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Abstract

Background: Tumor-associated macrophages (TAMs) are classified into two major phenotypes, M1 and M2. M1
TAMs suppress cancer progression, while M2 TAMs promote it. However, little is known regarding the role of TAMs
in the development of ovarian cancer. Here, we investigated the relationship between TAM distribution patterns
(density, microlocalization, and differentiation) and ovarian cancer histotypes, and we explored whether altered
TAM distribution patterns influence long-term outcomes in ovarian cancer patients.

Methods: A total of 112 ovarian cancer patients were enrolled in this study, and the subjects were divided into
two groups according to their survival (< 5 years vs. > 5 years). Immunohistochemistry and immunofluorescence
were used to determine the density, microlocalization, and differentiation status of TAMs in ovarian cancer tissues
for each histotype. Kaplan-Meier survival and multivariate Cox regression analyses were used to evaluate the
prognostic significance of TAM-related parameters in ovarian cancer.

Results: TAMs most frequently infiltrated into the cancer tissue of the serous histotype, followed by mucinous,
undifferentiated, endometrioid, and clear cell histotypes (p = 0.049). The islet/stroma ratio of total TAMs varied
among the cancer histotypes, with mucinous and undifferentiated cancers displaying the lowest and highest ratios,
respectively (p =0.005). The intratumoral TAM density significantly increased with increasing cancer stage and grade
(p=10.023 and 0.006, respectively). However, the overall M1/M2 TAM ratio decreased as the cancer stage increased
(p=0.012). In addition, the intra-islet M1/M2 ratio inversely correlated with the residual site size (p =0.004). Among
the TAM-related parameters, only the increased overall and intra-islet M1/M2 TAM ratios displayed prognostic
significance in both the Kaplan-Meier survival and multivariate Cox regression analyses; however, the values of these
two parameters did not differ significantly among the cancer histotypes.

Conclusions: The patients with increased overall or intra-islet M1/M2 TAM ratios presented with an improved
5-year prognosis. Nevertheless, the TAM distribution patterns did not influence the overall outcomes of different
ovarian cancer histotypes.
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Background

Ovarian cancer is highly malignant [1,2], and over 70%
of ovarian cancer patients are diagnosed with severe
peritoneal metastasis, with a 5-year survival rate of less
than 30% [3,4]. As the cancer invades into the surround-
ing normal tissues, the monocyte-macrophage cellular
system comprises a first line of defense [5,6]. Peripheral
blood monocytes represent a major group of non-
specific immune cells. These cells can perceive cancer
invasion signals, migrate out of the capillaries, and trans-
form into macrophages (immature, M0) [7-9]. Immature
macrophages infiltrate into cancer islets or their sur-
rounding tissues (i.e., the cancer stroma) and can subse-
quently be activated to recognize and kill genetically
mutated cancer cells [10,11]. These macrophages are
called tumor-associated macrophages (TAMs) [12]. How-
ever, not all TAMs fulfill their original tumoricidal po-
tential. TAMs can be divided into two phenotypes with
opposite functions [12-18]. The classically activated
TAMs, the M1 phenotype, can be induced by interferon y
(IFNy)/tumor necrosis factor o (TNFa) and exert a cyto-
toxic effect on cancer cells [12,13]. The alternatively acti-
vated TAMs, the M2 phenotype, can be induced by
transforming growth factor p (TGEp)/interleukin (IL) 4/
IL13 and provide a nutritional advantage for cancer cells
[12,14]. A critical difference between M1 and M2 TAMs is
their secretion profiles [15]. M1 TAMs release reactive
oxygen species, nitrogen intermediates, and inflammatory
cytokines (e.g., IL1b, IL6, IL12, IL23, and TNF) that kill
cancer cells; however, M2 TAMs release a variety of
growth factors (e.g., epidermal growth factor [EGF], fibro-
blast growth factor [FGF], and vascular endothelial growth
factor [VEGF]), that promote growth and vascularization
of the cancer mass [15-18]. Cancer cells often secrete M2-
type cytokines such as IL-10, CCL2/3/4/5/7/8, CXCL12,
VEGE, and platelet-derived growth factor (PDGF) to re-
cruit monocytes/M0 macrophages and direct them toward
an M2 phenotype [19,20]. Therefore, M2 TAMs are fre-
quently observed in cancer tissues [20].

