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Abstract
Background The clinicopathological parameters such as residual tumor, grade, the International Federation of 
Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 
5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit 
of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular 
prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection 
Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess.

Results Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient 
cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve 
(AUC) around 0.7 for predicting 5-year overall survival. The mPS’s impact on prognosis resonates profoundly, yielding 
an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65–10.3; p < 0.001), overshadowing conventional parameters—FIGO 
score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with 
focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated 
(p < 0.001) in high-risk HGSOC cohorts.

Conclusion Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential 
game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding 
alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion—a promising avenue 
for improving outcomes in high-risk HGSOC patients.
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Introduction
Epithelial ovarian cancer (EOC) is classified into differ-
ent categories based on histotypes and grade [1]. Despite 
the initial responses with cyto-reductive surgery and 
platinumbased chemotherapy, highgrade serous ovar-
ian cancer (HGSOC) continued to account for 70% of 
EOC-related cases with more than 75% deaths within 
10 years of initial diagnosis. It might be due to the high 
rate of intra-tumor genetic heterogeneity and chromo-
some instability within the HGSOCs [2, 3] subsequently 
supporting clonal evolution [4], resulting in chemo- or 
therapy- resistance. Therefore, a search for efficient gene 
signatures or prognostic markers is an urgent unmet clin-
ical need for HGSOC.

Survival prediction takes various factors into account; 
like age, the International Federation of Gynecology and 
Obstetrics (FIGO) stage, histology, residual disease, and 
tumor recurrence [5, 6]. However, prediction based on 
this orthodox clinical information has limited potential 
to give rise to a robust prognostic method. It is because 
of the complex interaction of various molecules as well 
as immunological factors leading to variable responses 
within the HGSOCs. Recently the molecular subtypes 
of HGSOCs based on transcriptome profiles have been 
identified [7, 8]. The most common and consensus sub-
types using various clustering algorithms are mesenchy-
mal, immunoreactive, differentiated, and proliferative. 
Although these molecular subtypes showed distinct and 
differential regulation of biological pathways between the 
groups, but showed relatively less influence on the sur-
vival of patients using the Cancer Genome Atlas (TCGA) 
HGSOC cohort data [9]. It has been reported previously 
that gene signatures could potentially and significantly 
play- a role in determining the survival of cancer patients 
[10] including ovarian cancer [9]. A similar approach has 
been applied using 101prognostic gene signatures for 
predicting the survival of HGSOCs [11]. This approach 
of using molecular gene signatures as prognostic marker 
has been studied or reported in various cancers: breast 
[12], colon [13], and prostate [14].

Herein, we proposed to develop a molecular prognos-
tic score (mPS), a machine learning approach for strati-
fying the prognosis of HGSOCs based on the expression 
of only 20 predictor genes and the associated coefficients 
as derived from Least Absolute Shrinkage and Selection 
Operator (LASSO)-Cox regression [15]. The proposed 
study design is schematically shown in Fig.  1. In this 
study, we have considered 1022 subjects/samples and 
screened or considered only 10,225 genes - found com-
mon in TCGA and Gene Expression Omnibus (GEO) 
databases. The micro-arraybased expression analysis of 
the same or similar platform (Affymetrix human U133A 
microarray or Affymetrix Human Genome U133 plus 2.0 
Array) has been used here to filter the common genes 

for subsequent analysis. These common genes across 
different datasets were further screened to obtain the 
prognostic gene signature of HGSOCs based on the Cox 
(proportional hazards) regression model [16]. Finally, fur-
ther trimming of prognostic genes and feature extraction 
was done by applying the LASSO-Cox regression model 
[16] on training datasets of HGSOCs. This resulted in 
obtaining predictive markers along with derived coef-
ficients that were subsequently used to obtain mPS that 
eventually determined the prognosis in test or validation 
datasets (Fig. 1).

Methods
Datasets
Gene expression raw microarray datasets were down-
loaded from TCGA viz., TCGA-OV (https://gdac.
broadinstitute.org/?cohort=OV) and GEO database 
managed by the National Center for Biotechnology Infor-
mation (NCBI) (https://www.ncbi.nlm.nih.gov/geo/). The 
GEO datasets are GSE18520 (n = 63), GSE26712 (n = 195), 
GSE26193 (n = 79), GSE63885 (n = 73), GSE14764 (n = 68). 
Combining TCGA-OV (n = 544) and GEO datasets 
(n = 478) resulted in a total of 1022 clinical samples with 
10,225 as the common gene symbols across all datas-
ets. The datasets underwent preprocessing and normal-
ization using the Robust Microarray Average (RMA) 
approach. Quantile normalization, followed by batch 
effect removal, ensured consistent patterns or log ratios 
across various datasets (Appendix A Suppl Fig. S1). To 
eliminate outliers, a correlation matrix of mRNA expres-
sion (Array-Array Intensity correlation) [17] with a cutoff 
of 0.7 was employed, resulting in 1016 samples for subse-
quent analysis.

Differential gene expression
Differential gene expression analysis was conducted 
between HGSOC cases (n = 988) and control samples 
(n = 28) using R (version 4.1.0)/ Bioconductor, limma, and 
associated packages. Genes with a fold-change (FC) ≥ 1.5 
and a false discovery rate (FDR) < 0.05 were considered as 
differentially expressed. The methodology is illustrated 
schematically in Fig. 1.

