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Introduction
1% of women may experience reproductive senescence 
before age 40 for a variety of reasons, a condition called 
premature ovarian failure (POF) and is defined second-
ary to low serum estrogen levels and high gonadotropin 
levels during menopause [1]. In addition to traditional 
diagnostic markers, anti-Mullerian hormone (AMH) is 
an alternative diagnostic marker for determining ovar-
ian reserve function in women [2]. The consequences of 
POF include decreased fertility and an increased risk of 
osteoporosis, cardiovascular disease, dementia, decline 
in cognition, and Parkinson’s syndrome [3–7]. At present, 
hormone replacement therapy (HRT) is used in clinical 
practice to alleviate low estrogen symptoms in patients 
with POF, and assisted reproductive technology is used 
to solve fertility problems [8–10]. However, there is no 
effective treatment measure to improve ovarian function. 
Patients with POF usually have two or more autoimmune 
diseases. Even recurrent pregnancy loss in human beings 
is definitely associated with polyautoimmunity [11]. 
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Abstract
Thyroid hormones(THs) are essential for the proper functioning of the ovaries, and multiple studies have shown 
that thyroid abnormalities, especially during adolescence and reproductive age, can lead to lifelong ovarian 
dysfunction. Autoimmune thyroid disease (AITD), one of the most common organ specific autoimmune diseases, 
is mainly mediated by cellular autoimmune reactions, and has strong inflammatory infiltration and immune active 
cells, including chemokines and cytokines, which are important components of ovarian aging. This suggests that 
autoimmune and inflammatory molecular processes may play a role in the emergence of ovarian dysfunction. The 
purpose of this review is to summarize recent in vivo and in vitro evidence of a complex relationship between 
AITD and ovarian dysfunction. AITD is closely related to the decline of ovarian function from the perspective of 
antibody, cytokine, oxidative stress, and genetic factors. Finally, some of the currently known treatments for AITD 
and hypo ovarian disease are summarized.
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According to reports, the most common form of POF-
associated autoimmune disease is thyroid disease, with 
approximately 12–33% of POF patients presenting with 
varying degrees of Autoimmune thyroid disease (AITD) 
[12–15]. 

AITD is one of the most common organ-specific auto-
immune diseases with lymphocytes dysfunction caused 
by infection, trauma, and other stress factors based on 
heredity [16]. Hashimoto’s thyroiditis (HT) is the most 
frequent AITD, with a prevalence of about 18% among 
female adults [17]. Autoimmune thyroiditis can also man-
ifest as hyperthyroidism (Graves’ disease, GD). It is char-
acterized by abnormal increase or decrease of thyroid 
hormones and positive thyroid autoantibodies. There 
are also some patients with normal thyroid hormone 
levels, only showing positive antibodies. AITD leads to 
decreased fertility and an increased risk of pregnancy loss 
[18]. Increased risk of decreased ovarian reserve function 
in AITD-afflicted women of reproductive age [19–21]. 
Autoimmune thyroid disease may be an important risk 
factor for ovarian dysfunction. In the present review, we 
aim to provide an update review on the role of autoim-
mune thyroid disease in ovarian dysfunction.

Thyroid hormones (THs) is essential for normal 
ovarian function
Thyroid hormone receptors are expressed in human 
oocytes, thyroid hormone may affect ovarian function by 
directly acting on oocytes [22]. In humans, the expres-
sion of Thyroid hormone receptors is found to increase 
with the growth of follicles [22, 23]. It was confirmed 
through in vitro research that THs stimulate the growth 
of preantral follicles in rats, supporting the idea that THs 
may directly affect the ovaries [24]. In addition, thyroid 
hormone can affect ovarian function by influencing the 
release of gonadotropin-releasing hormone and Follicle-
stimulating hormone (FSH) from the hypothalamus-pitu-
itary-gonadal axis through negative feedback. It can also 
indirectly affect ovarian function by acting on insulin-like 
growth factor, prolactin and estrogen [25]. 

