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Abstract

Background: Lysine-specific demethylase 1 (LSD1, also known as KDM1A and AOF2) is a chromatin-modifying
activity that catalyzes the removal of methyl groups from lysine residues in histone and non-histone proteins,
regulating gene transcription. LSD1 is overexpressed in several cancer types, and chemical inhibition of the LSD1
activity has been proposed as a candidate cancer therapy. Here, we examine the levels of LSD7 mRNA in human
ovarian tumors and the cytotoxicity of several chemical LSD1 inhibitors in a panel of ovarian cancer cell lines.

Methods: We measured LSDT mRNA levels in a cohort of n= 177 normal and heterogeneous tumor specimens by
quantitative real time-PCR (gRT-PCR). Tumors were classified by FIGO stage, FIGO grade, and histological subtypes.
We tested the robustness of our analyses in an independent cohort of n =573 serous tumor specimens (source:
TCGA, based on microarray). Statistical analyses were based on Kruskal-Wallis/Dunn’s and Mann Whitney tests.
Changes in LSDT mRNA levels were also correlated with transcriptomic alterations at genome-wide scale. Effects on
cell viability (MTS/PMS assay) of six LSD1 inhibitors (pargyline, TCP, RN-1, S2101, CAS 927019-63-4, and CBB1007)
were also evaluated in a panel of ovarian cancer cell lines (SKOV3, OVCAR3, A2780 and cisplatin-resistant A2780cis).

Results: We found moderate but consistent LSDT mRNA overexpression in stage llIC and high-grade ovarian
tumors. LSDT mRNA overexpression correlated with a transcriptomic signature of up-regulated genes involved in
cell cycle and down-regulated genes involved in the immune/inflammatory response, a signature previously
observed in aggressive tumors. In fact, some ovarian tumors showing high levels of LSDT mRNA are associated with
poor patient survival. Chemical LSD1 inhibition induced cytotoxicity in ovarian cancer lines, which roughly
correlated with their reported LSD1 inhibitory potential (RN-1,52101 >> pargyline, TCP).

Conclusions: Our findings may suggest a role of LSD1 in the biology of some ovarian tumors. It is of special
interest to find a correlation of LSDT mRNA overexpression with a transcriptomic signature relevant to cancer. Our
findings, therefore, prompt further investigation of the role of LSD1 in ovarian cancer, as well as the study of its
enzymatic inhibition in animal models for potential therapeutic purposes in the context of this disease.
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Background

Lysine-specific demethylase 1 (LSD1, also known as
KDM1A, AOF2, BHC110, and KIA0601) is a nuclear en-
zymatic activity that catalyzes the removal of methyl
groups from histones and non-histone lysine residues
[1-5]. LSD1 demethylates mono- and di-methylated his-
tone H3 at lysines 4 and 9 (H3K4me1/2 and H3K9mel/2,
respectively) mediating the transcriptional actions of
hormone-liganded nuclear receptors [6-9], oncogene
c-myc [10], and Snaill [11-13], among others. LSD1 also
demethylates non-histone substrates, such as tumor sup-
pressor p53 and cell cycle and apoptosis regulator E2F1
[14,15]. LSD1 has been found overexpressed in liver can-
cer [16], gastric cancer [17], breast cancer [18,19], bladder,
lung and colorectal cancers [20], Ewing's sarcoma [21],
and neuroblastoma [22]; and overexpression of LSD1 is a
predictor of poor prognosis in prostate and liver cancer
[16,23]. Together, these and other studies suggest that
LSD1 is linked to cancer and could be a target for drug
discovery [24,25].

LSD1 is a flavin adenine dinucleotides-dependent
(FAD) amine oxidase [1]. Thus, FDA-approved inhibitors
of FAD amine oxidases such as mitochondrial-associated
monoamine oxidase (MAO) A and B and polyamine oxi-
dase (PAQO) are non-selective inhibitors of the LSD1 ac-
tivity [4]. Recently, more potent and selective LSD1
inhibitors have been developed, which can be grouped
into four different classes based on their chemical struc-
ture. One class is based on analogues of (bis)guanidine
and (bis)biguanide polyamines and oligoamines [26]. It
includes compound CAS 927019-63-4, which is a poly-
amine analog that selectively inhibits LSD1 in vitro and
that induces re-expression of aberrantly silenced genes
in human colon carcinoma cells [27,28]. Polyamine ana-
logs have also been tested in breast cancer cells [29]. A
second class of LSD1 inhibitors is based on tranylcypro-
mine (TCP, also known as 2-phenylcyclopropylamine or
2-PCPA). TCP is a non-selective and irreversible MAO
inhibitor that forms a covalent adduct with FAD. FAD-
approved TCP has been used in the clinical treatment of
mood and anxiety disorders [30-32]. Two of the most
recently developed TCP-analogues with LSD1 inhibi-
tory activity are 52101 [33] and RN-1 [34]. A third class
of LSD1 inhibitors is based on FDA-approved antidepres-
sants pargyline and phenelzine [25]. The LSD1 inhibitory
activity of pargyline has been tested in prostate cancer
cells [7]. Finally, a fourth class of LSD1 inhibitors mimics
the peptide structure of LSD1 substrates, such as histone
H3 tails [35,36]. For example, CBB1007 is an amidino-
guanidinium compound that was developed based on the
crystal structure of LSD1 associated with a peptide inhibi-
tor derived from the N-terminal tail of H3 [36]. CBB1007
is a potent and reversible substrate competitive inhibitor
of LSD1 that in vitro arrests pluripotent cancer cells with
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minimal effect on non-pluripotent cancer or normal som-
atic cells [36].

Despite the abundant literature on LSD1 and the many
studies testing LSD1 inhibition in cancer cells, the levels
of LSD1 expression in human ovarian tumors and the
effects of LSD1 inhibitors in ovarian cancer cells have
not yet been investigated. In this study, we examine the
levels of LSDI mRNA expression in two independent
cohorts of human ovarian tumors. One analysis is based
on quantitative real-time PCR (qRT-PCR) and n =177
specimens, and the other analysis is based on microarray
and n=573 specimens (source: The Cancer Genome
Atlas or TCGA). We also examine transcriptomic pro-
files associated with changes in levels of LSDI mRNA in
TCGA tumors. Finally, we examine the effects on cell
viability of six chemical LSD1 inhibitors (CAS 927019-
63-4, TCP, RN-1, S2101, pargyline, and CBB1007) in a
panel of ovarian cancer cell lines. Our study is the first
systematic analysis of LSD1 in the context of ovarian
cancer.

Methods

Human cohort of ovarian normal and tumor samples
Ovarian Cancer cDNA Tissue Scan™ was purchased from
OriGene Technologies (Rockville, MD, USA). It contains
n =192 ovarian normal and tumor cDNA samples (plate
HORT101, Lot#1210; plate HORT102, Lot#0712; plate
HORT103, #Lot 0210; and plate HORT104, Lot#0210).
For our studies, we reduced the number of specimens in
the cohort to n =177 (see section below, ‘qRT-PCR-based
measurement of LSD1 mRNA expression in our study
cohort’ for details on how we filtered these data). The
clinicopathologic parameters and histological and clin-
ical information of the final cohort can be found at
the OriGene website. A summary of this information
can also be found in Additional file 1: Table S1.

