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cell death. Specifically, the former is dependent on intra-
cellular irons, and nuclei in cells conserve their structural 
integrity [6]. In recent years, the relationship between fer-
roptosis and female infertility has aroused academic inter-
est. Identification of novel signaling pathways implicated 
in female infertility is a prerequisite for satisfying unmet 
needs. This paper mainly focuses on the relationship 
between ferroptosis and female infertility based on a lit-
erature review and summarizes recent findings on the eti-
ology and pathogenesis of female infertility [7]. Some new 
directions in female infertility treatment may be identified 
from the related studies on this topic.

Ferroptosis
Iron is an essential metal for the human body and is vital 
for maintaining biological homeostasis. Iron oxidation 
has two states, Fe2+ and Fe3+, which are mainly present 
intracellularly and extracellularly, respectively. Fe3+ can 
bind to transferrin (TF) in serum and is subsequently 
taken up by the TF receptor 1 (TfR1), which is encoded 
by TFRC on the cell membrane [8].Fe3+ taken up into 

Female infertility refers to the inability of a couple to con-
ceive after at least one year of normal unprotected sexual 
intercourse, with increasing prevalence in recent years 
and seriously affects women’s physical and mental health 
[1].Female infertility is associated with a variety of factors. 
The etiology still remains unknown in 15–30% of women 
with infertility [2]. As the pathogenesis of female infer-
tility is being explored by more and more studies, it has 
been reported that programmed cell death (PCD) plays 
a key role in human reproduction [3]. PCD is a geneti-
cally regulated process of cell suicide that is critical for the 
development, homeostasis, and integrity of organisms. 
PCD is divided into several types, including apoptosis, 
necroptosis, autophagy, ferroptosis and pyroptosis [4, 5]. 
Ferroptosis is distinct from other forms of programmed 
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Abstract
Ferroptosis is a novel type of programmed cell death dependent on iron and characterized by the accumulation 
of lipid peroxides in cells and is closely related to various diseases. Female infertility is a global health concern, 
which is associated with a variety of factors. The etiology remains unknown in many women with infertility. With 
further investigation into the pathogenesis of infertility, a growing number of studies have demonstrated the close 
connections between infertility and ferroptosis. Through a literature review, it is found that ferroptosis is closely 
involved in endometriosis- and polycystic ovarian syndrome (PCOS)-associated infertility and tubal factor infertility. 
Iron overload increases the resistance to ferroptosis, and ferroptosis in some cells accelerates endometrial lesion 
growth. Moreover, iron overload may be hazardous to oocytes. This review may shed some light on the diagnosis 
and treatment of female infertility.
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the cell is reduced to Fe2+ by STEAP3 metalloreductase 
in the endosome, and then is stored in ferritin and ulti-
mately released again by ferritin phagocytosis-mediated 
ferritin degradation [9, 10]. Iron metabolism pathway 
has an irreplaceable role in maintaining the dynamic bal-
ance of iron in the body, and the metabolizing molecules 
related to this pathway include: Divalent metal trans-
porter 1 (DMT1), Transferrinreceptor (TFR), Ferroportin 
(FPN), Ferritin and so on. When transporter proteins are 
mutated or absent, iron homeostasis is disrupted, which 
leads to excessive accumulation of iron, which triggers 
oxidative cell damage and death. Then cellular oxidative 
damage and death appear. In addition, it has been shown 
that the iron-mediated Fenton reaction is involved in the 
generation of intracellular reactive oxygen species (ROS) 
[11]. ROS can attack intracellular DNA molecules, lipids, 
and proteins, among other substances, ultimately lead-
ing to intracellular ROS accumulation and depletion of 
antioxidant capacity [12]. This disrupts the normal cell 
membrane structure, induces cell death and promotes 
the development of various disease processes.