Univariate analyses on differential gene expression
The significantly (FDR < 0.05) differentially expressed 
genes (DEGs) between HGSOC tumors and controls, as 
explained above, were selected. To investigate prognos-
tic genes, we utilized univariate Cox proportional haz-
ards regression analyses [16] on these DEGs (HGSOC 
vs. Control) along with the corresponding survival data 
from HGSOC cohorts. The genes influencing the sur-
vival of HGSOC patients were filtered based on log-rank 
p-value < 0.05 and hazard ratio (HR) either greater than 
1.1 or less than 0.9. This pre-filtering strategy, akin to 

https://gdac.broadinstitute.org/?cohort=OV
https://gdac.broadinstitute.org/?cohort=OV
https://www.ncbi.nlm.nih.gov/geo/
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approaches used in previous studies [13, 18], aims to mit-
igate noise (number of genes > > number of samples) [12, 
19] prior to applying multivariate analyses.

Regularized Cox Regression on selected genes
The genes identified through univariate analyses under-
went further scrutiny in a multivariate regression analy-
sis. This involved employing the LASSO estimation, 
implemented using R/Rstudio with the “glmnet” package 
[15, 20]. The HGSOC samples were divided randomly 
into training (n = 491) and test (n = 491) datasets. The pre-
dictor-gene signatures (predictor variables; genei) and the 
corresponding coefficients (coefi) were then utilized to 
formulate the mPS or risk score, using the training data-
set, as illustrated in the equation below.

 mPS =
∑

n
i genei ∗ coefi

Utilizing the predictor variables (e.g., genes) and their 
associated coefficients, we proceeded to predict the test 
datasets. Receiver operating characteristic (RoC) curve 
analyses were then carried out at different time points (in 

years) using survival data [21] to evaluate the predictive 
capacity.

The molecular prognostic score (mPS) determines the risk 
score for overall survival
The mPS or risk scores obtained, as mentioned above, 
were used to divide or partition the samples (HGSOC 
patients) into high (values above the median) and low-
risk groups, determined by the median values of mPS. 
The HGSOC samples were also divided into quartiles, 
forming four equal parts based on associated mPS values. 
Subsequently, a Kaplan-Meier survival plot was gener-
ated using R with ‘survival’ and ‘survminer’ packages.

Gene enrichment analysis using GO and KEGG databases
The gene enrichment analysis [22] was conducted by 
applying the Bioconductor package ‘limma’ [23]. This 
analysis aimed to uncover the roles of various pathways 
associated with different groups in HGSOC cohorts. The 
functions ‘goana’ and ‘kegga’ conducted over-represen-
tation analyses for Gene Ontology (GO) terms or Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways, 
respectively. The list of differentially expressed genes 

Fig. 1 Methodology adapted to screen and filter genes for obtaining molecular prognostic score (mPS) based on prognostic signature genes: RNA 
expression data obtained from TCGA and GEO as indicated were used to find prognostic genes. These prognostic genes were further used in training da-
tasets, 10-fold cross validation to obtain predictor genes and associated coefficients (feature extraction) after applying LASSO regression. These predictor 
genes and the derived mPS were applied in validation or test datasets. It was also applied in different mRNA expression platforms such as RNA Sequenc-
ing by Illumina and NanoString. DEGs; Differentially expressed genes that are significantly (FDR < 0.05) expressed between tumor samples as compared 
to normal samples. AI; Artificial intelligence. OTTA-SPOT; Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumors
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(FDR < 0.05) with the associated Entrez Gene IDs was 
used as a gene set for over-representation or pathway 
enrichment analysis. The MArrayLM method automati-
cally extracted the gene sets from a linear model fit object 
[23]. The top 20-dysregulated pathways based on p-val-
ues were shown.

Data mining and analyses
Data retrieval from repositories (TCGA, GEO) and 
subsequent analysis were performed using R/Rstudio, 
specifically R version 4.1.0. The analysis code, detailed 
packages, and approach are available at the following 
link: https://rpubs.com/siddik/mPS. The various pack-
ages and other associated base packages are described 
briefly in Appendix A Supplementary file.

Results
Differential gene expression and gene set enrichment 
analysis (GSEA) between ovarian carcinoma and normal 
ovarian tissue
A subset of data encompassing 10,225 genes and 1,016 
samples with a minimum gene expression matrix corre-
lation of 0.7 was selected. The data utilized in this study 
spans five different datasets as mentioned in the Meth-
odology section. Appendix A Suppl Table S1 provides 
detailed information about the samples, including 988 
ovarian cancer samples and 28 normal samples repre-
senting ovarian surface epithelial cells without indica-
tions of ovarian tumors.

Multidimensional scaling plots were generated to visu-
alize distances between gene expression profiles of the 
samples. Pairwise distances between samples were calcu-
lated using the top 500 variable genes, revealing separa-
tion or clustering patterns. Notably, the samples within 
the same dataset were clustered together (Appendix A 
Suppl Fig. S1) rather than the types of samples (normal 
vs. cancer) indicating the requirement for the removal 
of batch effect prior to further analysis. This observation 
emphasized the necessity to address batch effects before 
further analysis. To mitigate the batch effect attributed 
to different datasets, a corrective step was implemented 
(Appendix A Suppl Fig. S1). This adjustment aimed to 
establish a uniform pattern of log2-expression ratios 
across subjects and samples, independent of the origi-
nating datasets. This process ensured a more robust and 
consistent foundation for subsequent analyses, facili-
tating a more accurate exploration of gene expression 
dynamics.