Cell lines

Human ovarian cancer cell lines SKOV3 and OVCAR3 were
purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Human ovarian cancer cell
lines A2780 and its cisplatin-resistant clone (A2780-cis)
were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Human breast cancer MCF7 and prostate cancer
LNCaP cells were generously provided by Dr. Michael G.
Rosenfeld (University of California, San Diego, CA, USA).
SKOV3 cells were cultured in McCoys 5A Modified
Medium (16600-108; Life Technologies, Carlsbad, CA,
USA) containing 10% fetal bovine serum, or FBS (Omega
Scientific, Tarzana, CA, USA). OVCAR3 cells were cul-
tured in RPMI-1640 Modified Medium (30-2001; ATCC)
containing 20% FBS supplemented with 10 pg/mL bovine
insulin (Sigma-Aldrich). A2780 and A2780-cis cells were
cultured in RMPI-1640 + GlutaMAX-I medium (61870—
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127; Life Technologies) containing 10% FBS and supple-
mented with 25 mM HEPES buffer. MCF?7 cells were cul-
tured in DMEM(1x) + GlutaMAX-I medium (10566—024;
Life Technologies) containing 10% FBS. LNCaP cells were
cultured in Advanced DMEM/F12(1x) medium (12634—
028; Life Technologies) containing 10% FBS. Trypsin/
EDTA (Life Technologies) was used for detachment of
SKOV3, MCF7, and LNCaP cells. Accutase (Innovative
Cell Technologies, San Diego, CA, USA) was used for the
detachment of OVCAR3, A2780, and A2780cis cells. Cells
did not exceed 20 passages in any of the experiments
shown in this study. Cells were maintained in cell incuba-
tors at 37°C and 5% COs,.

Chemotherapeutics

LSD1 inhibitors pargyline hydrochloride (also known
as pargyline) and trans-2-phenylcyclopropyl-amine hydro-
chloride (also known as TCP or 2-PCPA) were purchased
from Sigma-Aldrich. RN-1 hydrochloride (also known
as RN-1 or LSD1 Inhibitor IV, cat. # 489479), S2101 (also
known as LSD1 Inhibitor II, cat. # 489477), CBB1007
(also known as LSD1 inhibitor III, cat. # 489478), and
CAS 927019-63-4 (also known as LSD1 inhibitor, cat.
# 489476) were purchased from Calbiochem (EMD-
Millipore, Billerica, MA, USA). Chemicals were dissolved
in water at a final concentration of 100 mM for pargyline
and TCP, 6 mM for RN-1, and 10 mM for CAS 927019-
63-4; or were dissolved in dimethyl sulfoxide (DMSO) at a
final concentration of 100 mM for S2010 and 10 mM for
CBB1007. Cisplatin was purchased from Sigma-Aldrich
and dissolved in dimethylformamide at a final concentra-
tion of 40 mM. Dilutions were prepared in the same sol-
vents. Solutions were made fresh in every experiment for
pargyline, TCP, and cisplatin. For the rest of chemicals,
stock solutions were prepared and stored at -20°C, being
thawed/frozen no more than 3 times.

gRT-PCR-based measurement of LSDT mRNA expression
in our study cohort

Dry ¢cDNA pellets from ovarian normal and tumor tis-
sues (see section above, ‘Human cohort of ovarian nor-
mal and tumor samples’) were dissolved in 31 pL water
at 50°C for 15 minutes, vortexing every 5 minutes. After
short spinning, two aliquots of 13 pL and two aliquots
of 2 pL were taken for analysis of human LSDI and
ACTB mRNA expression, respectively. The four aliquots
were brought to a final volume of 30 pL with 2xFastStart
Universal SYBR Green Master mix (Roche Applied
Science, Indianapolis, IN, USA) and the solution with
primers. Primer sequences were: LSDI-sense 5-GCTCGG
GGCTCTTATTCCTA-3" and LSDI-antisense 5-CCCAA
AAACTGGTCTGCAAT-3 and ACTB-sense 5-GGACT
TCGAGCAAGAGATGG-3" and ACTB-antisense 5-AGC
ACTGTGTTGGCGTACAG-3'. The expected sizes of the
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LSD1 and ACTB PCR amplicons were confirmed by agar-
ose gel. The validity of the LSDI primers was also con-
firmed by the observation of a significant downregulation
in the levels of a PCR amplicon obtained in ¢cDNA sam-
ples from cancer cell lines treated with LSD1 siRNA when
compared to control siRNA treatment (data not shown).
Standard quantitative real-time PCR (qRT-PCR) reactions
were conducted in a 3000 MxPro Instrument (Agilent
Technologies, Santa Clara, CA, USA), in 96-well format
with adhesive film. PCR settings were the following: 2 min
50°C, 10 min at 95°C followed by 40 cycles of 95°C for 15
sec, 58°C for 15 sec, and 25 sec for 72°C. Cycle threshold
(Ct) values were extracted with MxPro qPCR Software
(Agilent Technologies) and calculated the difference (ACt)
between replicates. Those samples in which ACt was
higher than 0.5, either for LSDI or control ACTB, were
excluded from our analysis, which ensured the inclusions
of only robust expression measurements in further
analyses. A total of n=177 out of 192 samples (92.2%)
reached this quality requirement.

Analysis of TCGA data

Gene expression data on n =573 ovarian serous cystade-
nocarcinoma (OV) samples were downloaded from the
TCGA website (datasets UNC_AgilentG4502A_07_2 and
UNC_AgilentG4502A_07_3). Matching clinical data were
downloaded from the UCSC Cancer Browser [37] (data-
sets AgilentG4502A_07_2 and AgilentG4502A_07_3, ver-
sion: 2013-06-03). Gene expression data for normal
ovarian tissue (n=47) were downloaded from the TCGA
website. Of the normal samples, n = 8 belong to “Solid tis-
sue normals” from the “Ovarian Cancer” dataset, and n =
39 belong to “Control” with gene expression data over a
total of 546 samples available from the same dataset. The
downloaded data were mined with custom Linux scripts
to extract data and create tables of gene expression and
clinical features for the ovarian tissue (normal and cancer-
ous) samples. Two groups of samples were extracted ac-
cording to the expression of LSD1 (AOF2): the first group
(“LSDI-underexpressed”) included subjects having LSDI
expression under 0.2 percentile, and the second group
(“LSDI-overexpressed”) included subjects having LSDI
expression over 0.8 percentile of all samples. Both groups
included equal number of samples, n = 115. Gene expres-
sion data for the two groups were then imported into R
statistical software, and SAM (Significance Analysis for
Microarray)-analysis was performed on the data to deter-
mine the genes significantly differentially expressed be-
tween the groups. The significant genes fell into two
groups: genes whose pattern of expression positively cor-
related with that of LSD1 (i.e. they were overexpressed
in the LSDI-overexpressed group and underexpressed
in the LSDI-underexpressed group), and genes whose
pattern of expression negatively correlated with that
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of LSD1 (i.e. they were underexpressed in the LSD1-
overexpressed group and overexpressed in the LSD1-
underexpressed group). SAM analysis (delta=3, FDR =
3e-05) revealed n=821 (plus LSDI itself) genes whose
expression correlated with that of LSD1 with the fold
change >1.5 (<1/1.5 for negatively correlated genes), in-
cluding n =430 positively correlated, and n =391 nega-
tively correlated genes. This gene set was further
filtered to only include the genes that showed certain
consistency in their correlation with LSD1 expression;
namely, the genes that correlated with the direction
of changes in LSDI expression in more than 50% of
high LSDI-expressing samples and in more than 50%
of low LSDI-expressing samples. The filtered gene set
contained n =458 genes (plus LSDI): n =243 positively
correlated and n = 215 negatively correlated with LSDI ex-
pression. For each gene, the percent of consistency (per-
cent of samples that exhibited the consistent expression
of this gene with LSDI) within LSDI-underexpressed
and LSDI-overexpressed groups was calculated (Additional
file 2: Table S2). The expression data for the filtered gene
set (n = 458) was normalized to (-1:1), hierarchically clus-
tered by centered correlation method, and then visualized
as a heatmap using Cluster 3.0/Treeview software [38].
The gene expression data was then manipulated and
sorted using Kingsoft Office and Apache OpenOffice soft-
ware, according to clinical stages, histological subtype,
gene expression, and survival data. The statistical analysis
of the groups was performed in GraphPad Prism 6 for
Windows (for procedures, see Statistical analysis below).
Kaplan-Meier analysis was performed on three groups
of samples: the LSDI-underexpressed (n=115), LSDI-
overexpressed (n=115), and the rest of the samples
in the dataset (n = 343). The statistical difference between
the survival curves was calculated by Mantel-Cox survival
test.