The term “ferroptosis”, defined as a distinct type of 
iron-dependent non-apoptotic cell death, in 2012 [13]. 
Ferroptosis is a new type of cell death that is distinct 
from other cell deaths. Ferroptosis is biochemically, mor-
phologically, and genetically distinct from other types of 
PCD, such as apoptosis, necrosis, and autophagy. Ferrop-
tosis is featured by iron accumulation, abnormal mito-
chondrial membrane density, overexpression of relevant 
biomarkers, lipid peroxidation, and abnormal changes 
in immune functions [13–17]. Apart from the features 
above, cells may spread between cells in a wave-like man-
ner after ferroptosis [18]. Although the core molecular 
mechanism of ferroptosis is closely related to several 
genes and cell signaling pathways. The role of two types 
of key mediating pathways has been confirmed: The first 
is endogenous or enzyme-regulated pathways. For exam-
ple, glutathione peroxidase 4 (GPX4), as an anti-oxidant 
defense enzyme against ferroptosis, is usually inhibited. 
The second is exogenous or transporter-dependent path-
ways. For example, cysteine or glutamine uptake is obvi-
ously reduced, or ferritin uptake is elevated [19]. The 
mechanism of ferroptosis is illustrated in Fig. 1 [20].

Relationship between ferroptosis and infertility
Endometriosis-associated infertility
Endometriosis is a chronic inflammatory disease charac-
terised by the growth of endometrial tissue outside the 
uterine cavity and occurs in approximately 50% of women 
with infertility [21]. In normal endometrial tissues, estro-
gen triggers the rapamycin target protein (mTOR) path-
way and inhibits the hypoxia-inducible factor-1/reactive 
oxygen species/AMP-activated protein kinase (HIF-1/
ROS/AMPK) pathway, which results in autophagy of 

endometrial tissues out of menstruation [22]. Endome-
trial cells were harvested from patients with endometri-
osis-associated infertility and examined in some studies. 
However, it was found that estrogen did not inhibit reac-
tive oxygen species(ROS). Iron overload in endometrial-
like tissues outside the uterus finally resulted in a much 
higher ROS level than in normal in-situ endometrial 
tissues [23]. Ovarian endometriotic cysts and surround-
ing ovarian tissues usually exhibit higher iron levels on 
account of periodically spontaneous bleeding of ectopic 
lesions [24]. In another study, the increased levels of fer-
ritin and divalent metal transporter 1 (DMT1) were dem-
onstrated in the endometriotic tissues of patients with 
endometriosis. It was indicated that excess Fe2+ infil-
trating into the cytoplasm was stored in ferritin [25]. In 
that case, if the overall iron utilization decreased, excess 
Fe2+ would promote sensitivity to ferroptosis. It has been 
reported that ferroptosis of some endometriotic stro-
mal cells may be elicited after contact with the cyst fluid. 
Moreover, p38 mitogen-activated protein kinase/signal 
transducer and activator of transcription 6 (p38 MAPK 
/ STAT6) pathway was involved in ferroptosis-induced 
vascular endothelial growth factor A (VEGFA) and IL8 
upregulation [3]. IL-8 and VEGFA promoted sustained 
proliferation of endometrial cells, accompanied by obvi-
ous angiogenesis and adhesion [26, 27]. The recogni-
tion of damage-associated molecular patterns (DAMPs), 
which are produced or released by damaged and dying 
cells, promotes sterile inflammation. DAMPs then acti-
vate nuclear factor kappa-B (NF-κB) via the advanced 
glycation end product (AGER) pathway, leading to an 
immune response [28]. Lipid peroxide 4-hydroxynon-
enal (4HNE) resulting from ferroptosis can also promote 
NF-κB activation, thus inducing inflammatory mediator 
response [29]. Besides, endometriotic stromal cells also 
contain abundant Fe2+, which may elicit ROS via the 
Fenton reaction. Then ROS can alter the expression of 
relevant genes through the transcription factor NF-κB. 
which contributes to lesion invasion, inflammatory factor 
production, cell proliferation, and angiogenesis [30, 31].

