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Background
Primary ovarian insufficiency (POI) is a disorder charac-
terized by a decline in ovarian function, loss of oocytes 
and folliculogenesis, and elevated gonadotropin levels, 
typically occurring in women under 40 years of age [1]. 
POI significantly affects women’s fertility and quality of 
life [2]. The global prevalence of POI is approximately 
3.7% and is increasing [3]. POI results from a prema-
ture decrease in ovarian follicles, accelerated follicle 
destruction, or a poor follicular response to gonadotro-
pins. The pathogenesis remains inconclusive, with vari-
ous factors implicated, including genetic, autoimmune, 
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Abstract
Background Primary ovarian insufficiency (POI) is a disorder characterized by the premature decline in ovarian 
function, leading to significant fertility and health impacts on women under 40. The unclear etiology of POI hinders 
the development of effective treatments, highlighting the need for novel therapeutic targets.

Methods This study employed genome-wide association analysis (GWAS) integrated with expression quantitative 
trait loci (eQTL) data from the GTEx and eQTLGen databases. Mendelian randomization (MR) and colocalization 
analyses were conducted to investigate causal relationships between genetic variants and POI and to identify 
potential therapeutic targets.

Results We identified 431 genes with available index cis-eQTL signals, of which four (HM13, FANCE, RAB2A, and 
MLLT10) were significantly associated with POI. Colocalization analysis revealed strong evidence for FANCE and 
RAB2A, indicating their potential as therapeutic targets. Subsequent druggability assessments identified FANCE and 
RAB2A as promising candidates for POI treatment, supported by their involvement in DNA repair and autophagy 
regulation, respectively.

Conclusions Our study establishes a causal link between specific genes and POI, highlighting FANCE and RAB2A as 
potential drug targets. These findings provide a foundation for future research and therapeutic development, aiming 
to improve outcomes for women with POI. Validation in further trials is necessary to confirm these potential targets.
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toxic, metabolic, infectious, and iatrogenic factors [1]. 
Hormone replacement therapy (HRT) is the primary 
pharmacological treatment for POI, yet scientific evi-
dence supporting its efficacy in restoring ovarian func-
tion is lacking [4]. Research indicates that three out of 
four women with POI retain ovarian follicles, albeit in a 
dormant state [5]. Consequently, there is an urgent need 
for novel drugs to awaken dormant primordial follicles. 
However, the unclear etiology of POI presents a barrier 
to drug development.

Although the exact mechanism underlying POI 
remains unknown, numerous studies have identified 
genetic factors as the most commonly implicated cause, 
offering potential targets for therapeutic interventions 
[6, 7]. Currently, the most commonly recognized genetic 
causes of POI include X chromosome abnormalities, 
notably Turner syndrome (13% of cases) [8], and FMR1 
premutations (3–15% of cases) [9]. A clinical study 
involving 27 POI patients identified FMR1 premutations 
as a potential target for treating occult POI [10]. Simi-
larly, a multicenter observational study involving 291 POI 
patients identified seven genes (USP36, VCP, WDR33, 
PIWIL3, NPM2, LLGL1, and BOD1L1) as potential tar-
gets for POI treatment [11]. However, it is essential to 
recognize that these results stem from observational 
studies, making them susceptible to confounding vari-
ables and reverse causation. Additionally, the constraints 
of observational studies limit the investigation of causal 
relationships between different genetic variants and POI, 
underscoring the necessity for more rigorous research 
approaches.

Genome-wide association analysis (GWAS) is pivotal 
for identifying single nucleotide polymorphisms (SNPs) 
and novel genetic variants associated with diseases. 
Nevertheless, the risk loci identified via GWAS are pre-
dominantly in non-coding regions of the genome, com-
plicating their interpretation [12]. In contrast, expression 
quantitative trait loci (eQTL) studies quantify gene 
expression levels across the genome, offering an unbi-
ased view of gene expression regulation [13]. Combining 
eQTL data with GWAS findings facilitates the identifica-
tion of target genes driving the GWAS signal at specific 
loci [12]. In our study, we employed eQTL as an exposure 
tool in Mendelian randomization (MR) to examine causal 
links between genetic variants and POI. Moreover, we 
performed colocalization analyses to identify potential 
therapeutic targets for POI.

Methods
Study design
The study design is illustrated in Fig.  1. Cis-eQTL data 
were obtained from the Genotype-Tissue Expression 
(GTEx, https://gtexportal.org/home/) database[14] and 
the eQTLGen consortium (https://www.eqtlgen.org/)

[15]. POI GWAS data were sourced from the FinnGen 
study (https://www.finngen.fi/en)[16]. As this research 
reanalyzed previously collected and published data, no 
further ethics approval was required.