Protein extraction and Western blot analysis

For LSD1, protein was isolated directly from culturing
10-cm plates after washing with PBS buffer and adding
400 puL modified IPH buffer (50 mM Tris—HCI, pH 8.0,
300 mM NaCl, 5 mM EDTA, 0.5% (by volume) NP-40,
and inhibitor cocktail). Protein extracts were then col-
lected after 30 min lysis at 4°C, and centrifuged for 10
min at 14.000 rpm (4°C). For PARP1 and histones,
protein was isolated from 6-well plates in 250 puL modi-
fied IPH buffer (as above but 420 mM NaCl). Protein
concentration was measured by the standard Bradford
Protein assay. Twenty pg (for LSD1) and 7 pg (for PARP1
and H3K4me2) protein were loaded and run on 4-12% Bis-
Tris gels with MES running buffer (Life Technologies).
After transfer onto 0.2 um-pore PVDF (BioRad) or nitrocel-
lulose (Whatman) membranes, membranes were blocked
with Odyssey blocking solution (LI-COR bioscience) or 5%
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milk/TBST for 30 min and probed with antibodies
(diluted in 5% BSA/TBST) against LSD1 (17721, Abcam),
tubulin (DM1A, Sigma), or H3K4me2 (39141, Active
Motif), PARP1 (9542, Cell Signaling), actin (MAB1501,
Chemicon), respectively, overnight at 4°C. Immunodetec-
tion was achieved after incubation with infrared (IR)-dye-
conjugated (LI-COR Bioscience, Lincoln, NE, USA) or
HRP-conjugated (Invitrogen, Carlsbad, CA, USA), respect-
ively, goat anti-mouse or goat anti-rabbit diluted 1:5,000
in blocking solution. IR-dye immunoreactive bands
were scanned using Odyssey Imaging System (LI-COR
Bioscience) following manufacturer’s instructions. HRP
signal was detected by ECL (Amersham-GE, Pittsburgh,
PA, USA) and autoradiography film.

Microscopy

Bright-field images were taken in a Nikon Diaphot micro-
scope at a 10x magnification. Image acquisition was per-
formed with a Canon Digital Rebel XTi camera, using
ZoomBrowser EX5.7 and EOS Utility software (Canon)
for remote picture shooting.

Cell viability assay

Cells were seeded at a 1/12 dilution in 96-well plates
(200 pL/well) from 10 cm confluent plates. After 24 hrs,
100 pL medium was removed and replaced with 100 pL
fresh medium containing the indicated small compound
concentrations in figure legends. After additional 48 hrs,
150 pL medium was removed and replaced with 30 pL
medium plus 20 pL of MTP/PMS (20:1, v:v) solution
We purchased MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
inner salt] from Promega (Madison, W1, USA), and PMS
(phenazine methosulfate) from Sigma-Aldrich. Plates were
maintained in cell incubators at 37°C (5% CO,) for 2—2.30
hours and, afterwards, absorbance was measured at 490
nm in a microQuant plate reader (Biotek Instruments,
Winooski, VT, USA). Values were obtained with the
KCjunior Software (Biotek). Wells in the periphery of each
96-well plate were not used for measurements (A1-A12,
H1-12, B-G1, and B-G12). Each experiment was per-
formed in triplicate with six replicates each (total data
point, n = 18). We show a representative example of one
of them. For estimation of IC50 values and visualization
we used Excel (Microsoft) and Prism 6 (GraphPad)
software. Cells under vehicle conditions were used to
determine 100% viability (C1). Wells without cells (in
the case of pargyline and TCP treatments) or at condi-
tions in which no cells remained alive after treatment
(visually determined, in the case of RN-1 and S2101)
were used to determine 0% viability (C2). Viability per-
centage (C3) was calculated as: ((C3-C2)/(C1-C2))*100
in Excel. Cell viability graph show the average (mean)
value of viable cells under each condition, + s.e.m. After
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exporting these data to Prism, half maximum inhibitory
concentration (IC50, or best fit) values and 95% confi-
dence intervals (95% CI) were then estimated by calculat-
ing the nonlinear regression (curve fit, dose response-
inhibition variable slope) with Prism 6.

Statistical analysis

Statistical analysis in our sample cohort was conducted
with the GraphPad Prism 6 version for Mac (GraphPad).
For two-groups-only comparisons (n =2), we conducted
two-tailed Mann Whitney tests. For analysis of multiple
groups (n>2), we conducted one-way non-parametric
ANOVA (Kruskal-Wallis test) followed by the Dunn’s
post hoc test (unless indicated otherwise, p-values were
calculated comparing the mean of each group to the
mean of control or normal tissue). For the Kaplan-Meier
analysis, we used Mantel-Cox survival test. Differences
were considered significant at p<0.05 (*). Other values
were indicated as: p<0.01 (**), p<0.001 (***), and
p<0.0001 (****).