Prolonged iron overload promotes sustained develop-
ment of endometriosis, PCOS, and ectopic endometrial 
lesions, which may directly affect oocyte and embry-
onic development. The abdominopelvic cavity is the site 
for oocyte maturation and embryogenesis. The joint 
action of several factors may lead to microenvironment 
abnormalities, accelerating impairment of reproduc-
tive functions. Iron overload in the peritoneal fluid in 
infertile patients promotes the downregulation of GPX4 
and hence induces lipid peroxidation, directly damaging 
embryo sac formation. According to another study, heme 
oxygenase-1 (HMOX1) was significantly upregulated in 
embryo ferroptosis. HMOX1 promotes ferroptosis, and 
its overexpression accelerates pro-oxidative reaction, 
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resulting in lipid peroxidation-induced ferroptosis and 
intracellular iron accumulation [32]. Iron overload may 
cause embryonic mitochondrial damage, resulting in an 
elevated ROS level, a decreased ATP level, and a con-
tinuous drop in mitochondrial membrane potential [33]. 
It is evident that HMOX1 may play an important role 
in mediating embryonic ferroptosis, and its overexpres-
sion promotes oxidation and induces ferroptosis through 
increased iron accumulation and lipid peroxidation [32]. 
Excessive iron accumulation in cells leads to cytotoxic 
accumulation, which interferes with oocyte development. 
The total iron levels, ferritin and TfR1 expression levels 
in endometrioma-proximal follicles are higher than in 

endometrioma-distal follicles and healthy ovarian fol-
licles in the ovaries of endometriosis patients. The oocyte 
retrieval rates in endometrioma-proximal and -distal 
follicles are lower than those in healthy ovarian follicles 
[34]. A research found that prolonged iron overload in 
the follicular fluid interfered with in vitro maturation of 
mouse oocytes [35]. According to existing studies, iron 
overload in the peritoneal fluid from infertile patients can 
cause direct damage to the blastula and oocytes. How-
ever, no consensus has been reached as to the pathogen-
esis of ferroptosis, especially the molecular mechanism of 
ferroptosis in specific conditions.

Fig. 1 Mechanism of ferroptosis. The molecular machinery of ferroptosis involves cellular antioxidant and oxidative systems, and the regulation of fer-
roptosis includes iron metabolism and lipid peroxidation
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Ferroptosis and endometriosis show a bi-directional 
interaction. On one hand, ferroptosis inducers promote 
ferroptosis in ectopic endometrial cells and can be used 
as potential drugs against endometriosis; on the other 
hand, ferroptotic cells can release a large number of 
inflammatory cytokines, activating the downstream reg-
ulatory network and promoting angiogenesis and prolif-
eration of surrounding tissues. Given the facts above, the 
downstream reaction triggered by ferroptosis deserves 
more attention when developing drugs that target ferrop-
tosis in endometriosis.

Polycystic ovarian syndrome-associated infertility
Polycystic ovary syndrome (PCOS) is another com-
mon reproductive endocrine disorder related to infer-
tility. Numerous studies have indicated that ferroptosis 
in the uterus and placenta is closely related to PCOS. 
One study showed that, iron accumulation increased 
noticeably in the uterus of pregnant rats treated with 
5α-dihydrotestosterone and insulin, while the GPX4 level 
decreased significantly [36]. Several proteins related to 
ferroptosis, including acyl-CoA synthetase long-chain 
family member 4 (Acsl4), transferrin receptor (Tfrc), 
SLC7A11 (solute carrier family 7 member 1), and GCLC, 
were abnormally expressed. The above results demon-
strate the role of ferroptosis in the occurrence and devel-
opment of PCOS. Tang et al. [30] carried out an animal 
experiment to detect iron deposition and lipid peroxide 
indicators in ovarian tissues in PCOS. They were also 
concerned with indicators related to cell migration, and 
it was found that after the inhibition of O-GlcNAc trans-
ferase (OGT) in rats with PCOS, the contents of malo-
ndialdehyde (MDA) and ROS in ovarian tissues increased 
rapidly, while the glutathione (GSH) content decreased. 
These changes were also accompanied by a significant 
increase in iron deposition. Furthermore, they observed 
downregulated N-cadherin and vimentin in rats, but 
abnormally increased E-cadherin, an enzyme with anti-
migration activity. According to another study, sustained 
release of inflammatory factors and rapid increase in the 
ROS level of ovarian tissues are usually found in PCOS 
patients. In most cases, PCOS is featured by increased 
apoptosis in ovarian tissues [37]. However, there is a 
contradiction in the above report. According to Tang, as 
the OGT level increased, the ROS level in the letrozole-
induced rat model decreased. The findings above remain 
to be further verified.