The differential gene expression was performed 
between normal (n = 28) and primary HGSOC (n = 973) 
samples. Among the analyzed genes, 649 were down-
regulated and 473 were upregulated in the primary 
HGSOC tumors compared to normal samples of ovar-
ian surface epithelial tissues without any indications of 

tumors (Fig.  2A, and Appendix A Suppl Table S2). The 
top ten dysregulated genes based on adjusted p-value 
(FDR < 0.05) and fold change, were illustrated in Fig. 2B. 
Noteworthy, the upregulated genes included CP (Cerulo-
plasmin Ferroxidase), FOLR1, TOP2A, CRABP2, MAL, 
SOX17, CKS2, TPX2, S100A2, and UBE2C, while the top 
downregulated genes were ABCA8, ALDH1A2, BCHE, 
EFEMP1, NELL2, HBB, TCEAL2, SFRP1, HBA2 and 
FLRT2.

To elucidate pathways involved in HGSOC, gene 
enrichment analyses were performed on these 
1,122(649 + 473) differentially expressed genes. Accord-
ing to the Gene Ontology (GO) database, upregulated 
genes were predominantly associated with cell cycle pro-
cesses, cell cycle transition, cell/nuclear division, chro-
matin organization, chromatid segregation, and DNA 
replication (Appendix A Suppl Table S3). KEGG pathway 
analysis revealed dysregulation in cell cycle, Comple-
ment and coagulation cascades, DNA replication, Oxi-
dative phosphorylation, ECM-receptor interaction, and 
Drug metabolism-cytochrome P450 (Fig.  2C, Appendix 
A Suppl Table S4).

Given the importance of cell cycle-related molecules 
in cancer, a detailed analysis focused on the cell cycle 
pathway was conducted. Using the Bioconductor pack-
age ‘Pathview’: a tool set for pathway based data integra-
tion and visualization [24], differential expressed genes of 
primary tumors were mapped onto the cell cycle pathway 
(hsa04110). Among the 25 differentially upregulated mol-
ecules, 23 were significantly associated with cell prolifer-
ation and tumor mass in HGSOC. The cell cycle-related 
molecules are ARF, Ink4a (CDKN2A), CycD, CycA, 
CycB, Cdc7, ChK1, MCM (minichromosome mainte-
nance complex component), and others (Fig. 2D).

Construction of risk model
In the analysis, 1,062 differentially expressed genes were 
identified in tumors compared to normal samples, with 
an adjusted p-value (FDR) < 0.05 (Appendix A Suppl 
Table S2). Subsequently, these genes were subjected to 
univariate Cox regression analyses, further refined by 
log-rank testing (p-value < 0.05) and restricting the haz-
ard ratio (HR) either greater than 1.1 or less than 0.9. 
A total of 122 genes emerged, with 63 associated with 
worse overall survival (HR > 1.1, p-value < 0.05) and 59 
linked to improved survival (HR < 0.9, p-value < 0.05) for 
HGSOC patients (Appendix A Suppl Table S5).

The selected 122 genes were then employed to con-
struct a LASSO estimation using a training dataset com-
prising 491 randomly chosen samples from both TCGA 
and GEO data cohorts. A log(Λ) vs. partial likelihood 
deviance plot [25] was generated with different alpha (α) 
values, revealing that the optimal fit occurred with α = 1, 
signifying the LASSO regression model (Fig.  3). The 

https://rpubs.com/siddik/mPS
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10-fold cross-validation, also with α = 1, was employed 
for LASSO estimation in further analyses. Dotted vertical 
lines on the plot denote corresponding Λ values (primary 
x-scale) and gene numbers (secondary x-scale) with min-
imal deviance on the left. The right vertical line signifies 
the most regularized model with a cross-validation error 
within 1 standard deviation of the minimum.

From this analysis, 20 predictor genes were identified, 
and their associated coefficients were determined using 
LASSO regression (Table  1). Detailed information on 
these 20 predictor genes, including relative expression, 
fold change (tumor vs. normal), and hazard ratio (HR), is 
provided in Appendix A Suppl Table S6. The 20 predic-
tor genes and their coefficients were then used to calcu-
late the mPS score. This mPS score serves as a predictive 
metric for the survival of HGSOC patients.

Survival analysis based on molecular prognostic score 
(mPS)
In this study, mPS or risk score was meticulously devel-
oped based on the expression levels of 20 predictor 
genes. The resulting score was stratified into high and 
low-risk groups using median values, forming the basis 
for subsequent analyses.

To validate the robustness of the mPS, a two-fold 
approach was adopted. First, the training dataset com-
prising 491 samples was utilized, followed by the appli-
cation of the mPS to the remaining 491 samples as the 
test dataset. The outcomes of this validation process were 
compelling, revealing significant differences in survival 
curves between the identified high and low-risk groups 
(Fig. 4). The log-rank p-values, both for the training and 
test datasets, were less than 0.0001, reinforcing the prog-
nostic efficacy of the mPS.