Results and discussion

gRT-PCR-based profiling of LSD7 mRNA in human ovarian
specimens

In order to accurately evaluate the levels of LSDI mRNA
in ovarian tumors, we profiled a study cohort of n =192
specimens by quantitative real time PCR (qRT-PCR).
This cohort contained all the major ovarian cancer
histological subtypes (serous, endometrioid, clear cell,
and mucinous). We measured two replicates per speci-
men and eliminated n = 15 cases (7.8%) in which the dif-
ference between replicates exceeded a certain quality
threshold (see Methods for more details). This strategy
allowed us to focus our further analyses on a cohort of
n = 177 specimens in which all measurements were ro-
bust. A summary of clinicopathologic features of this co-
hort can be found in Additional file 1: Table S1, and a
list of case-by-case clinicopathologic and morphological
features can be consulted on-line (see Methods for di-
rections). LSD1 mRNA was clearly detectable in all cases
with a mean expression value of 2% relative to ACTB
mRNA (Figure 1). The lowest expression value was 0.3%
(case ID =RNO000033F5, which corresponded to an
endometrioid tumor classified as stage I and grade GI;
second panel in Figure 1), and the highest expression
value was 12.7% (case ID = RNO0003A55, which also
corresponded to an endometrioid tumor, but classified
as stage III and grade G3; second panel in Figure 1). To
our knowledge, this is the first dataset of LSDI mRNA
measurements based on qRT-PCR obtained in a human
cohort of ovarian tumors. We use this valuable dataset
to study with high sensitivity the expression pattern of
the LSD1I gene in ovarian cancer.
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Moderate LSDT mRNA overexpression in stage IlIC and
grades G2/G3 ovarian tumors

Before performing a comprehensive analysis of our study
cohort, we mined The Cancer Genome Atlas (TCGA)
database to obtain initial clues about the potential exist-
ence of alterations in the levels of LSDI mRNA in ovar-
ian tumors (TCGA contains only ovarian tumors of the
serous histological subtype). A pair-comparison analysis
(Mann—Whitney) of normal tissue (n=47) and tumors
(n=573) revealed moderate but highly significant
overexpression of LSDI in tumor specimens (p < 0.0001;
Figure 2A, left panel). We also divided our cohort in
normal tissue (n =27) and tumor (n = 150) specimens ob-
serving a similar result (p=0.0113 by Mann—Whitney;
Figure 2A, right panel). We also separated our cohort by
tumor histological subtypes, observing higher levels of
LSD1 mRNA in serous, papillary serous, endometrioid,
and clear cell tumors, but not in those of the mucinous
subtype (p =0.0296, p =0.0315, p=0.0421, p=0.0131,
and non-significant, respectively, by Mann Whitney;
Additional file 3: Figure S1; first and second row of
panels). Some of these differences were also observed
when serous, papillary serous, endometrioid, and clear
cell tumors were directly compared to mucinous speci-
mens (Mann Whitney; Additional file 3: Figure S1; third
row of panels). In the past, mucinous tumors have
been reported as largely distinguishable at molecular
level from the other histological subtypes [39]. Our
result may further support these differences. However,
we should take this observation with caution because
the mucinous group consists of a small number of tu-
mors (n=05) in our cohort. Together, these data suggest
that the levels of LSDI mRNA are higher in ovarian tu-
mors than in normal tissue (with the likely exception of
mucinous tumors).

The issue with this analysis is whether normal ovarian
tissue is the best (or even a permissible) reference to es-
tablish abnormalities with regard to gene expression
levels in ovarian tumors. Ovarian normal tissue is largely
constituted of stromal cells, whereas ovarian tumors
mainly derive from epithelial cells [40]. Although the
distinction between stromal and epithelial cells is not al-
ways obvious at molecular level (for example, well-
established tumors sometimes display a robust stromal
gene signature even in the absence of visually apparent
stroma [41]), it is obvious that a difference in cell type
composition per se may cause differences in gene ex-
pression that might not be attributable to disease. On a
different note, multiple studies suggest that ovarian tu-
mors may derive from the fimbria of the fallopian tube,
thus ovarian normal epithelium might not be a good ref-
erence control [40,42]. One known workaround to the
use of normal (either ovarian or fallopian) tissue is to
use cultured primary or immortalized normal epithelial
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Figure 1 Analysis of LSDT mRNA by gRT-PCR in our study cohort reveals robus LSD7 mRNA levels in all ovarian normal and tumor
specimens tested. gRT-PCR analysis of LSDT mRNA levels in n=177 ovarian specimens. ‘N" indicates bulk ovarian normal tissue. ‘I-IV" indicates
FIGO stage. Two LSDT mRNA replicates were measured per specimen (shown in grey and black) and their values were normalized to the levels of
ACTB mRNA measured in the same specimen also in duplicate by gRT-PCR. The y-axis refers to the relative levels of LSDT mRNA with respect to
ACTB mRNA (as a percentage). The x-axis includes tumor identification numbers. FIGO grade: borderline (cantaloupe), grade G1 (light blue), grade
G2 (blue), and grade G3 (dark blue); as well as tumor histological subtype: endometrioid (green), clear cell (yellow), mucinous (purple), serous
(red), and papillary serous (cayenne) are indicated on top of each tumor identification number (when available). In a few cases (as indicated),

cells. However, it is known that normal cells may quickly
acquire aberrant features once in culture (reported in
different systems, e.g. [43-45]), those expression differ-
ences not being associated with disease. Therefore, any
reference control seems to be problematic in one or an-
other way [46], as it might also be in our case (Figure 2A).
Nevertheless, we suspect, that these aspects might be less
relevant in the particular case of LSDI, because this gene
is highly expressed in many cell and tissue types appar-
ently without a strong cell/tissue-specific pattern of ex-
pression (ie. being a housekeeping-like gene). Perhaps in
agreement with this comment is the observation that
LSDI mRNA levels are very similar in a comparison of
borderline tumors (which are largely epithelial), different
tumors at different stages (epithelial), mucinous tumors,

and normal tissue (stromal). We show these comparisons
later in this study.

In any case, to potentially avoid issues regarding the
different origin of normal and tumor specimens, we sub-
divided the TCGA and our study cohort by FIGO stage,
which allows us direct comparisons between tumor
groups. In the TCGA cohort, we observed higher aver-
age levels of LSD1 mRNA in stage II, III, and IV than in
stage I tumors (Additional file 4: Figure S2A), but these
differences did not reach significance likely because of
the small number of stage I specimens in the TCGA co-
hort (n=16). The differences (specially for stage III and
IV) reached significance when compared to the larger
group of normal tissue (n = 47), which shows similar aver-
age levels of LSDI mRNA to stage I tumors (Additional
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Figure 2 Multi- and pair-comparison statistical tests suggest moder
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specimens in our cohort. (A) Left panel: pair-comparison analysis of LSDT mRNA levels in normal (N) and tumor (T) specimens (serous

Figure S1 for a separated analysis). (B) Left panel: multi-comparison analysis of normal tissue (N) and tumors classified by FIGO stage (--IV). Middle
and right panels: pair-comparison analyses of normal tissue (N) and stage Ill tumors, and stage | and stage Ill tumors, respectively. (C) Left panel:

normal tissue (N) and stage IlIC tumors; and a pool of stage IlIA and IlIB tumors (IlIA/IIIB) and stage IIIC tumors, respectively. (D) Left panel:
comparison analyses of normal tissue (N) and grade G2 tumors; middle, normal tissue (N) and grade G3 tumors; and right, G2 tumors and G3
Dunn’s analysis in multiple-comparison analyses (number of comparisons= 10 in B and D, and 6 in C). P-values and number of specimens are

shown on top and at the bottom of each panel. Two outliers exceeded the limits of the y-axis (values =83 and 5.9) in some panels. In B-D, all
histological subtypes were analyzed excluding mucinous. Whiskers in box plots represent 5-95 percentile values, and horizontal lines within

ate LSD1 mRNA overexpression in stage IlIC and grade G2/G3

in our cohort (all tumor histological subtypes; see Additional file 3:

s stage IIIA-IlIC. Middle and right panels: pair-comparison analyses of
y FIGO grade: borderline (B) and G1-G3. Rest of panels: left, pair-

and the Kruskal-Wallis (non-parametric ANOVA) test followed by post hoc

lue < 0.001 (***), and p-value < 0.0001 (***¥).

file 4: Figure S2A). In our cohort (in which, from now
on, the few tumors of the mucinous subtype were re-
moved from analysis), we could see statistically significant
higher levels of LSDI mRNA in stage III tumors than
in control and stage I tumors, although only after the
application of a less stringent pair-comparison test (p =
0.0447, Mann—Whitney), but not after the application
of a more stringent multi-comparison test (Kruskal-
Wallis followed post hoc by Dunn’s, Figure 2B). Therefore,
we suspect that the small size and high dispersion of
tumor groups such as stage I diminish the power of our
statistical analyses. Together, these analyses suggest mod-
erately higher levels of LSDI mRNA in at least stage III
ovarian tumors. The differences were robust compared to

normal tissue, but not as robust in the direct comparison
to stage I tumors.