A major characteristic of ovarian cancer is its hetero-
geneous nature [2,21-24]. According to the cells of ori-
gin, ovarian cancer can be classified into the following
five histotypes: serous; mucinous; endometrioid; clear
cell; and undifferentiated ovarian cancers [2]. These can-
cer histotypes possess different structural and cytological
characteristics and confer different patient outcomes
[2,25,26]. Generally, serous ovarian cancers are derived
from the ovarian surface epithelium or fallopian tubes,
and they represent the most frequently encountered
clinical histotype [21-24]. Serous ovarian cancer patients
have a poor to moderate 5-year outcome [25,26]. Mucin-
ous ovarian cancer is derived from the transitional-type
epithelium located at the tubal-mesothelial junction
[22-24]. Patients with mucinous cancer typically have a
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relatively good prognosis [25,26]. Endometrioid and clear
cell ovarian cancers originate from the endometrioid cyst
of the ovary, and these cancer types are associated with a
moderate to fair 5-year outcome [21-26]. Undifferentiated
ovarian cancers are derived from the mutated basal/stem
cells of the ovarian surface epithelium, such as the hilum
cells [27]. Patients with this histotype always have a poor
prognosis [27,28]. Previous studies demonstrated that
TAMs have an important effect on cancer patient out-
comes. For example, Edin et al. reported that increased in-
filtration of M1 macrophages at the cancer front is
accompanied by a better prognosis in colorectal cancer
patients [29], and Ohri et al. documented that an in-
creased islet/stroma ratio of M1 TAMs is associated with
a marked survival advantage for patients with non-small
cell lung cancer [30]. However, the role of TAMs in ovar-
ian cancer and their prognostic value remain unclear.
Each ovarian cancer histotype exhibits a different protein
expression profile [31,32]. Therefore, the cytokine profile
produced by a certain ovarian cancer histotype might lead
to a specific TAM distribution pattern (including cell
density, differentiation, and microlocalization) in the can-
cer tissue. These unique TAM patterns could determine,
at least in part, the clinical outcomes for ovarian cancer
patients.

In this study, we aimed to address two core issues re-
lated to TAMs in ovarian cancer: (i) whether different
histotypes of ovarian cancer are associated with different
TAM distribution patterns and (ii) whether the altered
TAM distribution patterns can confer different out-
comes to ovarian cancer patients. Thus, the TAM data
obtained from cancer specimens could be useful to com-
prehensively assess the long-term outcomes of ovarian
cancer patients.

Methods

Study population

Consecutive ovarian cancer patients who were histo-
pathologically diagnosed between January 1, 2002 and
December 30, 2008 in the Department of Obstetrics and
Gynecology, Ren Ji Hospital, School of Medicine, Shanghai
Jiao Tong University, Shanghai, China, were enrolled in
this study. Informed consent was obtained from all pa-
tients or their first-degree relatives. All enrolled patients
had undergone cytoreductive surgery and a standardized
postsurgical course of Taxol and platinum-based chemo-
therapy (ie., the TP regimen). Paraffin-embedded cancer
specimens from these patients were obtained from the
clinical specimen bank of Renji Hospital. Patient medical
histories were recorded including age, reproductive history,
menopausal status, ascites, clinical stage (using the FIGO
2000 diagnostic system [33]), cancer histotype, grade, and
5-year follow-up outcome. The research protocol was ap-
proved by the ethics committee of Renji Hospital.
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Immunohistochemistry and immunofluorescence

Cancer specimens were sliced into 4-um sections, de-
waxed using xylene, and rehydrated with gradated etha-
nol. Antigen retrieval was performed using a microwave
at>90°C for 15 min, and the samples were allowed to
cool to room temperature. The non-specific binding sites
were blocked with 5% bovine serum albumin (BSA) for
1 h. For immunohistochemical staining, the sections were
sequentially incubated with a mouse anti-human CD68
monoclonal antibody (clone KP1, Abcam, Cambridge,
MA, USA; 1:100) and a horseradish peroxidase (HRP)-
conjugated goat anti-mouse IgG antibody (Zhongshan,
Beijing, China; 1:200). The antibody-binding sites were
visualized using 3,3’-diaminobenzidine tetrahydrochloride
(DAB; Zhongshan), and the cell nuclei were coun-
terstained with hematoxylin. For immunofluorescent
staining, the sections were incubated with a CF-488A
(Biotium, San Francisco, CA, USA)-conjugated mouse
anti-human CD68 polyclonal antibody (clone ZMO0464,
Zhongshan; 1:100) and one of the following CF-350 (Bio-
tium)-conjugated antibodies at a 1:100 dilution: mouse
anti-human HLA-DR monoclonal antibody (clone LN3,
Zhongshan); rabbit anti-human iNOS monoclonal anti-
body (clone ZS6510, Zhongshan); mouse anti-human
CD163 monoclonal antibody (clone 10D6, Zhongshan); or
mouse anti-human VEGF monoclonal antibody (clone
EP1176Y, Zhongshan). The nuclei were counterstained
with SYTO 40 (Life Technologies, Grand Island, NY,
USA). Two pathologists with no knowledge of the patient
population independently reviewed the immunostained
sections. Ten representative 400x fields were selected from
each section, and only nucleated cells were analyzed. The
obtained TAM densities were calculated as cells/mm®.