Survival analyses further unveiled noteworthy insights. 
In the training dataset, the median overall survival (OS) 

Fig. 2 Differential gene expression and pathways involved in HGSOC A; Mean-difference plot (aka MA plot) with color coding for highlighted points 
(genes) that are differentially expressed in primary tumor (TP) as compared to normal samples (NT). B; Box plot showing the top ten dysregulated genes 
in primary tumor (TP) vs. normal samples (NT). C; The key biological/ molecular pathways that are upregulated (Up; red color) or downregulated (Down; 
blue) are shown by bubble-plot. The number denotes the number of genes that are significantly up/down regulated. The pathways indicated are curated 
from KEGG pathway database. D; The key molecules involve in cell cycle (hsa04110) regulation with FDR < 0.05 and the indicated log2-fold change are 
shown by gradient color scale
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time for the high-risk group was 1024 days (95% Confi-
dence Interval (CI): 914–1168), while the low-risk group 
exhibited a median OS time of 1699 days (95% CI: 1446–
2012) (Fig. 4A; Table 2). Similarly, in the test dataset, the 
high-risk group displayed a median OS time of 1091 days 

(95% CI: 1006–1234), whereas the low-risk group dem-
onstrated a more favorable median OS time of 1976 days 
(95% CI: 1764–2279) (Fig. 4C; Table 2).

Furthermore, a granular exploration of the training 
samples involved their division into quartiles (Q1, Q2, 
Q3,and Q4) based on the mPS score. Q4 bearing the 
highest with Q1 bearing the lowest mPS score. The sur-
vival curves were then generated for these equally divided 
quartiles (Q1, Q2, Q3 and Q4) to obtain a median over-
all survival (OS) time. The median OS time in days were 
2621, 1354, 1203, and 914 for Q1, Q2, Q3,and Q4 sub-
groups, respectively (Fig.  4B, and Table  2). The median 
mPS of respective quartiles were also obtained, and then 
the Pearson correlation between the median mPS of the 
quartiles and the respective median OS time was calcu-
lated. In the training data, an inverse relationship (r2= 
-0.902, p = 0.049, Pearson correlation) between mPS (risk 
score) and median OS time was observed. Similarly, a 
strong inverse correlation was also observed in test data 
(r2=-0.954, p = 0.02) between the mPS score and OS time. 
This indicates that the mPS score can not only qualita-
tively indicate survival time but can also quantitatively 
measure or predict survival time (Fig. 4B and D; Table 2). 
The heat map generated using the relative expression of 
poor predictor (n = 9 genes) vs. good predictor (n = 11) 
genes (Appendix A Suppl Fig. S2) could potentially clus-
ter both the training and test datasets based on mPS.

Table 1 Predictor genes and associated coefficients
SL genei coefi
1 RHOT1 0.1789
2 RPS6KA2 0.1459
3 ASAH1 0.1090
4 RASA1 0.1043
5 EDNRA 0.0750
6 NUCB1 0.0374
7 GFPT2 0.0296
8 LYVE1 0.0201
9 PIK3R1 0.0149
10 BACE2 -0.0047
11 WT1 -0.0074
12 ZNF330 -0.0075
13 GREB1 -0.0166
14 SCTR -0.0402
15 FAM8A1 -0.0455
16 INPP1 -0.0597
17 DIAPH2 -0.0826
18 P2RX7 -0.0907
19 BTN3A3 -0.1002
20 TMED10 -0.2182

Fig. 3 LASSO regression and selection of various parameters: LASSO model fitting on 122 prognostic genes affecting overall survival: The plots with alpha 
(α) = 1, i.e., LASSO (top left), alpha (α) = 0.5; elastic net (top right) and alpha (α) = 0; ridge regression (bottom left) are shown. The combined/ merged plot 
(bottom right) with regression curves for LASSO (α = 1), elastic net (α = 0.5) and ridge (α = 0) regression are shown for comparison
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Prediction based on risk score obtained using 20-gene 
signature
The 20-gene signature was derived based on values plot-
ted in the graph (Fig.  3) using 10-fold cross-validation 
on both training and test datasets containing HGSOC 

samples from different datasets. The derived mPS, based 
on these 20 genes, was further applied to study sensi-
tivity and specificity using receiver operating charac-
teristic (RoC) curve for survival data. The Area under 
curve (AUC) values of RoC curves indicated the pre-
dictive capacity of the prognostic model. Our prognos-
tic model for predicting ovarian cancer OS appeared to 
be efficient, with AUC values were around 0.70 (± 0.03) 
and 0.68 (± 0.03) across the span of 5 years for training 
(Fig. 4E) and test HGSOC samples (Fig. 4F), respectively. 
This suggests that our model is a very effective predictor 
for determining the risk or OS time in HGSOC patients 
(Fig. 4).

