the use of the 
prognostic model in clinical practice.

The results of the immune microenvironment of the 
high- and low-risk groups showed that compared with 
the low-risk group, 2 types of immune cells, containing 
central memory CD8 T cell, immature B cell, 4 kinds of 
immune functions including APC co-inhibition, den-
dritic cells, Tfh and Th1 cell functions, and 9 immune 
checkpoints including BTLA, CTLA4, IDO1, LAG3, 
VTCN1, CXCL10, CXCL9, IFNG, and CD27 were signif-
icantly decreased in the high-risk group. Tfh is the spe-
cialized provider of T cells to help B cells and essential 
for the development of memory B cells [27]. The APCs 
are a group of cells that specialize in presenting antigens 
to T cells, of which dendritic cells, macrophages, and B 
cells are the main cell types [28, 29]. In addition, DEGs 

Fig. 4  Construction of a 6-genes prognostic model in the training set. (A) Forest plot of six prognostic genes. (B) The heatmap of the expression of six 
model genes in the high- and low-risk groups. (C) Kaplan-Meier survival curves of the training group using 1.006764082 as the cutoff value. (D) Receiver 
Operating Characteristic (ROC) curves for 1-, 3-, and 5-year survival in the training set (AUC: 0.746, 0.648, 0.6)
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between high- and low-risk groups were associated with 
T cell proliferation and T cell receptor signaling pathway. 
During the T-cell immune response, T-cell proliferation 
and T-cell receptor signaling pathways are important in 
triggering and directing T-cell activation and expansion. 
Thus, immune cells, especially T and B cells, are associ-
ated with the onset and development of OV, which will 
provide new insights into the immunotherapy in OV. 
Related studies have suggested that CCL18 can induce 
the activation of immune B cells [30], and regulatory fac-
tors in immune B cells can regulate the expression of the 
THY1 gene [31]. In addition, Mirco Friedrich showed 
that memory CD8 T cells may pass through a certain 
signal transduction that drives the differentiation of 

immune B cells to CD4 T cells [32], which may explain 
the decrease of immune B cells and the increase of mem-
ory CD8 T cells in the high-risk group. Experiments 
by Daniele Fanale et al. showed that the low expres-
sion of PD-1, PD-L1, BTN3A1, pan-BTN3As, BTN2A1, 
and BTLA can be used as markers for the diagnosis of 
advanced high-grade serous OV [33], and Xiazi Nie et 
al. also proved that immune checkpoints, CTLA4, IDO1, 
and LAG3 are all associated with poor prognosis in OV 
[34], in addition, CXCL10 and CD27 infiltration is associ-
ated with anti-tumor immunity and treatment response 
in OV subtypes [35, 36].

Finally, we performed functional enrichment analy-
sis on the 51 DEGs in the high- and low-risk group. The 

Fig. 5  Validation of the 6-genes prognostic model in the validation set. (A) Forest plot of six prognostic genes. (B) The heatmap of the expression of six 
model genes in the high- and low-risk groups. (C) Kaplan-Meier curves for the overall survival of lung adenocarcinoma patients with high- and low-risk 
groups. (D) Receiver Operating Characteristic (ROC) curves for 1-, 3-, and 5-year survival in the training set (the area under ROC curve (AUC): 0.613, 0.62, 
0.668)
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results showed that these DEGs were mainly enriched 
in the inhibition of T cell proliferation and T cell recep-
tor signaling pathway, PI3K Akt signaling pathway, ECM 
receptor interaction, focal adhesion, and multiple cell 
growth and development pathways. Relevant studies 
have suggested that OLFML2B may affect various can-
cer and immune-related pathways, such as ECM receptor 
interaction, focal adhesion, and transendothelial migra-
tion of leukocytes [19]. The tumor cells interact with 
various components in the ECM through their surface 
receptors After adhesion, protein-degrading enzymes 
are activated or secreted to degrade the matrix, thereby 

forming a localized dissolution zone and facilitating a 
channel for tumor cell metastasis. The enzymes that are 
more concerned in this process are mainly serine prote-
ases and metalloproteases [37]. In this study, these dif-
ferential genes associated with OV progression were also 
enriched in multiple pathways such as ECM receptor 
interaction, focal adhesion, collagen metabolic process, 
and cell response to amino acid stimulation. Negative 
prognostic genes such as OLFML2B may promote the 
adhesion of OV cells to certain components in the ECM 
through their surface receptors and activate the expres-
sion of metalloproteinases to degrade the matrix, thereby 