Circular RNA (circRHBG) is also involved in the occur-
rence and development of PCOS by regulating ferropto-
sis. Zhang D et al. observed granular cells in patients with 
PCOS, and found that circRHBG was significantly upreg-
ulated, which further proved that circRHBG competes 
with SLC7A11 to bind to miR-515-5 to inhibit ferropto-
sis in granular cells [37]. They collected peripheral blood 

samples from PCOS patients. Compared with the normal 
population, there were significant differential expressions 
of proteins related to ferroptosis in CD4+T cells in the 
serum of PCOS patients [37].

Tubal factor infertility
So far, few reports have been published concerning the 
relationship between tubal factor infertility and ferropto-
sis. Ferroptosis is featured by iron-dependent ROS gen-
eration and accumulation of lipid peroxides and has close 
connections with placental dysfunction and trophoblastic 
damage [38, 39]. Tubal factor infertility is characterized 
by ectopic pregnancy due to fallopian tube obstruction, 
which in turn is closely related to iron overload and lipid 
peroxidation [40]. These are in agreement with the fea-
tures of ferroptosis. ROS binds to phospholipids and pro-
teins in cell membranes, leading to protein denaturation 
and aging pigment or lipofuscin. The blood becomes 
sticky and aggregates. Ferroptosis is mainly achieved via 
GSH, iron, and polyunsaturated fatty acid (PUFA) bio-
synthetic pathway. GPX4 uses two GSH molecules as 
electron donors to inhibit the conversion of lipid perox-
ides and prevent ferroptosis [41, 42]. Lai et al. used fer-
roptosis inducer RSL3 to inhibit GPx activity, promoting 
sustained ROS accumulation [43]. Their study confirmed 
that the serum containing Huayu Xiaozheng Granule 
(HYXZ) accelerated the death of RSL3-induced HTR-8/
SVneo cells. Intervention with HYXZ resulted in a sig-
nificant increase in intracellular lipids and ROS, and the 
LIP content increased as well. Fer-1 helped control lipid 
peroxide in HYXZ-induced cells, indicating that HYXZ 
promoted ferroptosis mainly through lipid hydroperox-
ide production and ROS generated as a by-product. Fur-
ther, they found that key proteins involved in ferroptosis 
regulation had abnormal expression in the villous tissue 
(VT) of TP patients, and that lipid oxidation was acti-
vated markedly. In vitro experiments revealed that shi-
konin promoted RAS-selective lethal 3 (RSL3)-induced 
ferroptosis and inhibited the invasion and migration abil-
ities of trophoblasts [44]. The above results suggest close 
connections between tubal pregnancy and ferroptosis, 
while inhibiting ferroptosis inhibits excessive invasion 
and migration of trophoblasts. However, given the lim-
ited number of studies regarding this topic, the findings 
above remain to be further confirmed by more studies.