Commonly used clinical parameters include FIGO 
stage, tumor grade, residual disease, along with age and 
ethnicity, to study OS time or prognosis in HGSOC. 
These parameters were converted or scaled into numeric 
values as shown in Appendix A Suppl Tables S7-S9. Uni-
variate analysis using Cox regression on the survival 
data of HGSOCs revealed that the age, FIGO stage and 
residual disease at the largest nodule exhibited a posi-
tive correlation (β coefficient > 1; HR > 1.2, p-value < 0.05) 

Table 2 Groups based on molecular prognostic score and 
associated median survival
Groups n events median 0.95 LCL 0.95 UCL

Training set
High 245 181 1024 914 1168
Low 245 139 1699 1446 2012
Q1 123 60 2621 2025 3224
Q2 123 80 1354 1113 1451
Q3 122 80 1203 972 1389
Q4 123 101 914 790 1058

Test set
High 245 190 1091 1006 1234
Low 245 131 1976 1764 2279
Q1 123 62 2025 1738 2553
Q2 123 70 1947 1392 2218
Q3 122 91 1224 1100 1484
Q4 123 99 1006 687 1092

Fig. 4 Survival curve and prediction based on mPS score: The cut-off set at median value of mPS (High vs. Low mPS) indicates that higher mPS is as-
sociated with poor OS time whereas lower mPS is associated with higher OS time (in days) both in training A and test B datasets. The groups based on 
quartiles (Q1; 0-25th percentiles, Q2; 25-50th percentiles; Q3; 50-75th percentiles and Q4; 75-100th percentiles) showed mPS with higher Q value showed 
poor OS as opposed to lower Q values both in training C and test datasets D. The RoC of sensitivity/specificity of test data E and training data F for indi-
cated time (in year)is also plotted. TP; True positive, FP; False positive, AUC; Area under curve
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indicating that higher values of these parameters were 
associated with worse survival or a poor prognosis 
(Table 3).

Multivariate Cox regression analysis was performed 
to adjust for the impact of other significant parameters 
(Table  3) for deriving the adjusted HR. The forest plot 
for the multivariate Cox-proportional hazards regres-
sion model of these parameters is shown in Fig.  5A. 
The residual disease at the largest nodule showed a sig-
nificant effect (p < 0.001) in determining prognosis with 

an adjusted HR of 1.3 (95% CI = 1.13–1.40). This infers 
that the larger residual disease after primary cytoreduc-
tion surgery was associated with decreased survival of 
HGSOC patients. Interestingly, the mPS score was the 
most significant parameter (p-value < 0.001) with the 
adjusted HR (adjusted to age, residual disease and FIGO) 
of 6.1 (95% CI = 3.65–10.30). Further analysis was con-
ducted to assess whether adding parameters such as age 
and residual disease of the largest nodule could increase 
the additional prognostic value or sensitivity to mPS. It 

Table 3 Parameters determining prognosis of HGSOC (Univariate Cox regression)
Parameters β HR (95%CI) wald.test p-value
age at diagnosis (High vs. Low) 0.32 1.4 (1.1–1.7) 8.5 0.0035
FIGO 0.17 1.2 (1.1–1.3) 8.2 0.0041
Tumor grade 0.21 1.2 (0.93–1.6) 2.1 0.15
Ethnicity -0.1 0.9 (0.4-2) 0.06 0.81
Residual disease of largest nodule 0.28 1.3 (1.2–1.5) 25 4.50E-07
molecular Prognostic score (mPS) 1.9 7 (5.1–9.7) 140 3.50E-32
The unadjusted-HR, β - coefficients are shown here

Fig. 5 Prognosis of HGSOC using clinicopathological and mPS: A; The ggforest plot of Cox proportional Hazard regression fitting of various parameters 
as indicated. The HR and p-value obtained are adjusted values with respect to other shown parameters. B; Area under curve (AUC) using mPS, age and 
residual disease of the largest nodule (RD) alone or combination as indicated. C; Gene enrichment score as shown by barcode plot of indicated KEGG 
pathways. D; Molecules/ genes involved in upregulation of Wnt signaling and E; downregulation of Antigen processing and presentation signaling. The 
log2-fold change of the molecules between high vs. low risk group involved are shown with gradient scale
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was found that the AUC for the 5-year OS of HGSOC 
using the mPS score alone was 0.71 as compared to 0.60 
contributed by the residual disease of the largest nod-
ule. Moreover, the addition of parameters such as resid-
ual disease and age to the mPS showed only a nominal 
improvement in the predictive capacity (AUC = 0.72) for 
HGSOC patients (Fig. 5B). Thus, the mPS outperformed 
various traditional parameters, such as age and residual 
disease of the largest nodule, in predicting the OS of 
HGSOC. In conclusion, the mPS alone could serve as a 
pivotal prognostic factor in predicting the outcome of the 
severity of HGSOC in terms of OS.

Gene enrichment study/pathway analysis using high 
(poor) vs. low (good) risk group
To compare gene expression between the high-risk 
(higher mPS) and low-risk groups, we conducted a differ-
ential gene expression analysis. We identified 1988 signif-
icantly upregulated and 2453 significantly downregulated 
genes (FDR < 0.05) in the high-risk group compared to 
the low-risk group (Appendix A Suppl Table S10).

To investigate pathways or events associated with these 
dysregulated genes involved in risk stratification, we per-
formed gene enrichment studies. Gene enrichment using 
GO-related terms indicated a significant (p < 0.05) down-
regulation of pathways related to DNA repair, respiratory 
electron transport chain, cell cycle, and DNA replication. 
Conversely, pathways related to cell migration, extracel-
lular matrix interactions, vasculature and blood ves-
sel development were upregulated (p < 0.05) (Appendix 
A Suppl Table S11). Similar results were obtained from 
pathway analysis using the KEGG pathway database, 
where pathways such as Focal adhesion, Notch signaling, 
Wnt signaling, PI3-Akt signaling, and signaling pathways 
regulating the pluripotency of stem cells were upregu-
lated, while pathways involving antigen processing and 
presentation, cell cycle, DNA replication, and base exci-
sion repair were downregulated (Fig. 5C; Table 4).