Fig. 6  Correlation between risk score and different clinical features for the training set. (A) Box plot of the correaltions between risk score and clinical 
features. (B) Heatmap of the associations between risk scores and clinicopathological features. **p < 0.01; ***p < 0.001
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promoting cancer progression. Meng Li et al. showed 
that DDTC could effectively inhibit cell growth through 
the PI3K/AKT/mTOR signaling pathway, thereby inhib-
iting the development of OV [38]. Similarly, our study 
also showed that the functions of genes like CCND1, 
COL1A1, COL1A2, LPAR3, etc. are mainly enriched in 
PI3K-A, TGF-β, Hippo signaling pathways. The TGF-β 
signaling pathway plays a key role in the cell and tis-
sue growth, development, and differentiation, exerting 
important regulatory effects on cell proliferation, inter-
stitial production, differentiation, apoptosis, embryonic 
development, etc. The Hippo signaling pathway is rec-
ognized as a growth-inhibitory signaling pathway, asso-
ciated with oxidative phosphorylation [39]. Obviously, 

these cytokines promoting OV cell growth affect the 
development of OV through the PI3K-Akt/TGF-β-Hippo 
signaling pathway. In addition, it is worth noting that 
compared with normal cells, the key biochemical fea-
ture of malignant tumor cells is the conversion of energy 
metabolism from oxidative phosphorylation to aerobic 
glycolysis. The excessive lactate production by cancer 
cells promotes tumor progression and is associated with 
tumor metastasis, angiogenesis, recurrence, treatment 
resistance and poor prognosis [40, 41]. Our study also 
demonstrated that genes related to lactate metabolism 
significantly affect the prognosis of OV.

However, this study has the following shortcomings to 
be further improved. First of all, the analysis of this study 

Fig. 7  Establishment of a prognostic nomogram. (A) Univariate Cox analysis of risk score and clinical features. (B) The multivariate analysis showed the 
independent prognostic factors. (C) A prognostic nomogram based on independent prognostic factors. **p < 0.01; ****p < 0.0001. (D) Calibration plot 
showed that nomogram-predicted survival probabilities corresponded closely to the observed proportions. (E) ROC curve showed that the nomogram 
could accurate forecasting the survival probability at 5-year survival
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was carried out based on the information of limited clini-
cal samples in the public database, and further expan-
sion of the sample size would be an immediate concern 
for us. Secondly, the results of this study need to be fur-
ther investigated by in vivo molecular experiments and 
the validity and clinical value of the prognostic model 
and nomogram need to be assessed in clinical practice. 
In addition, the prognostic value of metabolism-related 
genes in OV and their potential molecular mechanisms 
need to be further investigeted.

Conclusion
In summary, this study divideded OV into two subtypes 
based on lactate metabolism-related genes and con-
structed a prognostic model of OV by identifying dif-
ferentially expressed genes related to OV progression, 
providing potential for its clinical diagnosis and patient 
prognosis. Additionally, the functional enrichment anal-
ysis of the tumor microenvironment and differentially 
expressed genes in the high and low-risk groups further 
demonstrated the molecular mechanism of OV. In future, 
we can fully illustrate the molecular mechanisms of these 
biomarkers by further predicting their upstream miR-
NAs, downstream lncRNAs, potential TFs, and so on.

Materials and methods
Data source
The RNA-seq expression matrix data (updated to July 
20, 2019), survival information, and clinical informa-
tion of 354 OV samples were acquired from the TCGA 
database (https://xenabrowser.net, accessed 20 July 
2019) which of 353 cancer samples contained survival 
and clinical information. The GSE66957, GSE119054 
and GSE26712 datasets were acquired from the GEO 
database (https://www.ncbi.nlm.nih.gov/, assessed 1 
March 2022). The GSE66957 (57 cancer and 12 normal 
samples) dataset and GSE119054 (6 cancer and 3 nor-
mal samples) dataset were used to perform differential 
expression analysis between cancer and normal samples. 
The GSE26712 dataset containing 153 cancer samples 
with survival information was used as an external valida-
tion set for the survival risk-scoring model. The “lactate 
metabolism-related genes” was used as the keyword to 
search for LMRGs in the MSigDB database (http://www.
gsea-msigdb.org, 3 March 2022). A total of 15 LMRGs 
were obtained from the lactate metabolism-related path-
way (LACTATE_METABOLIC_PROCESS) in the c5.go.
bp.v7.4.symbols.gmt background gene set, including 
PARK7, LDHD, PNKD, HAGH, HIF1A, LDHA, LDHC, 

Fig. 8  The characteristics of immune infiltration based on six-gene model in the training set. (A) Box plot of the expression levels of 28 immune cell types 
between high- and low-risk groups by ssGSEA. *p < 0.05. (B) The expression levels of 13 immune cell types between high- and low-risk groups. *p < 0.05; 
**p < 0.01. (C) The expression levels of 12 immune checkpoints between high- and low-risk groups. ns, not significant; *p < 0.05; **p < 0.01. (D) TIDE scores 
in high- and low-risk groups. **p < 0.01
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MIR210, PFKFB2, C12orf5 (TIGAR), MRS2, TP53, 
SLC25A12, PER2 and ACTN3.