Premature ovarian insufficiency
Premature ovarian insufficiency (POI) is a clinical syn-
drome in which a woman develops a decline in ovarian 
function before 40 years old [45]. The clinical manifesta-
tions of POI are elevated gonadotropins, decline in estro-
gen, menstrual disorders and infertility. The pathogenesis 
of POI is complex and multifactorial and may be caused 
by defects in primordial follicle formation, follicle 
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recruitment/distribution, follicle growth and develop-
ment [46, 47]. Recent studies have shown that acceler-
ated follicular atresia is one of the major pathogenic 
factors [48, 49]. Follicular atresia is mainly caused by 
programmed death of granulosa cells, such as autophagy, 
necrosis and apoptosis. It has been shown that iron accu-
mulation occurs in the early stage of follicular atresia, 
exhibiting abnormal GSH metabolism [50]. In a study of 
fluoride-induced apoptosis in follicular granulosa cells, 
results showed that mitochondria in granulosa cells 
exhibited typical features of ferroptosis, such as reduced 
mitochondrial volume and reduced mitochondrial crags 
[51]. This suggests that the reduction of oocytes and gran-
ulosa cells in the ovaries of POI mice may be related not 
only to apoptosis but also to ferroptosis. Furthermore, 
an ovarian single-cell RNA sequencing reveals an asso-
ciation between perinatal oocyte loss and iron mortality 
[52]. Zhang’s team identified a new disease-causing muta-
tion, a truncated mutation in the Basonuclin 1 (BNC1) 
gene, in a large Chinese premature ovarian insufficiency 
family line [53]. BNC1 is a transcription factor involved 
in oocyte and follicle production. This research found 
that BNC1 deficiency in oocytes affects the NF2-YAP-
TFRC/ASCL4 signaling axis, upregulates the expression 
of TFRC and ACSL4, induces oocyte ferroptosis, which 
ultimately leads to oocyte death and follicular atresia. 
Inhibition of YAP signaling or ferroptosis significantly 
rescued BNC1 mutation-induced POI. Chemotherapy 
exposure has become one of the leading causes of POI. 
It has been shown that CTX-induced ovarian toxicity is 
closely related to ferroptosis in granulosa cells [54]. HO-1 
mediates oxidative stress, iron release and mitochondrial 
dysfunction. Knockdown of HO-1 significantly alleviated 
CTX-induced mitochondrial dysfunction and inhibited 
iron ferroptosis-induced GPX4 depletion. The treatment 
of human umbilical cord mesenchymal stem cell-derived 
exosomes (hUMSC-Exos) reduced the ROS production, 
free iron ions and lipid peroxidation levels of granulosa 
cells. The ferroptosis marker proteins Nrf2, xCT and 
GPX4 also decreased. Nrf2 maintains iron homeostasis 
by controlling HERC2 (E3 ubiquitin ligase for NCOA4 
and FBXL5) and VAMP8 (mediates autophagosome-lyso-
some fusion) [55]. The Nrf2 inhibitor ML385 significantly 
attenuated the effects of hUMSC-Exos on granulosa cells 
[56]. These results suggest that the enhancement of ovar-
ian function in POI mice by hUMSCs-Exos is thought to 
be related to the inhibition of ferroptosis [57].

Conclusions and outlook
Ferroptosis, a novel type of programmed cell death medi-
ated by iron-dependent lipid peroxidation, has made 
rapid progress in studies related to disease mechanisms 
and regulatory pathways. In recent years, the relationship 
between ferroptosis and infertility and the underlying 

molecular mechanism have drawn widespread attention. 
Due to their own specificity, germ cells such as granulosa 
cells, oocytes and trophoblast cells are highly sensitive to 
ferroptosis during pathological processes [58]. In recent 
years, a growing body of research have shown that the 
molecular mechanisms and signaling pathways of ferrop-
tosis may be closely related to female infertility diseases. 
It has been generally recognized that iron overload in the 
peritoneal fluid from infertile patients enhances ferrop-
tosis resistance, and the growth of endometrial lesions 
can accelerate because of ferroptosis in some cells. The 
damage caused by iron overload to oocytes in infertile 
patients may be closely related to the absence of a mem-
brane repair mechanism and unique characteristics of 
the antioxidant system in immature oocytes. Apart from 
the findings above, lipid peroxidation and continuous 
iron accumulation are only intermediate events of fer-
roptosis, rather than the cause of ferroptosis. Lipid per-
oxidation plays a role in regulating cell death. Some key 
factors related to ferroptosis may regulate other forms of 
cell death, such as GPX4 in the anti-oxidant system that 
inhibits necrocytosis and apoptosis. However, ferrop-
tosis is regulated by a complex network of genetic and 
metabolic mechanisms. Current research related to the 
exact regulatory mechanisms linking cellular ferroptosis 
and infertility are limited and have inconsistent results. 
In conclusion, in the field of infertility treatment, cellu-
lar ferroptosis and its mechanism in infertility need to be 
studied systematically and in depth, with a view to pro-
viding a reference basis for the treatment of infertility-
related diseases.

Methods
An extensive examination of the literature was per-
formed to ensure a comprehensive review on ferroptosis 
and female infertility. The search was completed using 
the PubMed database (https://www.ncbi.nlm.nih.gov/
pubmed) through May 2024. The search terms included 
ferroptosis and specific keywords (Endometriosis, Poly-
cystic ovary syndrome, Tubal factor infertility, Premature 
ovarian insufficiency) based on the authors’ knowledge 
on the topic. Further, the reference lists of identified arti-
cles were manually reviewed.
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