Since molecules involved in Wnt Signaling [26] as well 
as the antigen processing and presentation [27] have 
been reported previously for their prognostic values, we 
further investigated or deciphered the molecules regulat-
ing these two pathways (Fig.  5D and E). We found that 
several key molecules involved in the canonical Wnt sig-
naling pathway, including the Frizzled related family of 
proteins (FRP), Wnt family members, pigment epithe-
lium-derived factor (PEDF), serpin family F member 1 
(SERPINF1), Frizzled (FZD) proteins, BMP and activin 
membrane-bound inhibitor (BAMBI), segment polar-
ity protein dishevelled (Dvl), protein kinase A (PKA), 
β-catenin, and transcription factor-like (TCF)/lymphoid 
enhancer-binding factor (LEF), were upregulated in the 
high-risk group of HGSOC. This activation of canoni-
cal Wnt signaling could lead to increased cell movement 

and proliferation (Fig.  5D). Considering the favorable 
outcome of immunoreactive subtypes [27] in ovarian 
cancer, we analyzed the molecules involved in antigen 
processing and presentation signaling. This pathway was 
found downregulated (p < 1.27E-10) in high risk HGSOC 
patients. There were almost 37 molecules significantly 
(FDR < 0.05) downregulated in this pathway, including 
the key mediators such as IFN-γ, TNF-α, immuno pro-
teasome activator PA28, TAP1/2, TAPBP, MHC-I (HLA-
A, HLA-B, HLA-C), affecting MHC-I pathway mediated 
killing of cancer cells. MHC-II pathway via HLA-DMA, 
HLA-DMB, HLA-DOA, CLIP (CD74), cathepsin S 
(CTSS) was also downregulated, leading to decreased 
antitumor cytokine production and activation of other 
immune cells. Hence, immune evasion and escape were 
associated with high- risk group of HGSOC patients 
based on our findings.

Discussion
The 20-gene signature used to develop a mPS score, has 
shown potential in determining the overall survival of 
HGSOC patients. The AUC (~ 0.7) of mPS-based strati-
fication in both training and test data encompassing 
both TCGA and GEO datasets indicates its influence 
on patient survival. Previous studies [11, 12] have dem-
onstrated an inverse correlation between mPS score and 
patient survival, with recent work [11] showing that a 101 
predictor gene-based mPS outperformed age and stage 
in predicting survival in advanced HGSOC cases. Inter-
estingly, our study achieved similar results using only 20 
genes (Fig. 5A and B), a smaller set compared to the 101 
predictor genes used in previous work [11] for ovarian 
cancer risk stratification.

Our approach involved pre-filtering common genes 
across TCGA and GEO datasets, followed by filtering for 
differential genes in HGSOC tumor vs. normal samples 
and further refinement using Cox proportional hazards 
regression (univariate) prior to LASSO-Cox fitting (mul-
tivariate) (Fig.  1). This methodological difference may 
explain the deviation in predictor genes between our 
study and previous reports [11]. Furthermore, the selec-
tion of the 101-prognostic genes [11] from a total set of 
513 genes, also used for the molecular classification of 
HGSOC [28], might have omitted many crucial prog-
nostic genes. Hence, the deviation is expected. To com-
pare the predictive capacity of set of 101prognostic genes 
previously discussed, we have done across-platform or 
dataset validation. Among the 101prognostic genes [11], 
85 genes were common in the integrated TCGA and 
GEO datasets encompassing 982 ovarian cancer serous 
patients with mRNA expression and the associated sur-
vival data that we have used in our study. This set of 85 
predictor genes was used to calculate the mPS based 
on their associated coefficients, as previously reported 
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Table 4 Pathways upregulated in higher mPS (higher risk group) with relative to lower mPS (lower risk group)
Pathway ID Pathway N1 Up2 Down3 P.Up4 P.Down5