Consistent cluster analysis
Based on the expression matrix of LMRGs, the Con-
sensusClusterPlus package [42] was utilized to perform 

consistent clustering analysis on OV patients, and the 
best cluster method was selected by combining the front 
points with the largest changes in the CDF value and the 
downward trend of CDF. K-M curves of patients with 
different clusters were plotted to compare the survival 
probability using the survival [43]. The expression levels 

Fig. 9  Functional enrichment analysis of 51 DEGs between high- and low-risk groups. (A) The bubble plot of the top 10 GO BP terms were enriched for 
51 DEGs. (B) KEGG functional enrichment analysis for 51 DEGs. (C) The top 5 GO-BP terms enriched in high- (left) and low-risk (right) groups by GSEA 
analysis, respectively. (D) The KEGG pathways enriched in high- (left) and low-risk (right) groups by GSEA analysis.DEGs: differentially expressed genes; BP: 
biological process; GSEA: gene set enrichment analysis; GO: gene notology; KEGG: Kyoto Encyclopedia of Genes and Genomes
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of LMRGs among different clusters were compared and 
visualized by Wilcoxon. Test and ggplot2 package [44].

In order to understand the correlation between dif-
ferent clusters and clinical characteristics, chi-square 
test was utilized to compared the differences in the per-
centage of sub-types with different clinical character-
istics (age, OS, clinical stage, neoplasm cancer status, 
neoplasm histologic grade, and tumor residual disease) 
among clusters.

Analysis of immune infiltration among different clusters
The microenvironment cell populations counter (MCP-
counter) algorithm and the Single-sample gene set 
enrichment analysis (ssGSEA) were utilized to analyze 
the immune infiltration of patients with different clus-
ters. The R package ggplot2 was used to draw a boxplot 
and the Wilcox.test method was used to screen out the 
immune cells with differences between different clusters.

Differential gene analysis
The limma package [45] was applied to analyze the DEGs 
between clusters (cluster2 VS cluster1). Moreover, the 
DEGs between the cancer samples and normal samples in 
the GSE66957 and GSE119054 datasets (Tumor VS Nor-
mal) were acquired by limma package with P.Value < 0.05 
& |log2fold change (FC)| > 0.5 as the threshold. The 
online tool Venn was applied to intersect the DEGs of 
the cancer and control samples in the GSE66957 and 
GSE119054 datasets. Furthermore, the intersection of the 
differentially intersecting genes of Tumor vs. Normal and 

the differential genes between the above clustering clus-
ters were obtained.

Construction and validation of prognostic model
Based on the intersection of DEGs obtained above, the 
step function in the survival package was applied to per-
form multivariate Cox analysis with the parameter direc-
tion = “both” to obtain the prognostic genes.Depending 
on the median value of risk score acquired by the follow-
ing formula, the OV patients were separated into high- 
and low-risk groups.

	
risk score =

n∑

i=1

(βi ∗ Xi)

In this formula, βi refered to the regression coefficient 
and X refered to the expression value of the gene. Sub-
sequently, the K-M and ROC curves were painted by 
survminer package [46] and survivalROC package [47], 
respectively. Additionally, the prognostic model was vali-
dated in the GSE26712 dataset.

Correlation analysis between risk models and clinical 
characteristics
The ggplot2 was applied to show the difference of risk 
scores in different clinical characteristics (age, OS, 
clinical stage, neoplasm cancer status, neoplasm histo-
logic grade, tumor residual disease and cluster subtype) 
accessed by Wilcoxon.test method.

Fig. 10  Validation of the expression of six prognostic genes by qRT-PCR. *p < 0.05, **p < 0.01
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Independent prognostic analysis of risk models and 
construction of nomogram
The clinicopathological factors of 353 cancer samples in 
the TCGA dataset were included in univariate Cox analy-
sis to explore the independent prognosis of risk models 
and clinicopathological factors. The independent fac-
tors with p < 0.05 were included in the multivariate Cox 
analysis to obtain independent prognosis factors. In addi-
tion, the R package RMS [48] was applied to construct a 
nomogram to predict the 1/3/5-year survival probability 
of OV patients, and the calibration curve and ROC curve 
were drawn to verify the validity of the nomogram.

