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Abstract

cancer stem cell marker, in gynecologic cancer cell lines.

of methylation of the CD133 P2 promoter.

Background: To identifying the effects of DNA methylation and epigenetic factors on the expression of CD133, a

Methods: Ovarian cancer cell lines (OVCAR-8 and IGROV-1) and an endometrial cancer cell line (Ishikawa) were
treated with 5-aza-2"-deoxycytidine (DAC) or Trichostatin A (TSA). Expression of CD133 was evaluated by
quantitative real-time PCR, methylation-specific PCR (MSP), reverse transcription-PCR, western blot, and FACS
analysis. All results are representative of three independent experiments.

Results: CD133 mRNA expression varied among the different cell lines; the weakest expression was observed in
OVCAR-8 cells, while it was strongly expressed in Ishikawa cells. The degree of methylation of the CD133 P2
promoter was 61% in OVCAR-8 cells, 53% in IGROV-1 cells, and 43% in Ishikawa cells. CD133 expression was
increased at both the mRNA and protein level after DAC treatment. On the contrary, CD133 mRNA expression
decreased after TSA treatment decreased in all cell lines except OVCAR-8. In addition, MSP of the CD133 P2
promoter revealed that methylation was reduced after treatment with either DAC or TSA.

Conclusions: The expression of the CD133 antigen in primary ovarian and endometrial cancer cell lines is
regulated by epigenetics, as indicated by its increased expression following DAC treatment and irregular expression
pattern followed by TSA treatment. In addition, the expression of CD133 was negatively correlated with the degree
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Background
Ovarian cancer is one of the most fatal gynecological can-
cers. The 2008 National Cancer Institute (NCI) statistics
indicate that each year more than 20,000 new cases of
ovarian cancer are diagnosed, with 15,000 deaths [1]. Al-
though early detection of ovarian cancer is reported to in-
crease the five-year survival rate by up to 92%, the rate of
actual early detection is 20% or less, lowering the overall
five-year survival rate to between 15% and 45% [1].
Chemotherapy is administered to ovarian cancer
patients after surgery, as surgical treatment does not
confer a sufficient treatment effect. Chemotherapy, how-
ever, is not very effective either; ovarian cancer recurs in

* Correspondence: jklee38@gmail.com
Department of Obstetrics and Gynecology, Guro Hospital, College of
Medicine, Korea University, Seoul, Korea

( BioMVed Central

the majority of advanced-case patients, and tolerance to
chemotherapy may develop. Radiation therapy, immuno-
therapy, and hormonal therapy are also used as treat-
ment methods, although their relative effectiveness has
not been clearly demonstrated [2].

Interest in the relationship of cancer stem cells and
their role in the response to treatment of ovarian cancer
is on the rise. Cancer stem cells have specific genetic
variations that give them the capability to limitlessly div-
ide and proliferate, like other stem cells, in addition to
the continuous production of various cancer cells. As a
result of these capabilities, cancer stem cells can mediate
cancer occurrence, tolerance to treatment, and conse-
quently, recurrence [3].

The results of studies on the epigenetic mechanism
involved in this process have been reported. Specifically,
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expression of CD133 in patients with hepatic cancer is
associated with a poor prognosis. In addition, the ex-
pression of CD133 is significantly affected by gene
methylation. It is known that TGF-$ acts as an up-
regulator of CD133 by promoter methylation of CD133
[4]. In addition, it is known that in cervical cancer, in-
activation of the FHIT gene by 5°-CpG island methyla-
tion plays an important role in the occurrence of
cervical cancer [5]. In endometrial cancer, CD133
expression may be epigenetically regulated and that cell
fractions enriched for CD133+ cells may well contribute
to endometrial cancer tumorigenicity, pathology and
recurrence [6-8]. Among these studies, Friel et al. con-
ducted the experiment with Ishikawa cell line as control.