Laser capture microdissection (LCM)-based flow cytometry

Paraffin-embedded cancer specimens were sliced into
15-pum sections and affixed onto FRAME slides (Leica,
Wetzlar, Germany). LCM was performed based on the
method described by Stany et al. [34]. Briefly, the sec-
tions were de-waxed, rehydrated, and stained with
hematoxylin and eosin (H&E) to identify cancer islets
and stromal regions. Approximately 20,000 cells/sample
were collected from the selected specimen region using
a LMD6500 Laser Microdissection system (Leica, Wetzlar,
Germany). The obtained cells were re-suspended in
phosphate-buffered saline (PBS) and centrifuged at
1,500 rpm for 3 min. For flow cytometry, cells were im-
munostained with a FITC-conjugated mouse anti-human
CD68 monoclonal antibody (clone Ki-M?7, Life Technolo-
gies; 1:200) and one of the following PE-conjugated anti-
bodies: mouse anti-human keratin monoclonal antibody
(clone C11, Abcam; 1:100); mouse anti-human iNOS
monoclonal antibody (clone 4E5, Abcam; 1:150); mouse
anti-human HLA-DR monoclonal antibody (clone 1243,
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eBioscience, San Diego, California, USA; 1:100); mouse
anti-human CD163 antibody (clone GHI/61, Affymetrix-
eBioscience, San Diego, CA, USA; 1:200); or mouse
anti-human VEGF monoclonal antibody (clone FLT-11,
Sigma-Aldrich, St. Louis, MO, USA; 1:100). An FC500
MPL flow cytometer (Beckman Coulter, Brea, CA, USA)
was used, and a total of 10,000 events were recorded for
each flow cytometry run. The data are presented as the ra-
tio of CD68" TAMs (M1 or M2 TAMs) to the total num-
ber of cells analyzed by flow cytometry.

Statistical analyses

A two-sided x> test was used to compare the demo-
graphic, clinical, and pathological characteristics (e.g.,
age, gravidity, parity, cancer stage, histotype, cancer
grade, and size of residual site) of patient groups with a
poor or extended survival time. ANOVA (or two-sided
Student’s t test) was used to compare the TAM cell dens-
ities and differentiation patterns between patient groups
with different levels of the described clinical-pathological
characteristics. The Pearson’s product—-moment correl-
ation coefficient was used to estimate the relationship be-
tween the TAM (total, M1, and M2) densities determined
through immunofluorescence and flow cytometry. Kaplan-
Meier survival analysis was used to analyze the 5-year
survival rates of patient groups with different TAM-
related parameters. A multivariate Cox regression model
was used to analyze the hazard ratios (HRs) of the
clinical-pathological factors and the TAM-related param-
eters for patient survival and to determine their inde-
pendence. SPSS 13.0 software was used for the analyses
(IBM, Armonk, NY, USA), and p <0.05 was considered
significant.

Results

Patient characteristics and their relationships with TAM cell
density, microlocalization, and differentiation patterns

In total, 112 ovarian cancer patients were enrolled and
divided into two groups according to their survival time:
a poor survival group (survival time <5 years) and an ex-
tended survival group (survival time > 5 years). The patient
demographic, clinical, and pathological characteristics are
shown in Table 1. Then, the relationship between patient
characteristics and TAM distribution patterns was ana-
lyzed (Table 2). To establish the TAM density in cancer
tissues, the cells were immunohistochemically stained for
CD68 (Figure 1A). To identify the TAM phenotypes, the
cells were double-stained with fluorescent antibodies
against CD68 and one of the two major M1 TAM bio-
markers (iNOS or HLA-DR [30]) or one of the two major
M2 TAM biomarkers (CD163 or VEGF [30]; Figure 1B).
To determine whether an ambiguous TAM phenotypic
classification might exist, we further assessed the co-
expression patterns of M1 and M2 biomarkers in the same