The steroid hormones released by granulosa cells are 
crucial for the normal development of follicles [26]. 
The interaction of T3 with the gonadotrophin hormone 
inhibiting excessive production of androgens by follicular 
membrane cells while simultaneously stimulating granu-
losa cells to secrete estrogen [27]. Estradiol, testosterone, 
and dihydrotestosterone are transported through the 
bloodstream via sex hormone-binding globulin (SHBG) 
[28]. THs can also affect the bioavailability of sex ste-
roids by regulating SHBG [29]. Studies showed that the 
serum T3 and T4 values were positively correlated with 
the follicular triiodothyronine (T3) and thyroxine (T4) 
values [30, 31]. Therefore, changes in serum THs levels, 
such as hypothyroidism and hyperthyroidism, may lead 

to ovarian hypofunction. T3 can also influence follicle 
development by stimulating the proliferation of granu-
losa cells and inhibit apoptosis by activating the PI3K/
Akt pathway [32]. This signaling pathway is involved in 
regulating the dormancy and activation of primordial fol-
licles [33, 34]. T3 has been shown to shield ovarian gran-
ulosa cells against chemotherapy [35]. 

Thyroid autoantibodies affect ovarian function
Thyroid autoimmune disease is an organ-specific autoim-
mune disease caused by humoral and cellular immunity. 
Many studies have shown that the autoimmune course of 
the disease begins with the specific activation of helper T 
cells (CD4) against thyroid antigens, stimulating autore-
active B cells to accumulate in thyroid tissue and secrete 
anti-thyroid antibodies [36–39]. Thyroid autoantibodies 
may can damage thyroid tissue by relying on cell-medi-
ated cytotoxicity and altering the function of target cells, 
but this claim is controversial and has not been directly 
proven [40–42]. Reportedly, 40% of women with POF are 
positive for at least one organ-specific autoantibody, the 
most common being antithyroid antibodies (20%) [43]. 
In a recent meta-analysis, the authors confirmed that the 
positive rate of anti-thyroid peroxidase antibodies (TPO-
Ab) was higher in POF patients but not in anti-thyro-
globulin antibodies (TgAb) [44]. The presence of TPO-Ab 
is associated with decreased ovarian function [45], which 
may have the following mechanisms: [46] (i) Thyroid 
autoantibodies are an epiphenomenon of generalized 
immune dysfunction [47]. TPO-Ab levels only represent 
differences in autoimmune levels and that other factors 
in the autoimmune process cause a decline in ovarian 
function. (ii) The decline in ovarian function is secondary 
to changes in THs. TPO-Ab can cause chronic lympho-
cytic thyroiditis, causing THs to fail to regulate ovarian 
function normally [48]. (iii) This association is affected by 
age, because the positive rate of TPO-Ab increases with 
age, and women’s ovarian function gradually declines 
with age, but this assumption is controversial [19, 49]. 
The presence of anti-thyroid antibodies (TgAb and TPO-
Ab) in follicular fluid of AITD women was confirmed in 
a study involving 5000 people, and serum antibody levels 
were positively correlated with follicular fluid autoanti-
bodies [50]. The concentration of antithyroid antibodies 
in follicular fluid is about half that of serum antithyroid 
antibodies and ultimately leads to ovarian dysfunction 
[51]. This mechanism may be related to the fact that anti-
thyroid peroxidase and antithyroid globulin antibodies 
can cross the blood follicle barrier during follicular mat-
uration and cause cytotoxic environmental damage to 
mature oocytes [50]. 

In addition, the zona pellucida(ZP) and thyroid tissue 
seem to share similar antigens. Therefore, some studies 
infer that the zona pellucida is the target of the thyroid 
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antibody [52, 53]. In mouse tissue, anti-zona pellucida 
antibodies cross-react only with the thyroid gland [53]. 
Bidirectional communication between oocytes and gran-
ulosa cells is achieved through microvilli and interstitial 
junctions in the ZP. The abnormal structure and function 
of ZP interfere with this communication process, result-
ing in ovarian dysfunction. Therefore, thyroid antibod-
ies may act on ZP in the ovary and induce autoimmune 
ovarian disease and POF through anti-zona pellucida 
antibodies.

AITD reduces ovarian function by affecting 
cytokines
Cytokines play an important role in the immunopathol-
ogy of AITD. As major cytokines, T lymphocytes are 
divided into the Th1 group and Th2 group. Th1 cells 
induce disease and accelerate disease progression. Th2 
cells can prevent and alleviate disease. In AITD patients, 
Th1 cytokine hyperactivity in the early stages is predomi-
nant [36]. In addition, Th17 cells also play a highly rel-
evant role in the pathogenesis of chronic inflammation 
and tissue damage observed in AITD, such as IL-17 and 
IL-22 [54–56]. Karanikas et al. demonstrated for the first 
time that thyroid peroxidase antibody titers were associ-
ated with Th1 cytokine production in patients with AITD 
and that groups with high antibody titers produced more 
Th1 factors such as Tumor Necrosis Factor alpha (TNF-
α) and Interferon-gamma (IFN-γ) than groups with low 
antibody titers and controls [57]. TNFα may acceler-
ate atresia by inhibiting the action of gonadotropins and 
blood supply to the ovarian follicle [58, 59]. Follicular 
atresia is encouraged by IFN-γ, which also causes the up-
regulation of apoptosis-promoting Fas molecules [60]. As 
a result, higher antibody titers in AITD can impair ovar-
ian function by increasing the production of pro-inflam-
matory cytokines including TNF-α and IFN-γ.