hsa04510 Focal adhesion 176 79 16 8.68E-15 1.00E + 00
hsa04612 Antigen processing and presentation 58 2 37 1.00E + 00 1.27E-10
hsa01100 Metabolic pathways 1071 137 340 1.00E + 00 6.15E-10
hsa04360 Axon guidance 149 60 17 2.92E-09 1.00E + 00
hsa05206 MicroRNAs in cancer 145 58 20 7.17E-09 9.99E-01
hsa03030 DNA replication 32 0 23 1.00E + 00 1.39E-08
hsa00190 Oxidative phosphorylation 88 6 45 1.00E + 00 2.96E-08
hsa05200 Pathways in cancer 455 134 87 1.01E-07 9.95E-01
hsa05330 Allograft rejection 32 1 22 9.99E-01 1.04E-07
hsa01200 Carbon metabolism 96 4 46 1.00E + 00 2.57E-07
hsa05205 Proteoglycans in cancer 181 64 31 3.02E-07 9.90E-01
hsa04932 Non-alcoholic fatty liver disease 135 22 59 8.51E-01 3.26E-07
hsa04512 ECM-receptor interaction 76 34 4 4.24E-07 1.00E + 00
hsa05208 Chemical carcinogenesis - reactive oxygen species 165 29 68 7.58E-01 6.25E-07
hsa05332 Graft-versus-host disease 32 2 21 9.91E-01 6.82E-07
hsa05415 Diabetic cardiomyopathy 154 29 64 6.09E-01 9.37E-07
hsa04520 Adherens junction 63 29 7 1.45E-06 9.97E-01
hsa04010 MAPK signaling pathway 259 82 35 1.48E-06 1.00E + 00
hsa05414 Dilated cardiomyopathy 83 35 5 1.60E-06 1.00E + 00
hsa04151 PI3K-Akt signaling pathway 296 91 40 1.65E-06 1.00E + 00
hsa04310 Wnt signaling pathway 133 49 21 1.89E-06 9.92E-01
hsa04933 AGE-RAGE signaling pathway in diabetic complications 94 38 18 2.03E-06 8.92E-01
hsa04810 Regulation of actin cytoskeleton 176 60 31 2.80E-06 9.84E-01
hsa05012 Parkinson disease 198 30 76 9.52E-01 3.73E-06
hsa00020 Citrate cycle (TCA cycle) 28 2 18 9.82E-01 6.76E-06
hsa04926 Relaxin signaling pathway 109 41 17 7.09E-06 9.88E-01
hsa04919 Thyroid hormone signaling pathway 109 41 16 7.09E-06 9.94E-01
hsa05169 Epstein-Barr virus infection 181 23 69 9.94E-01 1.35E-05
hsa05224 Breast cancer 127 45 27 1.58E-05 7.95E-01
hsa01522 Endocrine resistance 84 33 18 1.92E-05 7.48E-01
hsa04015 Rap1 signaling pathway 178 58 23 1.94E-05 1.00E + 00
hsa03440 Homologous recombination 32 0 19 1.00E + 00 1.97E-05
hsa04330 Notch signaling pathway 45 21 2 3.13E-05 1.00E + 00
hsa04940 Type I diabetes mellitus 38 1 21 1.00E + 00 3.28E-05
hsa04916 Melanogenesis 86 33 10 3.39E-05 9.99E-01
hsa01240 Biosynthesis of cofactors 99 8 42 1.00E + 00 3.75E-05
hsa04350 TGF-beta signaling pathway 83 32 19 3.97E-05 6.35E-01
hsa05165 Human papillomavirus infection 285 83 59 4.35E-05 9.19E-01
hsa04974 Protein digestion and absorption 73 29 7 4.74E-05 1.00E + 00
hsa03410 Base excision repair 31 2 18 9.90E-01 4.96E-05
hsa05020 Prion disease 211 40 76 5.99E-01 5.06E-05
hsa05014 Amyotrophic lateral sclerosis 264 41 91 9.59E-01 6.59E-05
hsa04550 Signaling pathways regulating pluripotency of stem cells 123 42 29 8.04E-05 5.78E-01
hsa03430 Mismatch repair 22 0 14 1.00E + 00 8.73E-05
hsa03010 Ribosome 100 8 41 1.00E + 00 1.17E-04
hsa04261 Adrenergic signaling in cardiomyocytes 129 43 11 1.25E-04 1.00E + 00
hsa03040 Spliceosome 85 9 36 9.91E-01 1.37E-04
hsa05320 Autoimmune thyroid disease 41 2 21 9.98E-01 1.43E-04
hsa05164 Influenza A 143 11 54 1.00E + 00 1.50E-04
hsa04923 Regulation of lipolysis in adipocytes 50 21 6 2.05E-04 9.89E-01
The details of the pathways are curated from KEGG pathway database. 1Total number of molecules involved with the associated KEGG term or pathway; number 
of differential expressed genes that are 2upregulated or 3downregulated; 4p-value for over-representation of KEGG term in upregulated genes; 5p-value for over- 
representation of KEGG term in downregulated genes
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[11], and the expression data of ovarian cancer cohorts 
of the afore mentioned TCGA and GEO repositories. 
The AUC for these 85 predictor genes in determining OS 
time ranged from 0.61 to 0.68 over a 1 to 5-year period 
(Fig.  6A). Similarly, our derived mPS using our 20 pre-
dictor genes (Table 1) in the same integrated TCGA and 
GEO datasets showed an AUC range of 0.67 to 0.72 over 
1 to 5 years (Fig. 6B).

Similarly, we applied our derived 20-gene signa-
ture to NanoString-based mRNA expression datasets 
(GSE132342, n = 3769; GSE135820, n = 3773), which were 
previously used in other studies [11, 28], for cross-dataset 
and cross-platform validation. Only three genes (GFPT2, 
WT1, RASA1) were common between our 20-predic-
tor gene signature and the mRNA expression datasets 
from the OTTA consortium (GSE132342, GSE135820) 

(Appendix A Suppl Table S12). Interestingly, the derived 
molecular prognostic score (mPS), based on the lin-
ear addition of coefficients along with the expression 
of these three genes in the OTTA dataset (GSE132342, 
GSE135820), potentially predicted the overall survival 
of HGSOC patients (Fig. 6C-F). To study the association 
between median overall survival (OS) time and mPS, we 
further partitioned these cross data HGSOC samples 
into four equal parts, with Q1 having the lowest mPS 
value and Q4 having the highest mPS value. The median 
survival time was found to be the shortest for samples 
in the group with the highest mPS value (Appendix A 
Suppl Table S13). The median survival time in the groups 
stratified based on mPS value were significantly different 
(Fig. 6C-F).