Zhang et al. Journal of Ovarian Research 2014, 7:19
http://www.ovarianresearch.com/content/7/1/19

Table 1 The demographic, clinical and pathological

characteristics of the study population

Characteristics Poor Extended p value
survival group  survival group
(n=63)* (n=49)*

Age 0.196
<40 5(79) 3.0
40 - 49 18 (28.6) 14 (28.6)
50-59 21 (333) 11 (224)
60 - 69 16 (254) 12 (24.5)
>70 348 9(184)

Gravidity 0576
0-1 7(11.0) 5(10.2)
2-3 29 (46.0) 19 (38.9)
4-5 16 (25.4) 11 (224)
>5 11 (17.5) 14 (28.6)

Parity 0.551
0-1 42 (66.7) 30 (61.2)
2-3 21 (333) 19 (38.8)

Menopause 0.789
Yes 37 (58.7) 30 (61.2)
No 26 (41.3) 19 (38.8)

Ascites 0.382
Yes 10 (15.9) 5(10.2)
No 53 (84.1) 44 (89.8)

Peritoneal metastasis** <0001*
Yes 25 (39.7) 5(10.2)
No 38 (60.3) 44 (89.8)

Lymphatic metastasis 0.024"
Yes 19 (30.2) 6(122)
No 44 (69.8) 43 (87.8)

Stage <0001*
| 6 (9.5) 21 (42.9)
Il 21 (333) 20 (40.8)
Il 26 (41.3) 7 (14.3)
v 10 (15.9) 1(20)

Histotype 0420
Serous 38 (60.3) 26 (53.1)
Mucinous 5(7.9 9 (184)
Endometrioid 9 (143) 8(16.3)
Clear cell 7(1.1) 5(10.2)
Undifferentiated 4 (6.3) 1(2.0)

Grade 0.076
Gl 9 (143) 15 (30.6)
G2 28 (44.4) 21 (429)
G3 26 (41.3) 13 (26.5)
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Table 1 The demographic, clinical and pathological
characteristics of the study population (Continued)

Size of residual site 0.007"
<2cm 43 (68.3) 44 (89.8)
>2cm 20 (31.7) 5(10.2)

*The data are presented as the percentage.

**“Peritoneal metastasis” includes intestinal, bladder and liver metastasis of
ovarian cancer and peritoneal lavage cytological test +.

#Statistical significance, two-sided x? test.

TAMs. We found that the percentages of iNOS + CD163
(5.1 £0.3%), iNOS + VEGF (7.8 +0.4%), and HLA-DR +
VEGF (4.8 £ 0.2%) co-immunostained TAMs were signifi-
cantly higher than the percentages (3.2 +0.2%) of HLA-
DR + CD163 co-expressing cells (p<0.001, ANOVA;
Figure 1C). Therefore, HLA-DR and CD163 served as two
major immunofluorescent identifiers of M1 and M2
TAMs in the following experiments.

The obtained immunostaining results indicated that
CD68" TAM density was highest in serous ovarian cancer
followed by mucinous, undifferentiated, endometrioid,
and clear cell cancers (p=0.049, ANOVA; Table 2).
Within the cancer tissue, the intra-islet TAM density was
highest in serous cancer followed by undifferentiated, mu-
cinous, endometrioid, and clear cell cancers (p=0.038,
ANOVA; Table 2). Significantly increased intra-stromal
TAM densities were observed in mucinous and serous
cancers (p=0.015, ANOVA; Table 2). TAM densities
(total, intra-islet, and intra-stromal) were significantly
increased with increasing clinical stage (except for the
intra-islet TAMs, p=0.023 and p=0.004, respectively,
ANOVA) and pathological grade (p = 0.001, p < 0.001, and
p = 0.002, respectively, ANOVA; Table 2). The islet/stroma
ratio of total TAMs varied among the cancer histotypes,
with mucinous and undifferentiated cancer displaying the
lowest and highest ratios, respectively (p = 0.005, ANOVA;
Table 2). Nevertheless, these ratios did not correlate with
cancer stage and grade (Table 2). For M1 TAM:s, the total,
intra-islet, and intra-stromal cell densities were signifi-
cantly different between the cancer histotypes, with mu-
cinous cancer having the highest total (islet + stroma) and
intra-stromal densities (p=0.016 and p =0.047, respect-
ively, ANOVA) and serous cancer possessing the highest
intra-islet cell density (p =0.006, ANOVA; Table 2). The
islet/stroma M1 TAM ratios did not differ between cancer
histotypes (Table 2). For M2 TAMs, the total, intra-islet,
and intra-stromal cell densities increased with increasing
cancer stage (p = 0.002, p = 0.008 and p = 0.002, ANOVA),
and a significant decreasing trend in the overall M1/M2
TAM ratio was observed in cancer specimens from Stage
I through Stage IV (p = 0.012, ANOVA; Table 2). Both M1
and M2 TAM cell densities (total, intra-islet, and intra-
stroma) significantly increased with cancer grade (p<
0.001, p = 0.002, and p = 0.002 for M1; p = 0.006, p = 0.003,
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Table 2 Intratumoral TAM densities and differentiation patterns in relation to clinical and pathological characteristics