Regulatory T cells (Tregs) play an important role in 
regulating the immune system’s immune response to 
autoantigens and can suppress the immune response by 
secreting immunosuppressive cytokines [61]. But the 
percentage of Treg cells (CD4 + CD25 + Foxp3+) was sig-
nificantly decreased in the spleen of autoimmune ovar-
ian disease mice. Upregulating the number of Treg cells 
in the spleen can improve inflammatory response and 
restore damaged ovarian function [62]. Changes in T-cell 
subsets and T-cell-mediated immune impairment in 
patients with early ovarian insufficiency are indicated by 
decrease of CD4 + T cells, increment of CD8 + T cells, and 
reduction of CD4+/CD8 + ratio [63]. Cytokines expressed 
and secreted by T cells act on B cells to produce antibod-
ies that destroy the follicle, leading to a decrease in the 
number of follicles. These suggest that cellular immu-
nity also plays a key role in the destructive autoimmune 
response of the ovary.

AITD induces oxidative stress and reduces 
ovulation rate
Positive thyroid autoantibodies represent the activation 
of the immune system, activate complement or anti-
body-dependent cytotoxicity. This pathological process 
triggers excessive production of reactive oxygen species 
(ROS) which leads to increased oxidative stress in target 
organs [64, 65]. ROS is produced during normal ovar-
ian metabolism and is an essential substance involved in 
ovarian physiological activities in a balanced state. But 
once the balance between oxidative stress and oxidative 
defense is disrupted, the side effects of ROS will over-
whelm its physiological function, ultimately affecting 
follicular development and atresia, cell apoptosis as well 
as other cell activities [66]. Previous reports have shown 
that superoxide dismutase 1 (SOD1) mRNA and protein 
content were significantly increased in the ovaries of 
hypothyroid mice, and the cytoplasmic antioxidant gene 
catalase mRNA and protein content were significantly 
decreased [67, 68]. These changes indicate that the ovar-
ian cells of hypothyroid animals have decreased antioxi-
dant defense capabilities and increased oxidative stress 
levels. The significant reduction in the expression of 
mitochondrial antioxidant enzyme peroxidase protein 3 
(Prdx3) and cytoplasmic antioxidant enzyme glutathione 
peroxidase 3 (Gpx3) can also support the above view. In 
the ovaries of hypothyroid mice, strong staining of oxida-
tive stress marker 4-hydroxynonenal (4-HNE) in atretic 
follicular membrane cells, interstitial cells and corpus 
luteum were observed, suggesting the existence of oxida-
tive stress [69, 70]. These results suggest that the reduced 
ovulation rate in AITD is associated with disruption of 
the ovarian antioxidant defense system.

Thyroid hormone administration can induce activation 
of Nrf2 in the rat liver, and this activation can be inhib-
ited by the ROS scavenger N-acetylcysteine [71]. Nuclear 
factor erythroid 2- related factor 2 (Nrf2) is a member of 
the cap-n-collar subdivision of the basic domain-leucine 
zipper-type enzyme family responsible for regulating 
transcriptional frequency. Its function is to induce the 
production of cell defense proteins [72]. Nrf2 is highly 
expressed in ovarian tissues of reproductive age (8–12 
weeks old) mice, mainly located in the granulosa cells, 
secondary follicles and antral follicles of oocytes, and 
some research results indicate that Nrf2 protein signaling 
is necessary for the antioxidant process during ovarian 
aging [73]. In the same line, a recent study showed that 
in the lymphatic tissues of thyroid toxic mice treated with 
high-dose T4, ROS levels increased, and then Nrf2 was 
activated, and the transcription of genes encoding anti-
oxidant enzymes was upregulated [74]. The activation of 
Nrf2 by THs has been further confirmed in studies on the 
heart [75] and liver [76]. Although few studies have been 
conducted on the ovaries, the above analysis suggests 
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that thyroid autoimmune diseases may affect Nrf2, lead-
ing to abnormal ovarian function [77]. 