Fig. 6 Prognostic performance of molecular prognostic score (mPS)across sequencing platforms and datasets: RoC curves for prognostic performance 
of mPS derived from the 101-predictor genes A as described previously [11] along with our (Table 1)20-predictor genes B. Prediction was studied using 
AUC for the period of 1 to 5 years’ duration in the integrated datasets (TCGA-OV and GSE14764, GSE18520, GSE26193, GSE26712 and GSE63855) spanning 
982 samples. Cross validation across sequencing platforms is done with our 20-predictor genes. There are only 3 out of 20 genes found to be included in 
the gene expression based NanoString platforms as indicated. Quartiles divides the HGSOC patients into four equal parts based on mPS derived from 3 
predictor genes: Q1 bearing the lowest where as Q4 bearing the highest mPS score. Kaplan–Meier curves and the associated risk table of overall survival 
for HGSOC patients in the GSE135820 (n = 3773) C, D and GSE132342 (n = 3769) E, F datasets
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These findings suggest that although only three genes 
overlapped with the OTTA datasets, the derived mPS 
score shows promise in predicting overall survival in 
HGSOC patients. This could have important implications 
for prognosis and potentially guide treatment decisions.

Next, to study the dynamic and robustness application 
of our 20-gene-based mPS in predicting the OS, we have 
derived the mPS value by a similar approach using coef-
ficients of 20-predictor genes and their respective expres-
sion data of RNASequencing platform (Illumina). It 
efficiently predicted the OS time. The lowest mPS value is 
associated with the shortest OS time whereas the highest 
is associated with the least OS time (Appendix A Suppl 
Fig. S3).

Hence, our 20-gene expression-based mPS value, 
derived from Affymetrix Human U133A/U133 Plus 2.0 
microarray data in TCGA and GEO repositories, is a 
robust and dynamic prognostic indicator. This mPS effi-
ciently predicted the outcome of HGSOC across vari-
ous datasets and was applicable regardless of the mRNA 
expression data platform used. It effectively predicted 
ovarian cancer outcomes using data from both the 
NanoString platform (Fig.  6) and the Illumina RNASeq 
platform (Appendix A Suppl Fig. S3).

In addition to the prognostic index of the 20-gene sig-
nature-based mPS score, which acts as a risk classifier, we 
conducted an in-depth study of the key regulatory path-
ways responsible for the poor prognosis of HGSOCs. We 
found that the poor prognostic group or high-risk group 
of HGSOCs exhibited altered pathways regulating TGF-β 
[29], PI3K-Akt [30], and Wnt/Notch [31] signaling, which 
are often associated with poor survival in cancer patients. 
Immune evasion or escape was also observed in the high-
risk group and found to be associated with poor out-
comes [27]. Thus, targeting these dysregulated pathways 
[32] might prove beneficial for the high-risk group, which 
was anticipated to have poor survival outcomes with cur-
rent prevailing treatments. Interestingly, we found that 
the molecules involved in DNA replication and repair, as 
well as antigen processing and presentation, were down-
regulated in the high-risk group. This suggests a role for 
immune evasion or antigenic escape [33] and defective 
DNA repair pathways [34] in therapy resistance in high-
risk HGSOC. Further investigation into their role in ther-
apy resistance is needed to identify target molecules and 
reprogram HGSOC towards an immune-reactive state. 
Therefore, it would be noteworthy to conduct combina-
tion therapy using immunotherapies/agents that over-
come immune suppression and PARP inhibitors [35, 36] 
in HGSOC patients in anticipation of improving overall 
survival time.

Conclusion
The conventional parameters like age, clinicopathologi-
cal parameters: stage/ FIGO score, histology, and residual 
disease shows a trend in prognosis, yet the 5-year sur-
vival of ovarian cancer remains unchanged. Currently, a 
molecular gene-based prognostic score derived from the 
predictor genes and associated coefficients was found to 
be a robust prognostic marker/ classifier applied in vari-
ous cancers including breast, prostate and colon cancer. 
A similar approach was used in ovarian cancer using 
101prognostic genes. We have applied only 20 prognos-
tic genes to predict the over-all survival of HGSOCs. Our 
system was found to be universal and robust as it was 
applicable and reproducible in various gene expression 
platforms including microarray, RNASeq, or NanoString. 
Our 20-gene signature based mPS for the prognosis of 
survival of HGSOC significantly outperformed the con-
ventional parameters: age, residual disease, and FIGO 
score. The high-risk group with lower survival time could 
benefit from targeted therapies focusing on dysregulated 
pathways such as TGF-β, Notch signaling, DNA repair, 
and antigen processing and presentation pathways. Fur-
ther investigations into the functional roles of identified 
prognostic genes and pathways are warranted. Prospec-
tive clinical studies are essential to validate the clinical 
utility of the 20-gene signature as a prognostic tool and to 
explore potential targeted therapies based on identified 
dysregulated pathways.

In conclusion, this study provides a comprehensive 
molecular understanding of HGSOC, offering a 20-gene 
signature-based mPS as a promising prognostic indicator. 
The identified dysregulated pathways open avenues for 
targeted interventions, bringing us one step closer to per-
sonalized and effective management of high-grade serous 
ovarian cancer.
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