Characteristics

Total TAM densities*

M1 TAM densities*

M2 TAM densities*

Overall Islet Stroma Overall Islet Stroma Overall Islet Stroma
Stage (p=0023" (p=0206) (p=0004" (p=0162) (p=0828 (p=0038" (p=0002" (p=0008" (p=0002)"
| 302+£189 163121 140+ 85 176121 102+80 74+52 127+76 6.1+£45 6.6 £4.1
Il 362237 170+ 111 192+140  21.5+140 113+83 102+76 147+109 57+34 90+83
M1l 495+326 224+147  270+195 268+190 123+88 144+£133 2274163  10.1+£9.1 126+84
% 52.7£47.7 224+£216  304+245 235+188 112+123 124+99 292 £284 11.2+106 180+£187
Histotype (p=0049"  (p=0038° (p=0015" (p=0016) (p=0047F (p=0006)" (p=0193) (p=0150) (p=0.170)
Serous 459+339 223+160 236+181 251+164 133+98 119+97 208+185 9.1+84 1M7+£113
Mucinous 45.1+£282 151+90 30.0£20.1 273+£198 98=*6.1 175+142 178+98 53+31 125+75
Endometrioid 269+153 13.7+84 13277 149101  81+£59 6.8+5.1 121+68 56+34 64+39
Clear cell 262+120 126+ 44 136+79 123450 68+39 56+27 138+96 58+42 80+65
Undifferentiated 348 +£226 198+133 150+103 21.8+£16.0 132+£109 86+59 13.0+69 6.6£29 64+47
Grade (p=0001)"  (p<0001) (p=0002" (p<0001)" (p=0002" (p=0002)" (p=0006" (p=0003)" (p=0028"
Gl 302+182 130+88 172+123  176+119  82+62 94+77 126+7.7 48+33 78+59
G2 34.1£206 16.7+98 174+120 182+115 99+68 83+£60 159+11.1 6841 9.1+£79
G3 544 +375 255+178 289+216 304%196 151+108 153+128  240+208 104+99 136+123
Size of residual site  (p=0.625) (p=0650) (p=0637) (p=0963) (p=0497) (p=0595 (p=0328 (p=0077) (p=0773)
<2cm 39.6 £29.6 186+138 209+£174  224+160 11.6+84 10.7£10.1 172+156  70+65 102£10.1
>2cm 428+274 20.0+ 141 227+£149  222+157 103+88 119+86 206+ 143 9.7+80 108+7.8
Characteristics Islet/stroma ratio of* Overall ratio of Intra-islet ratio of Intra-stroma ratio of
Total TAMs M1 TAMs M2 TAMs M1/M2 TAMs* M1/M2 TAMs* M1/M2 TAMs*
Stage (p=0054) (p=0585  (p=0406) (p=0012) (p=0.106) (p = 0.490)
| 13+£07 17+£12 1.1+08 14+£0.5 1.8+08 1.2+07
Il 1.1£06 15£13 09+0.7 15£05 20+09 14+0.7
Il 09+03 12+09 08+04 13£06 1.6+09 12+0.7
v 09+06 16+26 1.0+09 1.0+£05 13+10 1.1+07
Histotype p= 0.005)" (p=0.197) (p=0073) (p=0.129) (p=0651) (p=0377)
Serous 1.1+06 16+12 1.0£0.7 14£0.5 1.8+09 13+£0.7
Mucinous 06+02 06+0.2 05+03 1.5+£05 19+06 15+07
Endometrioid 1.1+£06 16+£21 1.0£03 13£0.2 15+09 12+£0.7
Clear cell 1.0£03 16£13 1.0£05 1.1£05 1612 1.0£06
Undifferentiated 1.5+ 0.8 16+08 14+£10 1605 19+09 1.5+05
Grade (p=0671) (p=0228) (p=0925  (p=0.159) (p=0.504) (p=0231)
Gl 1.0£0.7 12+08 09+09 15£06 1.8+08 14+0.7
G2 1.1+£07 17+£17 1.0+ 06 1.3+£05 16+08 1.1+£06
G3 1.0£05 13£1.1 09+06 14£06 1.8+£10 13+£0.7
Size of residual site  (p=0.816) (p=0.533) (p= 0.025)" (p =0.059) (p =0.004)" (p=0.689)
<2cm 1.0+£05 15+12 09+06 14+05 19+09 1207
>2cm 11£07 13£1.7 12+£08 12£06 13+£09 13£0.7