We further subdivided stage III tumors into (sub)stages
IIIA, IIIB, and IIIC. In the TCGA cohort, stage IIIC
specimens showed the higher average levels of LSDI
mRNA of the three (sub)stages, and the difference com-
pared to control reached statistical significance (p < 0.0001
with restrictive Kruskal-Wallis/Dunn’s test; Additional
file 4: Figure S2B). In our cohort, we observed a similar
result (p = 0.0003, Kruskal-Wallis/Dunn’s test; Figure 2C).
We also observed a statistically significant difference
between stage IIIC tumors and tumors classified as stage
IIA or IIIB, although only after these two groups were
combined (IIIA/IIIB; p=0.0400, Mann-Whitney test;
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Figure 2C), thus reinforcing the argument that small
group sizes limit the power of our statistical analyses.
These results suggest that LSDI mRNA levels are high in
stage IIIC ovarian tumors.

Next, we subclassified tumors by FIGO grade (border-
line malignant, highly differentiated or grade G1, moder-
ately differentiated or grade G2, and low differentiated/
undifferentiated or grade G3). In the TCGA cohort (which
lacks borderline tumors), we observed higher levels of
LSDI mRNA in G2 and G3 than in G1 tumors by multi-
comparison analysis (p =0.0085 and p = 0.0071, Kruskal-
Wallis/Dunn’s test; Additional file 4: Figure S2C). In our
cohort, we observed very similar average levels and disper-
sion of LSD1 expression in normal ovarian tissue and
borderline tumors, which are mainly epithelial in ori-
gin (Figure 2D). As in the TCGA cohort, we also ob-
served the highest levels of LSDI mRNA in G2, and
the difference in this case with respect to G3 tumors
reached significance (p =0.0467 by Mann—Whitney,
Figure 2D). These results suggest that LSDI mRNA
levels are abnormally high in at least grade G2 tumors, a
trend that was similarly observed in both independent
cohorts.

Finally, we combined FIGO stage and grade classifi-
cations for further analysis. In the TCGA cohort, we ob-
served that tumors simultaneously classified as stage IIIC
and grade G2 (IIIC/G2), IIIC/G3, or IV/G3 showed sig-
nificantly higher levels of LSDI mRNA than control (even
with stringent Kruskal-Wallis/Dunn’s analysis; Additional
file 5: Figure S3). We observed a similar result in our
cohort (Figure 3; although not with stage IV). Further-
more, IIIC/G2 and IIIC/G3 tumors showed significant
higher LSD1I levels than I-II/G3 tumors (p =0.0002 and
p =0.0081, respectively, Kruskal-Wallis/Dunn’s; Figure 3).
We also detected LSDI mRNA overexpression in IIIC/G2
specimens compared to stage IIIC or grade G2 tumors
individually (p=0.0355 and p=0.0412, respectively,
Mann—Whitney; Figure 3). IIIC/G2 tumors showed higher
levels of LSDI mRNA than IIIC/G3 tumors (p =0.0192,
Mann—Whitney; Figure 3), or than any other tumor sub-
group (e.g.: III-nollIC/G2, p = 0.0303; II-nollIC/G3, p =
0.0278; 1-11/G2, p = 0.0066; or I-1I/G3, p < 0.0001; Mann—
Whitney). In contrast, III-nolIIC/G2 tumors (those classi-
fied as stage III excluding stage IIIC) were not statistically
different than normal tissue. For IIIC/G3 specimens,
we observed higher LSDI mRNA levels than in nor-
mal control or I-1I/G3 tumors (p = 0.0002 and p = 0.0002,
respectively, Mann—Whitney; Figure 3), but not than in
stage IIIC or grade G3 tumors (analyzed independ-
ently), or than any other tumor group. I-II/G2 tumors
also showed more LSDI mRNA than I-II/G3 tumors
(p =0.0064, Mann—Whitney; Figure 3). Together, these
results suggest that LSDI mRNA overexpression in
ovarian tumors reaches its highest level when they
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are simultaneously classified as stage IIIC and grade
G2 or G3, independently of the cohort.

Overall, our analyses of LSD1 mRNA levels in ovarian
tumors suggest moderate LSDI mRNA overexpression
in certain FIGO stages and grades, often observed con-
sistently in two independent cohorts. In particular, we
observed LSDI mRNA overexpression in stage IIIC tu-
mors, as well as associated with high-grade tumors (G2
and, to a certain point, G3). In the TCGA cohort, we also
observed LSDI mRNA upregulation in stage II and IV tu-
mors, which may have been missed in our cohort due to
the limited size of these two particular groups (n =14 and
n =10 in our cohort, respectively, versus n = 27 and n = 85
in the TCGA cohort). Inconsistencies between cohorts
might be attributed to disparities in tumor collections
(sample size, donors, and composition of tumor subtypes),
and to the use of different profiling techniques (QRT-PCR
and microarray). In any case, we admit that the strength
of our conclusions will strongly depend on the suitability
of using normal tissue as reference control in the study of
LSD1 mRNA levels.

Transcriptomic features of high LSD7 mRNA-expressing
ovarian tumors

Once we have identified that some ovarian tumors may
show abnormally high levels of LSDI mRNA, we sought
to explore whether these tumors may exhibit other mo-
lecular features. LSD1 (via its demethylase activity) is
known to act as a positive and negative regulator of gene
transcription [1,7,8,10,47]. Its overexpression, therefore
(if correlated with overexpression of LSD1 protein and,
especially, with enhanced LSD1 activity), might lead to
additional transcriptomic alterations. It might also be
possible that the same mechanisms leading to changes
in LSD1 gene expression may cause other transcriptomic
alterations simultaneously. Either way, it is likely that an
increase in the levels of LSDI mRNA is not an isolated
event and correlates with other transcriptomic alter-
ations. To identify these other potential alterations, we
ranked TCGA ovarian tumors (n=573) by levels of
LSDI mRNA, and selected those cases showing LSDI
mRNA overexpression or underexpression compared to
the rest of tumors in the dataset (see Methods for more
details). Both groups contained the same number of speci-
mens, n=115. By SAM analysis, we identified n =821
(plus LSDI) genes that were differentially expressed be-
tween the two groups with fold change of at least 1.5
(Delta = 3, false discovery rate or FDR = 3e-05; Additional
file 6: Figure S4A and S4B): n =430 + LSD1 overexpressed
(fold change>1.5), and n=391 underexpressed (fold
change < 1/1.5). Since some of these genes with differential
expression concentrated these changes in a relatively small
number of specimens (e.g. genes in the orange dotted-line
box in Additional file 6: Figure S4B), we further filtered
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Figure 3 Multi- and pair-comparison statistical tests suggest that a combination of stage IlIC and grade G2 is the diagnosis associated