Ovarian cancer stem cells, through selective carriers
such as ABCG2 and MDRI, are known to be a major
cause of tolerance to chemotherapy, metastasis, and re-
currence of ovarian cancer [9,10]. As targeted treatment
for ovarian cancer stem cells, which are resistant to
treatment, is considered a more effective treatment mo-
dality for ovarian cancer, the identification of ovarian-
cancer stem cells and a treatment that targets such cells
is considered an effective strategy for the successful
treatment of ovarian cancer [11]. In addition, the treat-
ment of ovarian cancer stem cells could be advanced if
their relationship with expression of the CD133 stem
cell maker can be clarified by identifying promoter
methylation.

Thus, in this study, the CD133 marker of ovarian cancer
stem cells was examined, and the relationship between
gene expression and promoter methylation were identi-
fied. It was compared CD133 expression in ovarian cancer
cell lines and Ishikawa cell line as control.

Methods

Cell culture and cell treatments

Ovarian cancer cell lines (OVCAR-8 and IGROV-1) were
cultured in RPMI 1640 supplemented with 10% fetal bo-
vine serum (FBS), 500 units/ml penicillin and 500 pg/ml
streptomycin and 1% L-glutamine. The endometrial can-
cer cell line (Ishikawa) was cultured in minimum essential
medium (MEM) supplemented with 5% FBS, 1% Non-
Essential Amino Acids (NEAA), 500 units/ml penicillin
and 500 pg/ml streptomycin. Cells were grown at 37°C in
a humidified 95% air/5% CO, incubator.

Cell treatments

Ovarian cancer cell lines (OVCAR-8 and IGROV-1) and an
endometrial cancer cell line (Ishikawa) at 65% confluence
were treated with the global genomic DNA demethylat-
ing agent, 5-aza-2'-deoxycytidine (DAC) (Sigma-Aldrich,
St. Louis, MO, USA), or the histone deacetylase inhibitor,
Trichostatin A (TSA). For 5-aza-2'-deoxycytidine treat-
ment, cells were seeded and incubated overnight in
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growth media. The cells were then left untreated or trea-
ted with 5 umol/L of DAC for 24 hours on day 2. The
culture was re-dosed every 48 hours (days 4 and 6) and
the medium was changed 24 hours after adding DAC.
Cells were harvested on day 8 for RNA isolation. For
TSA treatment, cells were seeded and incubated in their
respective growth media containing TSA (500 ng/ml) for
24 hours. At the conclusion of either treatment, cells
were harvested for the analysis of RNA, genomic DNA,
and protein as described below.

Methylation-specific polymerase chain reaction

For methylation analysis, 2 pg of genomic DNA obtained
from gynecologic cancer cell lines were modified using the
EZ DNA Methylation™ Kit (Zymo Research, Orange, CA,
USA). Primers specific for bisulfite modified DNA were
designed using MethPrimer software (http://www.uro-
gene.org/methprimer/index1.html). The primers used in
this study (located -8061 to -7782 from transcription
start site, modified from Pleshkan et al. [12]) were as fol-
lows: CD133 M primer sense (5-TTCGGGATAGAG
GA AGTCGTAA-3') and CD133 M primer antisense
(5-CTCCCGCCCTAATCACCGCT-3); and CD133 U
primer sense (5-TTTGGGATAGAGGAAGTTGTAA-3')
and CD133 U primer antisense (5-CTCCCACCCTAAT
CACCACT-3') (Figure 1). The PCR conditions were as
follows: 94°C for 5 minutes, followed by 43 cycles of 94°C
for 30 seconds, 60°C (methylation-specific PCR, MSP) or
62°C (unmethylation-specific PCR, USP) for 30 seconds,
and 72°C for 60 seconds, and finally 72°C for 7 minutes.
The amplified DNA fragments were fractionated on 2%
agarose gels and stained with ethidium bromide.