Genetic correlation between AITD and ovarian 
dysfunction
Genetic factors are important in the pathogenesis of auto-
immune thyroiditis. Using the candidate gene method, we 
conclude that the HLA-DR3, cytotoxic T-lymphocyte-
associated protein 4 and TSHR genes are the major sus-
ceptibility genes for GD and HT [78]. Among them, the 
HLA-DR3 haplotype is associated with increased risk of 
POF [79]. Methylenetetrahydrofolate reductase (MTHFR) 
catalyzes the conversion of 5,10-methylenetetrahydrofo-
late to 5-methyltetrahydrofolate, providing methyl groups 
in some methylation reactions [80]. DNA hypermethyl-
ation produced by MTHFR may cause AITD, leading to 
pathological changes in thyroid function [81]. The two most 
common genetic polymorphisms of the MTHFR gene are 
g.677 C > T and g.1298 A > C variants. But study has shown 
that MTHFR C667T/A1298C genotypes are not associated 
with POF development [82]. There is also different evidence 
that during follicular development, granulosa cells respond 
to FSH for proliferation, and the ovarian response to FSH 
stimulation and AMH levels in patients may be related to 
MTHFR polymorphism [83, 84]. These findings provide evi-
dence for the regulation of follicular development and ovar-
ian reserve by MTHFR A1298C polymorphism. One of the 
mechanisms by which genetic and environmental risk fac-
tors jointly promote AITD is through epigenetic control of 
gene expression. There is still very little research in this field. 
However, there has been wide confirmation of the role of X 
chromosome inactivation [85]. However, according to sev-
eral studies, X chromosome inactivation may not be associ-
ated with idiopathic POF [86, 87]. 

FMR1 gene mutations and autoimmune induction 
account for a majority of POF cases [88, 89]. Phenotypic 
expression of aberrant triple CGG amplification of the 
FMR1 gene includes abnormal increases in FSH levels, 
premature menopause, and premature ovarian failure [88]. 
To date, the underlying mechanism of FMR1 CGG repeat-
relevant ovarian function modulation has not been well 
investigated. One hypothesis is that during normal follicular 
development, FMRP is mainly expressed in granulosa cells, 
which is crucial for the maturation and growth of oocytes. 
Expansion of FMR1 CGG may lead to changes in transcrip-
tion levels, reducing FMRP levels, thereby affecting the 
expression of steroidogenic enzymes and hormone recep-
tors, ultimately affecting the occurrence of POF [90, 91]. 
The number of triple repeats in the FMR1 gene in autoim-
mune patients is statistically low, indicating that the risk of 
ovarian aging may not be related to mutations in this gene. 
This means that abnormal autoimmune function itself rep-
resents a risk of premature ovarian senescence [92]. It is also 
believed that cross-reactive epitopes with other endocrine 

organs most commonly involved in the thyroid gland may 
be responsible for the aberrant immune response of POF 
[93]. Previous observations have shown an increased risk 
of premature ovarian failure with an increase in the num-
ber of triple CGG amplifications [92, 94]. The above study 
indicates that abnormal autoimmune function and exces-
sive CGG triple duplication of the FMR1 gene can inde-
pendently induce premature ovarian failure [94]. This 
means that AITD women with CGG amplification ≥ 30 for 
the FMR1 gene clinically are at risk for premature ovarian 
senescence and therefore a prospective follow-up should 
be performed to find early clinical evidence to confirm this 
diagnosis [92]. 

Current treatments
Up to now, HRT has been mainly used clinically to main-
tain a series of clinical symptoms caused by ovarian hypo-
function [95]. There are also studies advocating gene and 
immunotherapy [18, 96–98]. There is increasing evidence 
that Stem Cell Therapy is a potential treatment for POF dis-
orders. Heme oxygenase-1 in umbilical cord mesenchymal 
stem cells activates autophagy regulated by the JNK/Bcl-2 
signaling pathway, upregulates the CD8 + CD28-T cell cycle, 
and restores ovarian function in mice with POF [99–101]. 
Another study has shown that transplantation of human 
placenta-derived mesenchymal stem cells can restore ovar-
ian function impairment induced by ZP3 immunity in mice 
[102]. The process of restoration of function is related to the 
proportion of Th17/Treg and Th17/Tc17 cells and the bal-
ance of the PI3K/Akt signaling pathway [103]. Stem cells 
may also provide therapeutic effects through paracrine sig-
naling, and exosomes show similar regeneration promoting 
characteristics with stem cells. Direct treatment with exo-
somes can avoid many adverse reactions of stem cell trans-
plantation [104]. The miR-369-3p carried by exosomes from 
human amniotic fluid stem cells can inhibit the expression 
of proteins such as YY1-associated factor 2, programmed 
cell death protein 5, and p53, reduce apoptosis of mouse 
ovarian granulosa cells, and thus exert therapeutic effects on 
premature ovarian failure [105]. 