with the highest levels of LSD7 mRNA overexpression in our cohort. Top panel: multiple-comparison analysis of normal tissue (N) and
tumors subclassified as stage | or Il and grade G2 (I-1/G2) or as stage | or Il and grade G3 (I-1I/G3); as stage Il excluding IlIC and grade G2
(I-nolllC/G2) or as stage Il excluding IlIC and grade G3 (lll-nolllC/G3); and as stage IIIC and grade G2 (Ill/G2) or as stage IIIC and grade G3 (Ill/G3).
Bottom panels: pair-comparison analyses in normal tissue (N), and stage IlIC and grade G2 (IlIC/G2) tumors (first panel); stage IlIC tumors, and
stage IIIC and grade G2 (IlIC/G2) tumors (second panel); grade G2 tumors, and stage lIIC and grade G2 (IlIC/G2) tumors (third panel); stage IlIC
and grade G3 (llIC/G3) tumors, and stage IlIC and grade G2 (IlC/G2) tumors (fourth panel); normal tissue (N), and stage IIIC and grade G3 (IlIC/G3)
tumors (fifth panel); stage | or Il and grade G3 (I-1I/G3) tumors, and stage IlIC and grade G3 (IllC/G3) tumors (sixth panel); and stage | or Il and
grade G2 (I-I/G2) tumors, and stage | or Il and grade G3 (I-11/G3) tumors (seventh panel). We applied the Mann-Whitney test in pair-comparison
analyses, and the Kruskal-Wallis (non-parametric ANOVA) test followed by post hoc Dunn's analysis in multiple-comparison analyses (number of
comparisons = 21). P-values are shown on top of each panel when significant. Number of specimens in each group is shown at the bottom of
each panel. All histological subtypes were analyzed, excluding mucinous. Whiskers in box plots represent 5-95 percentile values, and horizontal
lines within boxes represent median values. P-value < 0.05 (¥), p-value < 0.01 (*¥), p-value < 0.001 (***), p-value < 0.0001 (****),

the full gene set to identify those cases with more consist-
ent alterations (i.e. those that correlated with changes in
LSDI mRNA expression in more than 50% of high LSDI-
expressing and 50% of low LSDI-expressing tumors;
Additional file 6: Figure S4C). This filter reduced the
number of differentially expressed genes to n =458 (plus
LSDI): n=243 genes positively correlating with LSDI
expression, and n =215 cases negatively correlating with
LSDI expression (Figure 4A and Additional file 2:
Table S2). The following are examples of those genes that
clustered the most with LSD1 in this analysis (positive cor-
relation): FRAPI/mTOR, CDC2L2, CCDC21, PINKI,
KIAA0495, NOC2L/NIR, SLC25A33, NECAP2, KIAA0090,
ENOI, LUZP1, CAPZB, DNAJCI16, PGD, Clorfl28, LYPLA2,
UBE2J2, LRRC47, DNAJC11, and WDRS.

To functionally characterize the filtered gene set,
we next performed gene ontology (GO) analysis find-
ing that the group of genes positively correlated with
LSD1I (ie. those overexpressed in high LSDI-expressing
tumors and underexpressed in low LSDI-expressing tu-
mors) is enriched in GO terms of cell cycle and mitosis
(Figure 4B, top). Interestingly, LSD1 is known to control
cell proliferation in cancer cells [48]. On the other hand,
GO analysis of the group of genes that showed a pattern
of expression that negatively correlated with that of LSDI
(i.e. those underexpressed in high LSDI-expressing tu-
mors and overexpressed in low LSDI-expressing tumors)
showed enrichment in GO terms related with the defense/
immune/inflammatory response (Figure 4B, bottom).
This last observation is of special interest due to the
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Figure 4 Differential expression of genes involved in cell cycle and the immune/inflammatory response associated with LSDT mRNA
overexpression in the TCGA ovarian cohort. (A) Heatmap showing hierarchical gene clustering analysis of expression profiles for n =243
genes positively and n= 215 genes negatively correlating with LSDT mRNA expression in n= 115 low and n= 115 high LSD1-expressing ovarian
tumors (source: TCGA). Genes positively correlating with LSDT are in the top-half section of the heatmap, while genes negatively correlation
with LSD1 at the bottom-half section after clustering. Genes in this analysis were included based on: 1) showing differential expression
(fold-change) >1.5 for overexpressed or <1/1.5 for underexpressed genes between the two sets of high and low LSDT-expressing tumors; 2)
reaching a Delta =3 in the comparison between both tumors sets by SAM analysis, which corresponds to FDR = 3e-05; and, 3) correlating with
LSD1 expression in at least 50% tumors (both directions). The values of expression for each gene were independently normalized between the
maximum (+1, or bright red) and the minimum expression levels detected (-1, or bright green) for the same particular gene (see legend),
which does not allow absolute (but only relative) quantitative comparisons among genes. Therefore, overexpression is shown in red and
underexpression in green. (B) List of most-enriched gene ontology (GO) terms in the set of n =243 genes positively (top panel, red) and n=215
genes negatively or inversely (bottom panel, green) correlating with the pattern of LSDT mRNA expression. GO terms shown in the left. The x-axis
refers to p-value of enrichment.
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importance of the immune response in the pathology of
ovarian cancer, particularly in contributing to the pattern
of T-cell infiltration in ovarian tumors [49,50]. In fact, a
set of high-grade serous ovarian tumors (known as sub-
type C5) has been recently defined by the simultaneous
overexpression of cell proliferation genes and underex-
pression of an immune signature (among other features),
and it is clinically associated with poor overall survival
[41]. Based on this report, we also examined whether high
LSDI-expressing tumors are associated with poor overall
patient survival, but failed to find such association
with our set of n=115 high LSDI-expressing tumors
(Additional file: 6 Figure S4D). In contrast, we found,
using the cBioPortal for Cancer Genomic [51], poor pa-
tient survival and reduced disease free survival associated
with high LSD1I-expressing tumors (fold-change > 1.20,
n=30) in the cohort of n=580 TCGA specimens
(log-rank test p =0.002644 and p =0.012440, respect-
ively; Additional file 7: Figure S5). Together, we have
identified a rich molecular signature of differentially
expressed cell cycle and immune/inflammatory genes
associated with LSDI mRNA overexpression in ovar-
ian tumors. Whether this molecular (transcriptomic)
signature is functionally (biologically) relevant and, if
so, whether it results directly from alterations in LSDI ex-
pression or instead is induced by the same mechanisms
that alter LSDI expression is yet to be determined.