Flow cytometry (FACS) analysis

A total of 1x10° cells were incubated with phosphate
buffered saline (PBS) containing 1% bovine serum albu-
min (BSA) alone or with mouse antihuman CD133/2-PE
(Miltenyi Biotech, Auburn, CA, USA) for 45 minutes at
4°C. Cells were washed extensively (three times in PBS)
and incubated with the appropriate PE-conjugated sec-
ond antibody for 45 minutes at 4°C in the dark. Control
cells were incubated with immunoglobulin G (IgG).
After washing the cells extensively, they were analyzed
on a FACScan instrument (Becton, Dickinson and Com-
pany, Mountain View, CA, USA). Data from 10,000 cells
was collected for each sample.
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Figure 1 Schemes of the CD133 promoter region (modified
from Pleshkan et al.) [12].
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Total RNA isolation and reverse-transcriptase reaction
RNA was extracted and purified using an RNeasy mini kit
(Qiagen, Valencia, CA, USA) as described in the manufac-
turer’s protocol. The concentration of RNA was measured
using a spectrophotometer (DU°530; Beckman, Fullerton,
CA, USA). The total RNA sample (1 pg/sample) was used
to generate cDNA with the SuperScript III First-Strand
Synthesis System for RT-PCR kit (Invitrogen, Carlsbad,
CA, USA). Briefly, RNA was reverse-transcribed in a
mixture of 25 mM MgCl,, 10 mM dNTP mix, 10 x RT
buffer, 0.1 M DTT, 200 U of Super Script III (Invitrogen,
Carlsbad, CA, USA), 40 U of RNase Out, 50 uL. Moligod
(T) primers at a final volume of 20 pL. The reaction was
run at 65°C for 5 minutes and 50°C for 50 minutes, and
then the enzyme was heat inactivated at 85°C for 5 min-
utes. Four microliters of each reaction product was used
for real-time PCR.

Reverse transcription-polymerase chain reaction

For CD133 expression analysis, cDNA was amplified in a
25 pL PCR reaction containing 2 pL of the reverse-
transcription reaction mix, primers and 1 unit of Tag
DNA polymerase. Reverse transcription-polymerase chain
reaction (RT-PCR) was carried out using RT-specific pri-
mers, CD133 RT sense (5-CTGGGGCTGCTGTTTAT
TA-3) and CD133 RT antisense (5-TACCTGGTGATT
TGCCACAA-3"). PCR conditions consisted of 5 minutes
at 95°C for initial denaturation, followed by 35 cycles of
95°C (30 seconds), 54°C (30 seconds), and 72°C (30 sec-
onds) and a final elongation of 4 minutes at 72°C. PCR
amplification was performed in a programmable thermal
cycler (PCR System 9700; Applied Biosystems; Foster City,
CA, USA). Primers for GAPDH were used to confirm
RNA integrity. Both CD133 and GAPDH RT-PCR reac-
tions were performed using the same c¢DNA synthesis
reactions. Amplified DNA fragments were fractionated on
2% agarose gels and stained with ethidium bromide.

Quantitative real-time PCR analysis

Quantitative real-time PCR was used to quantify CD133
expression. CD133 expression was normalized using the
GAPDH housekeeping gene product as an endogenous
reference. The primers and probes were designed for
human CD133 using Primer Express 2.0 (Applied Biosys-
tems, Foster City, CA, USA). CD133 mRNA levels were
quantified using TagMan Real-Time PCR with an ABI
7300 system instrument (Applied Biosystems). Gene-
specific probes and primer pairs for CD133 (Assays-
on-Demand, Hs01009250_m1; Applied Biosystems) were
used. For each probe/primer set, a standard curve was
generated, which confirmed the linear increase in amplifi-
cation with increasing amounts of cDNA. The amp-
lification conditions were 2 minutes at 50°C, 10 minutes at
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95°C, and a two-step cycle of 95°C for 15 seconds and
60°C for 60 seconds for a total of 45 cycles.

Western blot analysis

Total cell lysates were prepared by sonication. Briefly, cells
were lysed in buffer containing 50 mM HEPES (pH 7.5),
150 mM NaCl, 1.5 mM MgCl,, 1 mM EDTA, 10% gly-
cerol, 1% Triton X-100, and a mixture of protease inhibi-
tors (aprotinin, PMSF, and sodium orthovanadate). The
protein concentrations of the resulting cell lysates were
measured by the Bradford assay. Equal amounts of total
protein were resolved on a 10% SDS-polyacrylamide gel.
Next, proteins were transferred to nitrocellulose mem-
branes (Hybond -P; Amersham Biosciences, Piscataway,
NJ, USA). After blocking (TBS, 0.1% Tween 20) at 4°C for
1 hour, the membranes were incubated with anti-human
CD133 (dilution 1:1000) and B-actin (dilution 1:3000) pri-
mary antibodies. After incubation, the blots were washed
(TBS, 0.1% Tween 20) and incubated with secondary anti-
bodies linked to HRP (dilution 1:2000; Bio-Rad Laborator-
ies, Hercules, CA, USA). The blots were exposed to X-ray
film for visualization.