Acquisition of eQTL and GWAS Summary Data
Cis-eQTL data were utilized from GTEx V8 and the 
eQTLGen consortium [14, 15]. The GTEx V8 data-
set included 838 primarily European participants and 
spanned 49 tissues or cell types. Specifically, cis-eQTL 
data from the ovary (n = 167) and whole blood (n = 670) 
were extracted within the GTEx V8 dataset. The eQTL-
Gen consortium provided cis-eQTL data from peripheral 
blood samples of 31,684 participants. A PeQTL threshold 
of < 5 × 10− 8 was applied to all cis-eQTL. POI GWAS data 
were derived from the FinnGen study’s R11 dataset, com-
prising 599 cases and 241,998 controls [16]. All partici-
pants in this dataset were of European descent.

MR Analysis
We utilized the SMR software tool (version 1.3.1) to con-
duct SMR analysis on cis-eQTL and GWAS data, aim-
ing to identify gene-POI associations [17]. To address 
potential pleiotropy between exposure and outcomes, 
we performed an instrument-dependent heterogeneity 
(HEIDI) test on the cis-eQTL and GWAS data. A PHEIDI < 
0.05 indicates significant interlocking pleiotropy between 
two distinct genetic variants, leading to their exclusion 
from the study. Additionally, a two-sample MR analy-
sis was conducted using gene-indexed SNPs, employ-
ing the Wald ratio and delta method to calculate odds 
ratios (OR) and 95% confidence intervals (CI) between 
genes and POI [17]. A Bonferroni-corrected P < 0.05 was 
used as the threshold to establish a causal relationship 
between genes and GWAS [18].

Colocalization analysis
The coloc R package was employed to perform colocal-
ization analyses, assessing the impact of linkage disequi-
librium on gene-POI associations [19]. Colocalization, 
using a Bayesian approach, produced posterior probabili-
ties for five hypotheses: PP.H0 indicates no association 
with either trait; PP.H1 indicates an association with trait 
1 only (gene expression); PP.H2 indicates an association 
with trait 2 only (POI trait); PP.H3 indicates an associa-
tion with both traits but different causal variants for each; 
and PP.H4 indicates an association with both traits with 
the same causal variant [20]. We applied default priors: 
p1 = 1 × 10− 4, p2 = 1 × 10− 4, p12 = 1 × 10− 5. Low PP.H3 
and PP.H4 combined with high PP.H0, PP.H1, and/or 
PP.H2 indicate limited power in the colocalization anal-
ysis. Therefore, we restricted our analysis to genes with 
PP.H3 + PP.H4 ≥ 0.8 [21].

https://gtexportal.org/home/
https://www.eqtlgen.org/
https://www.finngen.fi/en
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Potential drug target identification
To evaluate the druggability of the genes, we queried 
Online Mendelian Inheritance in Man (OMIM), the 
DrugBank database, the Drug-Gene Interaction database 
(DGIdb), and the Therapeutic Target Database (TTD) to 
identify mutations linked to phenotypic abnormalities. 
Our evaluation criteria included: (1) approval for market-
ing or involvement in clinical trials, (2) preclinical devel-
opment stage, and (3) considered druggable, even if not 
documented in the database but recognized as a potential 
drug target by our team [22].

Results
Genome-wide MR analysis
GWAS loci are often located in non-coding regions of 
the genome, making it difficult to interpret their func-
tions [23]. Cis-eQTL analysis helps determine whether 
non-coding loci identified by GWAS affect gene expres-
sion, elucidating the relationship between gene expres-
sion and genetic variation and identifying potential 
candidate genes [24]. In this study, we explored the asso-
ciation between 431 genes with available index cis-eQTL 
signals and the risk of POI outcomes using a two-sample 
MR analysis (Supplementary Table S1). Associations with 
PHEIDI < 0.05 were deemed likely due to pleiotropy, result-
ing in the exclusion of 57 genes from the analysis. By 

Fig. 1 Study design. PP.H3, the posterior probability of H3; PP.H4, the posterior probability of H4; HEIDI, instrument-dependent heterogeneity; MR, Men-
delian Randomization
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applying a bonferroni-corrected P threshold of 0.05, we 
identified four genes with statistical significance. The MR 
analysis outcomes are illustrated in Fig.  2. Our findings 
predicted that HM13, FANCE, RAB2A, and MLLT10 
were significantly associated with a reduced risk of POI 
(Table 1).

Colocalization analysis
In MR studies, linkage disequilibrium (LD) can affect 
result accuracy. Colocalization analysis helps distinguish 
between true causal variants and those merely linked to 
causal variants, enhancing causal inference accuracy [19]. 
Evidence suggests that genes supported by both MR and 
colocalization evidence are more likely to be success-
ful drug targets [25]. We also performed colocalization 
analyses to examine genes related to POI, investigat-
ing whether the genes identified in the FinnGen study 
shared genetic variants associated with POI. We found 
strong evidence of colocalization (PP.H3 + PP.H4 ≥ 0.8) for 
FANCE and RAB2A (Fig. 3) [21]. However, the posterior 
probability of HM13 and MLLT10 did not reach strong 
evidence of colocalization (PP.H3 + PP.H4 ≥ 0.8), likely 
due to insufficient samples in GTEx and eQTLGen.