Chemical inhibitors of LSD1 activity are cytotoxic for
ovarian cancer cells

Finally, chemical inhibition of LSD1 is emerging as hav-
ing potential therapeutic value in the treatment of some
cancer types and blood disorders [48,52]. Our results
indicating that the levels of LSDI mRNA might be aber-
rant in some ovarian tumors, and that they might also
be linked to upregulation of cell cycle genes and downreg-
ulation of genes of the immune/inflammatory response
prompted us to initiate studies to test the potential cyto-
toxic effects of LSD1 inhibitors in a panel of ovarian can-
cer cells (SKOV3, A2780 and OVCARS3, and the cisplatin
resistant clone A2780cis, which derives from A2780 cells).
First, we confirmed LSD1 protein expression in all these
lines (using breast cancer MCF7 cells [8] and prostate
cancer LNCaP cells [7] as reference, Figure 5A). Next, we
treated SKOV3 cells with arguably the most studied LSD1
inhibitor: TCP [30-33,53-55] (Figure 5B). It was immedi-
ately apparent that TCP induced death of SKOV3 cells,
because this treatment decreased abruptly the number of
cells (Figure 5C). Likely this effect resulted from TCP-
induced apoptosis, because we observed a gradual in-
crease in the levels of PARP1 cleavage associated with
the treatment (Figure 5D, PARP1). This effect correlated
with the expected gradual increase in the levels of
LSD1 substrate H3K4me2 [1], which confirms the LSD1
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inhibitory effect of the treatment (Figure 5D, H3K4me2).
To evaluate cell death in the full panel of ovarian cancer
lines, and to compare the efficacy of different LSD1 in-
hibitors to decrease cell viability in these lines, we tested
TCP (FDA-approved drug), pargyline (FDA-approved
drug), and more potent and selective RN-1 and S2101
compounds (Figure 5E), as well as also potent and se-
lective polyamine analog CAS 927019-63-4 and amidino-
guanidinium CBB1007 compounds (Additional file 8:
Figure S6A). All these compounds are reported LSD1 in-
hibitors. These tests were performed by the MTS/PMS
cell viability assay after 48 hours drug/compound treat-
ment. Four inhibitors induced clear cytotoxicity in all four
cell lines: pargyline and TCP at millimolar concentrations
(Additional file 8: Figure S6B-S6E, red and orange lines,
respectively), and RN-1 and S2101 at micromolar concen-
trations (Additional file 8: Figure S6B-S6E, dark and light
blue lines, respectively). CBB1007 induced cytotoxicity
but the same effect was observed in a parallel treatment
with vehicle DMSO (see Methods; data not shown). CAS
927019-63-4 did not induce cytotoxicity at any of the
tested concentrations, for which it was also excluded from
our panel (data not shown). For pargyline, TCP, RN-1 and
S2101, we estimated their half maximal inhibitory con-
centrations (IC50), which roughly correlated with their
reported potency in inhibiting LSDI1: potent RN-1 and
S2101 showed lower IC50 values, and weaker pargyline
and TCP showed higher IC50 values (Figure 5F, logl0-
scale). Importantly, RN-1 and S2101 are also known to be
more selective than pargyline and TCP for LSD1, which
has value in a potential therapeutic use of these com-
pounds. For comparison, we also estimated IC50s for the
same inhibitors in breast cancer MCEF7 cells observing
values in the same range (compare Figure 5G). Together,
our data suggest that LSD1 inhibitors are cytotoxic agents
in ovarian cancer cells, although they show relatively mild
effects when compared to cisplatin in parallel treatments
(RN-1 and $2101 IC50 values =100-200 puM, while cis-
platin ~5-20 puM, depending of the cell line; data not
shown).

Conclusions

LSD1 is a lysine demethylase whose activity is involved
in cancer biology, but a link to ovarian cancer has not
yet been directly explored. Histone lysine methylation
and demethylation have gained significant attention
since their discovery [1,56]. These two antagonistic ac-
tivities are emerging as important in cancer biology via
regulating histone and non-histone substrates [57]. The
list of methylated proteins is continuously expanding
[58], and the field seems to be flourishing with intriguing
new data. Here, we have studied LSD1 in the context of
ovarian tumors and cancer cells. Our studies suggest the
moderate overexpression of LSDI mRNA in stage IIIC
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Figure 5 Chemical LSD1 inhibitors reduce the cell viability of a panel of ovarian cancer cell lines. (A) Western blot analysis of LSD1
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and high-grade ovarian tumors. The lack of a strong
association between the levels of LSDI mRNA and
the disease could be due to the fact that we limited our
analyses to the measurement of the transcript. This associ-
ation could be stronger (or weaker or even absent) at
the level of the functional entities: the LSD1 protein
and its activity. Future studies, therefore, will be required
to tests these associations. That said, LSD1 might be
important in ovarian cancer independently whether its
levels/activity change. In breast and prostate cancer
cells, for example, LSD1 is required for the stimula-
tion of the hormonal signaling response and cell pro-
liferation [7,8]. In fact, our observation that the four
ovarian cancer lines tested in this study show robust levels
of LSD1 (protein) expression may suggest a functional role
of LSD1 also in these cells.

At molecular level, our study suggests that tumors
showing high levels of LSDI mRNA also exhibit a signa-
ture of relative overexpression of genes involved in cell
cycle and underexpression of genes involved in the im-
mune response, which in the past has been associated to
aggressive tumors in the context of other cohorts [41].
Perhaps in agreement, we found a set of high LSDI
mRNA-expressing tumors associated with poor patient
survival (Additional file 7: Figure S5), although we failed
to observe the same association with the full set of tu-
mors that we analyzed to derive the mentioned signature
(Additional file 6: Figure S4D). We also report the cyto-
toxic effects of a panel of chemical LSD1 inhibitors in a
panel of ovarian cancer cell lines. Additional studies will
be necessary to determine the robustness of these inhibi-
tory effects in vivo, as well as their secondary effects,
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before we can consider these compounds as potential
therapies for the disease. Together, our study prompts
further exploration of LSD1 and the LSD1 demethylase
activity in ovarian cancer and their targeting for poten-
tial therapeutic purposes.

Additional files

Additional file 1: Table S1. Summary of clinicopathologic features of
the study cohort. This summary includes patient age and gender,
specimen tissue origin and body localization, diagnosis, histological
subtype, and tumor FIGO stage and grade.

Additional file 2: Table S2. List of differentially expressed genes in
high and low LSD1-expressing tumors in the TCGA cohort. Criteria for
selection: fold-change >1.5 or <1/1.5, Delta = 3, FDR < 3e-05, and
expression correlation with LSDT in at least 50% tumors.

Additional file 3: Figure S1. Pair-comparison statistical tests suggest
mucinous ovarian tumors as the only histological subtype not showing LSDT
mRNA overexpression in our study cohort. For a more faithful comparison
between histological subtypes, we compared only tumors classified as
adenocarcinoma in each subtype and also excluded those specimens in
which more than one histological subtype was detected (final number of
tumor specimens in this analysis n = 109). Top panel: multi-comparison
analysis. Rest of panels: pair-comparison analyses. Ovarian normal tissue (N),
serous (S), papillary serous (PS), endometrioid (E), clear cell (CC), and
mucinous (M). Measured by qRT-PCR in our cohort (values expressed as
relative to normal average). We applied the Mann-Whitney test in pair-
comparison analyses, and the Kruskal-Wallis (non-parametric ANOVA) test
followed by post hoc Dunn's analysis in multiple-comparison analyses.
P-values are shown on top of each panel when significant (in two cases,
p-values of 0.0556 and 0.0514 were also indicated despite not reaching
significance). Number of specimens in each group is shown at the bottom
of each panel. Whiskers in box plots represent 5-95 percentile values, and
horizontal lines within boxes represent median values. P-value < 0.05 (*),
p-value <001 (**), p-value < 0.001 (**¥), p~value < 0.0001 (***%).