Results

We analyzed the expression of CD133 in three gynecolo-
gic cancer cell lines by RT-PCR, quantitative real-time
PCR, western blot, and FACS analysis. CD133 expres-
sion was examined in ovarian cancer cell lines (OVCAR-
8 and IGROV-1) and Ishikawa cells and normalized to
GAPDH expression. Although each of these cell lines is
of an adenocarcinoma origin, the CD133 mRNA expres-
sion varied significantly among the cell lines, with the
weakest expression observed in OVCAR-8 cells and the
strongest expression in Ishikawa cells (Figure 2).

To investigate the correlation of CD133 expression
with CD133 promoter methylation, methylation-specific
PCR was conducted on the CD133 P2 promoter. The
CD133 P2 promoter used in this study had a size of ap-
proximately 250 bp, and its approximate location and
size are depicted in Figure 1. The degree of methylation
of the CD133 P2 promoter was observed to be 61%
in OVCAR-8 cells, 53% in IGROV-1 cells, and 43% in
Ishikawa cells. Thus, while not statistically significant,
higher levels of methylation were observed in the ovar-
ian cancer cell lines compared with the endometrial can-
cer cell line (Figure 3).

To investigate the potential epigenetic regulation of
CD133, its expression was examined in the three cell
lines following treatment with either DAC or TSA.
CD133 expression after DAC treatment was increased
on both the mRNA and protein levels. On the contrary,
CD133 mRNA expression was decreased after TSA
treatment in all cell lines except OVCAR-8. However,
there was no change in CD133 protein expression
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Figure 2 Expression analysis of CD133 in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell lines.

following TSA treatment in OVCAR-8 cells, while the
other two cell lines exhibited decreased CD133 expres-
sion. (Figures 4 and 5). In addition, MSP of the CD133
P2 promoter revealed that methylation was reduced after
treatment with either drug (Figure 6).

Treatment with DAC led to an increase in cell surface
expression of CD133 in all three cancer cell lines, but
treatment with TSA led to such an increase only in
OVCAR-8 cells. Combined drug treatment was synergistic
for increasing cell surface CD133 expression in OVCAR-
8. In IGROV-1 and Ishikawa cells, the effect of DAC was
found to be greater than that of TSA (Figure 7).

Discussion

This is a unique study analyzing the expression of
CD133 antigen in primary ovarian and endometrial can-
cer cell lines and its potential regulation by epigenetics.
Interestingly, treatment with 5-aza-2'-deoxycytidine
(DAC) increased CD133 expression, while Trichostatin
A (TSA) treatment resulted in variable regulation of
CD133. In addition, the expression of CD133 was

negatively correlated with the degree of methylation on
the CD133 P2 primer.

Cancer stem cells (CSCs) are cancer cells that possess
characteristics associated with normal stem cells, specif-
ically the ability to give rise to all cell types found in a
particular cancer sample [13]. CSCs are therefore
tumorigenic, perhaps in contrast to other non-
tumorigenic cancer cells. CSCs may generate tumors
through the stem cell processes of self-renewal and dif-
ferentiation into multiple cell types. Such cells are pro-
posed to persist in tumors as a distinct population and
cause relapse and metastasis by giving rise to new
tumors. Therefore, development of specific therapies tar-
geted at CSCs holds hope for improving the effects of
cancer treatment, especially for recurrent and metastatic
disease [3].