Druggability of identified genes
To determine the potential of genes identified by MR and 
colocalization analysis as drug targets, we specifically 
assessed FANCE and RAB2A, which showed strong evi-
dence of colocalization. Although these genes have not 
been recognized as drug targets for POI in existing stud-
ies, they remain promising candidates (Supplementary 
Table S2). Mutations in FANCE and RAB2A are known 
to cause monogenic diseases. Specifically, mutations 
in the FANCE gene lead to Fanconi anemia (FA) [26], 
whereas no drug information was found for RAB2A. Our 
MR results suggest that inhibiting FANCE and RAB2A 
could potentially be a treatment for POI.

Discussion
Our study employed comprehensive genome-wide MR 
and colocalization analyses to clarify the causal relation-
ships between genes and POI, providing valuable insights 
into potential therapeutic targets. MR analysis effectively 
reduced confounding factors in assessing the associations 
between gene expression and disease. Colocalization 
analysis confirmed that the eQTL instrument in the MR 
was not incidentally associated with both traits, thereby 
ruling out the possibility of the MR effect stemming from 
alternative causal variants in linkage disequilibrium. 
Among the genes analyzed, only FANCE and RAB2A 
exhibited evidence of a shared genetic effect with POI 
outcomes through both MR and colocalization analyses. 
FANCE and RAB2A were linked to a reduced risk of POI, 

highlighting their potential as promising targets for POI 
treatment.

FANCE is a subunit of the FA pathway, which plays a 
key role in repairing DNA interstrand cross-links. FA 
pathway genes encode proteins involved in gonadal 
development, DNA replication, and DNA repair [27]. 
Mutations in the FANCE gene cause FA in humans [28]. 
Our study confirmed that FANCE is associated with a 
reduced risk of POI and is a risk locus for POI. Interest-
ingly, clinical evidence indicates that female FA patients 
exhibit reduced fertility, manifesting as POI [29]. Previ-
ous studies have shown that FANCE−/− mice exhibit 
ovarian dysplasia and severely reduced numbers of fol-
licles by five days after birth, resembling women suffering 
from POI [30]. Animal experiments have also demon-
strated that FANCE defects impair the rapid mitotic pro-
liferation of primordial germ cells (PGCs) in mouse 
embryos, leading to a sharp decrease in PGCs number 
and abnormal cell cycle distribution [31]. These findings 
indicate that FANCE is essential for PGC survival, with 
potential mechanisms involving cell cycle regulation, 
DNA damage repair, cell death prevention, and the regu-
lation of lysosome and ribosome functions [32].

In FA cells, DNA damage remains unrepaired due to 
a dysfunctional DNA repair process, causing cells to be 
blocked in the G2/M phase [33]. When DNA damage 
occurs in the primordial follicle, it responds by phosphor-
ylating and activating TAp63 [34]. Activation of TAp63 
induces the transcription of pro-apoptotic factors such 
as BH3, PUMA and NOXA. The upregulated expression 
of these proteins facilitates their interaction with the pro-
apoptotic BCL2 family members, BAX and BAK [34]. 
The translocation of BAX and/or BAK to the oocyte’s 
mitochondria causes mitochondrial dysfunction, release 
of apoptogenic proteins, and activation of caspase-9 and 
proteolytic enzymes, collectively triggering apoptosis and 
cell death [34]. The depletion of oocytes damages fertility 
and leads to POI [35]. Two rounds of meiosis are vital for 
oocyte maturation [36]. During the prophase of the first 
meiosis, fully grown oocytes are arrested in the germinal 
vesicle (G2) phase [37]. Meiotic resumption marks the 
initiation of oocyte maturation, characterized by germi-
nal vesicle breakdown (GVBD), followed by meiotic spin-
dle assembly and migration during metaphase I (MI)[38]. 
Subsequently, cytokinesis occurs, the oocyte extrudes 
the first polar body, and arrests in the metaphase II (MII) 
phase [37]. The G2/M phase and the MII phase are two 
major stages in oocyte meiosis [38]. G2/M cell cycle 
blockade leads to meiotic recovery failure, chromosome 
misalignment, increased aneuploidy, abnormal spindle 
assembly, and severe meiotic defects in oocytes [37, 39, 
40]. These issues are the main causes of ovarian aging and 
reduced female fertility [41].
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Fig. 2 Manhattan plots for associations of genome-wide with POI in MR analysis. Labelled and red genes refer to MR findings with PHEIDI ≥ 0.05 and 
Bonferroni-corrected P < 0.05. (a) Associations of genetically predicted genes levels from Finngen_Whole_Blood_GTEx_V8 with POI; (b) Associations of 
genetically predicted genes levels from Finngen_Ovary_GTEx_V8 with POI; (c) Associations of genetically predicted genes levels from Finngen_eQTLGen 
with POI
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RAB2A, a member of the Rab family, is localized to the 
endoplasmic reticulum-Golgi intermediate compartment 
(ERGIC) transport complex and regulates ERGIC trans-
port within the cell membrane [42]. Our findings indicate 
that genetically predicted RAB2A is inversely associated 
with the risk of POI. The HEIDI test and colocalization 
analysis further ruled out the possibility of horizontal 
pleiotropy. While current studies show that RAB2A is 
associated with sperm viability and motility function in 
men [43], the mechanism of premature ovarian aging in 
females with POI remains unclear.