Additional file 4: Figure S2. Multi- and pair-comparison statistical tests
suggest LSDT mRNA overexpression in stage IIIC and grade G2/G3 (and
other) specimens in the TCGA cohort. (A) Left panel: multi-comparison
analysis of normal tissue (N) and tumors subclassified as stage I-IV (-IV).
Rest of panels: pair-comparison analyses of normal tissue (N) and stage Il
(I tumors (left); normal tissue (N) and stage Il (lll) tumors (middle); or
normal tissue (N) and stage IV (IV) tumors (right). (B) Left panel: multiple-
comparison analysis of normal tissue (N) and tumors subclassified as
stage Ill, 1B, or lIC (IA-IIIC). Middle and right panels: pair-comparison
analysis of normal tissue (N) and stage IlIA (IlIA) or stage IlIC tumors (II1C),
respectively. (C) Left panel: multiple-comparison analysis of normal tissue
(N) and tumors subclassified as grade G1, grade G2, or grade G3 (G1-G3).
Rest of panels: pair-comparison analyses of normal tissue (N) and grade
G1 (G1) tumors (first panel); normal tissue (N) and grade G2 (G2) tumors
(second panel); normal tissue (N) and grade G3 (G3) tumors (third panel);
grade G1 (G1) and grade G2 (G2) tumors (fourth panel); and grade G1 (G1)
and grade G3 (G3) tumors (fifth panel). Measured by microarray in TCGA
cohort (log-2 scale). TCGA tumors belong only to the serous
cystadenocarcinoma subtype. We applied the Mann-Whitney test in pair-
comparison analyses, and the Kruskal-Wallis (non-parametric ANOVA) test
followed by post hoc Dunn’s analysis in multiple-comparison analyses. P-
values are shown on top of each panel when reach significance. Number of
specimens in each analyzed group is shown at the bottom of each panel.
Y-axis is log2 scale. Whiskers in box plots represent 5-95 percentile values,
and horizontal lines within boxes represent median values. P-value < 0.05 (%),
p-value < 0.01 (**), p-value < 0.001 (**¥), p-value < 0.0001 (***¥).

Additional file 5: Figure S3. Multi- and pair-comparison statistical tests
suggest the highest levels of LSDT mRNA overexpression in ovarian tumors
to be associated with a combination of stage IlIC and grade G2 or G3 tumor
(or stage IV and grade G3) features in the TCGA cohort. Left panel: multiple-
comparison analysis of normal tissue (N) and tumors simultaneously

subclassified as stage | or Il and grade G2 (I-I/G2), stage | or Il and grade G3
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(HI/G3), stage Il excluding IlIC and grade G2 (lll-nolllC/G2), stage Il
excluding IlIC and grade G3 (lll-nolllC/G3), stage IIIC and grade G2 (Ill/G2),
stage IIIC and grade G3 (Ill/G3), stage IV and grade G2 (IV/G2), and stage IV
and grade G3 (IV/G3). Rest of panels: pair-comparison analyses of normal
tissue (N) and stage IlIC and grade G2 (IIC/G2) tumors (left), normal tissue
(N) and stage IlIC and grade G3 (IlIC/G3) tumors (middle), and normal tissue
(N) and stage IV and grade G3 (IV/G3) tumors (right). Measured by
microarray in TCGA cohort (log-2 scale). TCGA tumors belong only to the
serous cystadenocarcinoma subtype. To detect differences between groups
in each panel, we applied the Mann-Whitney test in pair-comparison
analyses, and the Kruskal-Wallis (non-parametric ANOVA) test followed by
post hoc Dunn’s analysis in multiple-comparison analyses. Number of
comparisons =10 (in A) and 6 (in B and Q). P-values are shown on top of
each panel when reach significance. Number of specimens in each
analyzed group is shown at the bottom of each panel. Whiskers in box
plots represent 5-95 percentile values, and horizontal lines within boxes
represent median values. P-value < 0.05 (¥), p-value < 0.01 (**), p-value <
0.001 (***), p-value < 0.0001 (****).

Additional file 6: Figure S4. Differential transcriptomic profiles and
patient survival associated with high and low LSD7-expressing tumors in the
TCGA cohort. (A) SAM analysis of genes showing differential expression
between the sets of n=115 high and n=115 low LSD7-expressing ovarian
tumors (source: TCGA). Green circles indicate genes with differential
expression (n =822 total; n =431 overexpressed, on top, and n =391
underexpressed, at the bottom). Delta = 3, which corresponds to FDR = 3e-
05. (B) Heatmap analysis of hierarchically clustered expression profiles of the
n =822 genes showing differential expression between high and low
LSD1-expressing tumors (source: TCGA). The values of expression for each
gene were independently normalized between the maximum (+1, or bright
red) and the minimum expression levels detected (—1, or bright green) for
the same particular gene (see legend), which does not allow absolute (only
relative) quantitative comparisons among genes. Therefore, overexpression
is shown in red and underexpression in green. The orange line indicates a
few representative examples of genes that show differential expression in a
few only of tumors. (C) Number of genes positively or negatively (inversely)
correlating with LSDT mRNA expression in high and low LSD7-expressing
tumors based on the number of tumors in which this property is observed
(>80%, >70%, >50%, >30%, or <30% of tumors). The total number of genes
is also indicated. (D) Kaplan-Meier curve of overall survival associated with
tumors classified based on low (n=115), high (n=115), and the rest
(medium) LSDT expression. Log-rank (Mantel-Cox) p-value and number of
samples are indicated.

Additional file 7: Figure S5. Information associated with LSD1-
overexpressing ovarian tumors in the cBioPortal for Cancer Genomics
(based on a subset of the TCGA cohort). Oncoprint identifies n =30
tumors in a cohort of n =580 specimens showing LSDT (KDM1A) mRNA
overexpression (cancer study: Ovarian Serous Cystadenocarcinoma TCGA-
Provisional; genomic profiles: mRNA Expression z-Scores RNA Seq V2
RSEM and RPPA protein/phosphoprotein level z-score threshold +2;
patient/case set: all tumors; query: 'KDM1A: EXPR > 1.20'). Query
performed on October 7, 2013. Kaplan-Meier curve of overall survival (left)
and disease free survival (right) associated with these n =30 tumors.
Log-rank (Mantel-Cox) p-value and number of samples are indicated.
Protein levels and phosphorylation changes observed in the same set of
n =30 tumors. Panels extracted from the cBioPortal for Cancer Genomics
(developed by the Computational Center at Memorial Sloan-Kettering
Cancer Center and the i-Vis Research Group of the Computer
Engineering Department at Bilkent University).

Additional file 8: Figure S6. Analysis of cell viability upon treatment
with chemical LSD1 inhibitors in a panel of ovarian cancer lines. (A)
Chemical structures of LSD1 inhibitors CAS 927019-63-4 and CBB1007.
(B-E) MTS/PMS viability assay in SKOV3, OVCAR-3, A2780, and A2780cis
cells treated with different LSD1 inhibitors: pargyline (red), TCP (orange),
RN-1 (light blue), and S2101 (dark blue). Measurements are shown as
dots. Error bars represent s.e.m. Lines represent the estimated inhibitory
curve response. The x-axis is log-10 scale.
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