CD133, a cell surface antigen, is a glycoprotein also
known in humans and rodents as prominin 1 (PROM1),
and was first isolated from hematopoietic stem cells [14].
The function of CD133 is currently being evaluated in sev-
eral cancers. It is regarded as a CSC marker in colorectal
carcinoma and glioblastoma [15,16]. Given the strong
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Figure 3 CD133 promoter methylation-specific PCR (MSP) in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell
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Figure 4 CD133 mRNA and protein expression in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell lines before
and after treatment with 5-aza-2"-deoxycytidine (DAC). A: Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the CD133
gene in three cell lines with or without 5-aza-2'-deoxycytidine (DAC). B: Representative results of real-time PCR analysis of CD133 expression in three cell
lines with or without 5-aza-2'-deoxycytidine (DAC). C: Immunoblot analysis of CD133 expression in three cell lines with or without 5-aza-2'-deoxycytidine

(DAQ).
representative of three independent experiments.

D: Fluorescence-activated cell sorting analysis of CD133+ cells in three cell lines with or without 5-aza-2'-deoxycytidine (DAC). *

Results are

rationale linking CD133 expression to more aggressive
cellular behavior, including resistance to chemotherapy
and radiotherapy, a direct correlation between CD133 ex-
pression and advanced disease stage as well as poor differ-
entiation grade has been shown in hepatocellular
carcinoma [17]. Further, several studies detected the ex-
pression of CD133 in ovarian cancer cells of different ori-
gins [18-20], suggesting that CD133 expression in ovarian
cancer is directly regulated by epigenetic modifications
and that CD133 is a candidate marker of ovarian cancer
stem cells. Shmelkov et al. characterized CD133 as having
five alternative promoters (P1-P5) that are active in a
tissue-dependent manner [21]. As Shmelkov’s result,

because CD133 P2 promoter is the only active promoter
in ovarian tissues, we investigated the effect of promoter
methylation in P2 region.

Based on the above findings, we hypothesized that
CD133 is regulated through P2 promoter methylation by
epigenetic modification in ovarian cancer. Thus, we
selected several ovarian cancer cell lines in which to evalu-
ate CD133 expression. Following treatment of cells with
DAC, increased expression of CD133 was observed, simi-
lar to previous studies [6,15,20]. However, the TSA had a
variable effect on CD133 expression that varied by cell
line. These results suggest that TSA may have different
roles in cells depending on cell type. One possible
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Figure 5 CD133 mRNA and protein expression in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell lines before
and after treatment with Trichostatin A (TSA). A: Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the CD133 gene in three
cell lines with or without Trichostatin A (TSA). B: Representative results of real-time PCR analysis of CD133 expression in three cell lines with or
without Trichostatin A (TSA). C: Immunoblot analysis of CD133 expression in three cell lines with or without Trichostatin A (TSA). D: Fluorescence-
activated cell sorting analysis of CD133+ cells in three cell lines with or without Trichostatin A (TSA). * Results are representative of three
independent experiments.
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Figure 6 Methylation of the CD133 P2 promoter in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell lines before
and after treatment with 5-aza2'-deoxycytidine (DAC) and Trichostatin A (TSA). * Representative results of real-time PCR analysis revealing
CD133 promoter methylation in three cell lines with or without 5-aza-2"-deoxycytidine (DAC) and Trichostatin A (TSA). * Results are representative
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mechanism explaining this differential effect is that TSA
inhibits the proliferation of tumor cells in culture and
in vivo by inducing cell cycle arrest, differentiation, and/or
apoptosis. Another potential mechanism is that TSA may
not only modify histone acetylation, but also alter DNA
methylation in tumorigenic cells, but not in normal cells.

Thus, TSA may promote the expression of apoptosis-
related genes, leading to cancerous cells surviving at lower
rates, ultimately slowing cancer progression [22]. Finally,
there is the possibility that experimental error occurred.
We conducted experiments in triplicate using different
concentrations of TSA, treatment times, and incubation
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Figure 7 CD133 mRNA expression in ovarian (OVCAR-8 and IGROV-1) and endometrial (Ishikawa) cancer cell lines after treatment with
Trichostatin A (TSA), 5-aza-2’-deoxycytidine (DAC), or both. * Representative results of real-time PCR analysis of CD133 expression in three
cell lines with or without 5-aza-2"-deoxycytidine (DAC) and Trichostatin A (TSA). * Results are representative of three independent experiments.
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