Numerous studies have shown that ovarian aging is 
associated with mitochondria, oxidative stress, DNA 
damage, protein homeostasis, aneuploidy, apoptosis, and 
autophagy [44]. Previous research has demonstrated that 
RAB2A regulates autophagosome-lysosome fusion [45]. 
RAB2 may regulate autophagy initiation through three 
mechanisms: (1) Transporting Golgi-derived ATG9 + ves-
icles to phagophore assembly sites. (2) Recruiting ULK1 

to phagophore assembly sites, as ULK1 appears soluble 
and forms a diffused cytosolic pattern in the absence of 
RAB2A. (3) Facilitating ULK1 activation to propagate 
signals for autophagy initiation [45]. Autophagy plays a 
crucial role in oocyte development. Under normal cir-
cumstances, oocytes cannot actively induce mitophagy to 
clear damaged mitochondria. However, oocyte mitoph-
agy can be initiated by drugs or abnormal environmen-
tal stimuli, affecting the developmental ability of oocytes 
[46]. Based on our findings and literature reports, we 
hypothesize that high expression of RAB2A may induce 
abnormal autophagy in oocyte mitochondria, resulting 
in a decrease in the number and quality of oocytes, ulti-
mately leading to POI. However, this hypothesis requires 
further study as no correlation has been reported in the 
literature yet.

The strength of our study lies in employing MR and 
colocalization analyses to evaluate gene causality in POI 
records through genetic variation. MR analysis reduces 

Table 1 The mendelian randomization and colocalization results of cis-eQTL datasets and POI GWAS
Outcomes 
datasets

Outcomes SMR datasets Gene OR (95%CI) P-value Bonferroni-
corrected P

PSMR PHEIDI Colocalization Analysis
PP.H4.abf_conditional

Finngen 
R11

POI Whole_Blood_GTEx_V8 HM13 0.76 (0.66–0.88) 0.0003 0.046 0.0004 0.26 0.78
Ovary_GTEx_V8 FANCE 0.82 (0.72–0.93) 0.0003 0.018 0.002 0.66 0.86
eQTLGen RAB2A 0.73 (0.62–0.86) 0.0001 0.036 0.000 0.54 0.91

MLLT10 0.74 (0.64–0.86) 0.00008 0.022 0.000 0.06 0.01
Note: CI, confidence interval; OR, odds ratio; HEIDI, instrument-dependent heterogeneity

Fig. 3 High support evidence for colocalization between genes and POI. The size and colour of circle indicate the for PP.H3 + PP.H4
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biases from confounders and reverse causation, thereby 
increasing the reliability of causality results. Colocaliza-
tion analysis is instrumental in revealing the pleiotropic 
effects of specific loci on multiple traits, avoiding LD and 
identifying potential therapeutic targets. Additionally, we 
utilized extensive GWAS data, allowing the simultane-
ous examination of numerous genes and variants. This 
cost-effective and efficient method thoroughly investi-
gates the gene-disease relationship. Our study integrated 
multiple databases, enhancing the robustness of our find-
ings. Focusing on European populations minimized bias 
related to ethnic disparities.

Nonetheless, certain limitations should be acknowl-
edged. Firstly, our colocalization analyses are constrained 
by the availability of outcomes from existing studies, 
limiting the examination of undiscovered genetic vari-
ants. Moreover, the reliance on instrumental variants in 
colocalization analysis can introduce bias if these vari-
ants correlate with unmeasured variables. Finally, while 
focusing on specific ethnicities reduces racial bias, it also 
limits the generalizability of our findings to diverse eth-
nic groups.

Conclusion
Our study has successfully established a causal relation-
ship between genes and POI through comprehensive 
genome-wide MR and colocalization analyses. We identi-
fied FANCE and RAB2A as potential drug targets for POI 
treatment. However, these findings require validation in 
future trials.
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