Immune-related analysis
The ssGSEA algorithm [49] was used to analyze the 
infiltertion of 28 types of immune cells and 13 types 
for the patients in two risk groups, and the ggplot2 was 
employed to draw a boxplot. The Wilcoxon.test method 
was employed to screen the differences in immune cells 
and immune functions between the risk groups.

The expression of immune checkpoints (VTCN1, 
BTLA, CXCL9, CTLA4, IDO1, LAG3, CXCL10, 
IFNG, CD27, PDCD1, CD274 and HAVCR2) were 
extracted from the training set, and the immunother-
apy response prediction analysis of patients in the risk 
groups were performed. Then, the R package ggplot2 
was used to draw boxplots using the Wilcox.test 
method to show the differential immune checkpoints 
and TIDE scores between the risk groups.

Functional enrichment analysis
The limma was applied to analyze the DEGs of high- 
and low-risk samples in the gene expression matrix, 
and the corresponding P.Value and logFC values 
were obtained. The DEGs screening condition was 
P.Value < 0.05 & |log2 FC| > 0.5. The R package clus-
terProfiler [50] was employed to analyze the BP in GO 
and KEGG enrichment analysis of the above DEGs 
involved. Moreover, the GSEA software (V4.0.3) was 
used to obtain the pathways or functions involved in 
genes that differ between the two phenotypes.

qRT-PCR
Based on 8 pairs of cryopreserved tissue samples, qRT-
PCR was performed to validate the expression of 6 
prognostic genes (CCL18, CCND1, MXRA5, NRBP2, 
OLFML2B and THY1). These samples were com-
mitted by the patients and the Ethics Committee of 
Shanxi Provincial People’s Hospital. Total RNA was 
extracted using TRIZol (Thermo Fisher, Shanghai, 
CN), and mRNA was reverse transcribed into cDNA 
sing SureScript-First-strand-cDNA-synthesis-kit (Ser-
vicebio, WuHan, CN). The qRT-PCR reaction sys-
tem was made up of 3ul of cDNA, 5ul of 2xUniversal 

Blue SYBR Green qPCR Master Mix and 1ul of each 
upstream and downstream primers. Finally, the reac-
tions were performed on a CFX96 real-time quantita-
tive fluorescence PCR instrument. The amplification 
reactions were programmed with pre-denaturation at 
95 °C for 1 min, followed by 40 cycles, each cycle con-
sisting of 95  °C for 20  s, 55  °C for 20  s, and 72  °C for 
30 s. The relative expression of genes was calculated by 
the 2−ΔΔCt method using GAPDH as the internal refer-
ence gene. Primers for prognostic genes were shown in 
Table 1.
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Table 1  The sequence of primers
Primer Sequence
CCL18 forward ​C​C​T​G​G​C​A​G​A​T​T​C​C​A​C​A​A​A​A​G​T​T
CCL18 reverse ​T​A​G​G​A​G​G​A​T​G​A​C​A​C​C​T​G​G​C​T​T​G
CCND1 forward ​C​A​A​T​G​A​C​C​C​C​G​C​A​C​G​A​T​T​T​C
CCND1 reverse ​C​A​T​G​G​A​G​G​G​C​G​G​A​T​T​G​G​A​A
MXRA5 forward ​T​A​T​C​A​A​C​A​C​C​C​T​C​T​T​C​C​G​A​C​C
MXRA5 reverse ​C​A​T​G​A​A​C​T​C​T​T​C​C​A​T​C​C​T​G​G​C
NRBP2 forward ​G​T​G​G​A​C​C​A​C​C​C​G​A​A​C​A​T​C​G
NRBP2 reverse ​C​C​T​G​A​T​G​A​C​A​C​G​T​A​C​T​C​T​G​T​G​A​T
OLFML2B forward ​G​A​C​A​A​G​G​T​C​A​A​G​G​C​T​A​T​G​T​C​T​G
OLFML2B reverse ​T​G​G​T​T​T​C​C​A​C​G​G​T​A​T​A​G​A​A​G​T​C​T
THY1 forward ​C​T​A​A​C​G​G​C​C​T​G​C​C​T​A​G​T​G​G​A
THY1 reverse ​G​G​T​T​C​G​G​G​A​G​C​G​G​T​A​T​G​T​G​T
internal reference GAPDH forward ​A​C​A​A​C​T​T​T​G​G​T​A​T​C​G​T​G​G​A​A​G​G
internal reference GAPDH reverse ​G​C​C​A​T​C​A​C​G​C​C​A​C​A​G​T​T​T​C
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