At present, treatment studies in women with thyroid anti-
body positive are levothyroxine and intravenous immuno-
globulin. Intravenous immunoglobulin may modulate the 
transition from Th1 to Th2 cell response [106]. Adjusting 
the ratio of th1/th2 cell subgroups and correcting the imbal-
anced cytokines may become a new approach for immune 
prevention and treatment of AITD [107]. In a study that 
directly compared levothyroxine versus intravenous immu-
noglobulin therapy, women treated with levothyroxine had a 
higher live birth rate [108]. Similarly, the American Thyroid 
Association guidelines recommend that women with nor-
mal thyroid function who are antibody-positive and have 
recurrent miscarriages should not use intravenous immu-
noglobulin [109]. In addition, based on the importance 
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of MTHFR polymorphism, future studies should include 
larger sample sizes to establish associations, thus allowing 
the incorporation of MTHFR polymorphisms into screen-
ing of susceptible individuals. Once the mechanism and 
statistical relationship are established, clinicians introduce 
preventive guidelines for susceptible patients, and artificial 
supplementation of 5-methyltetrahydrofolate can reduce 
the risk of AITD by replacing the reduced MTHFR function 
[110]. 

Studies have shown that after thyroxine treatment, 
granulosa cells can increase gonadotropin-induced estra-
diol and progesterone production and promote ovarian 
follicle development in immature hypothyroidism rats 
[23, 111, 112]. The development of mature ovarian fol-
licles is greatly dependent on healthy thecal angiogenesis. 

Recent experimental evidence showed that thyroxine may 
promote ovarian follicular angiogenesis by up-regulating 
mRNA expression of major angiogenic factors [112]. 

Conclusion and future directions
In summary, recent findings highlight the close associa-
tion between AITD and ovarian dysfunction, supporting 
that AITD may be directly or indirectly related to ovar-
ian maturation and normal function through antibod-
ies, cytokines, oxidative stress, and genes (Fig. 1). Given 
the complexity of its function, THs may affect ovarian 
function through completely different mechanisms. Nev-
ertheless, most of the reviewed studies were conducted 
in animal models, and this limitation is also worthy of 
attention. It is becoming increasingly clear that thyroid 

Fig. 1  Schematic diagram of the possible mechanism of autoimmune Thyroid disease affecting normal ovarian function through antibodies, cytokines, 
oxidative stress and genes. a. Thyroid antibodies cross the blood follicle barrier and affect the microenvironment of follicles and target the zona pellucida, 
thereby affecting ovarian function. b. Cytokines secreted by Th1 accelerate follicular atresia by inhibiting the effect of Gonadotropin, the blood supply 
of follicles, and inducing the up regulation of apoptosis-promoting Fas molecule. The weakened effect of T regulatory lymphocytes on inhibiting inflam-
mation affects ovarian function. c. During oxidative stress, Nrf2 penetrates the nucleus, and then Nrf2 attaches to the antioxidant response element, 
which activates the expression of the antioxidant genes Srx and Prx 3, resulting in enhanced antioxidant defense. d. The HLA-DR3 haplotype is associated 
with increased risk of premature ovarian failure. Ovarian dysfunction caused by FMR1 gene CGG amplification ≥ 30 in women with autoimmune Thyroid 
disease. T4: L-thyroxine. T3: L-triiodothyronine. IFNγ: Interferon γ. TNFα: Tumor Necrosis Factor-α. Gns: Gonadotropins. Fas: factor associated suicide. IL-10: 
Interleukin-10. ARE: antioxidant response elemen
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antibodies and THs affect various metabolic pathways 
in the ovary through general activation of immune 
responses and specific regulation of various pathways. 
Currently, the relationship between AITD and decreased 
ovarian function is not yet fully understood. Therefore, 
an in-depth understanding of the potential damage of 
AITD to follicles in various aspects is of great importance 
for the prevention and treatment of ovarian diseases 
accompanied by thyroid dysfunction.
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