*The data are represented as mean + standard deviation.

#Statistical significance, ANOVA.

and p=0.028 for M2; ANOVA); however, the overall,
intra-islet, and intra-stromal M1/M2 TAM ratios re-
mained relatively stable among the different cancer grades
(Table 2). Moreover, the size of the residual site was

Table 2).

positively associated with the islet/stroma ratio of M2
TAMs (p=0.025, ANOVA) and inversely correlated with
the intra-islet M1/M2 TAM ratio (p=0.004, ANOVA;
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Figure 1 Total, M1, and M2 TAMs immunostaining in ovarian cancer tissues. (A) Immunohistochemical staining of CD68" TAMs in various
ovarian cancer histotypes. The arrowheads indicate CD68" TAMs. The scale bars are 100 um (upper row) and 25 um (lower row). (B) Immunofluorescent
staining of CD68" TAMs expressing a single cellular differentiation biomarker (CD68"INOS*/CD68 "HLA-DR" for M1 and CD68*CD163*/CD68"VEGF for

indicates TAMs that were co-immunostained with M1 and M2 biomarkers.

M2) in ovarian cancer tissue. The arrowheads indicate M1 or M2 TAMs. (C) Immunofluorescent staining of TAMs co-expressing the M1 and M2
biomarkers in ovarian cancer tissue and the co-immunostaining percentages for different biomarker combinations in total TAMs. The arrowhead

LCM-based flow cytometry validation of the
immunofluorescence analysis on TAMs

The tissue sections subjected to immunohistochemistry
and immunofluorescence were re-examined by flow cy-
tometry to validate the pathologists’ counting results of
TAMs (total, M1, and M2). To differentiate between the
intra-islet and intra-stromal TAMs, we laser microdis-
sected the islet and stromal regions from each cancer tis-
sue section (Figure 2A). The percentages of total, intra-
islet, and intra-stromal TAMs as well as M1 and M2
TAMs were assessed through flow cytometry using cell
suspensions obtained from paraffin-embedded specimens

(Figure 2B and C). Flow cytometry analysis revealed a
notable linear relationship between the ratios of interested
(ie. total, M1 and M2) TAMs/total cells and the TAM dens-
ities defined by immunofluorescent analysis (Figure 2D),
confirming that the two-pathologist section-reviewing sys-
tem is a reliable method for TAM analysis in ovarian
cancer.

Kaplan-Meier survival analysis based on the intratumoral

distribution patterns of TAMs

To explore the prognostic effects of different TAM dis-
tribution patterns on the 5-year survival rate of ovarian
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Figure 2 Flow cytometric validation of immunofluorescence analysis of total, M1, and M2 TAM:s in ovarian cancer. (A) Cancer islet and
stromal regions were microdissected from tissue sections. The obtained tissues were dissociated into cell suspensions and subjected to flow cytometry
analysis. The arrows indicate the microdissected cancer tissue. (B) Representative flow cytometry analyses of the cell suspensions obtained from the
cancer islet and stromal regions. The cells were stained with PE-conjugated anti-keratin and FITC-conjugated anti-CD68 monoclonal antibodies. The
asterisk indicates the percentage of CD68" TAMs (keratin) in the total cells, as determined through flow cytometry. (C) Representative flow cytometry
analyses of M1 and M2 TAMs in a cell suspension. The cells were stained with PE-conjugated anti-HLA-DR (or anti-CD163, anti-INOS, and anti-VEGF) and
FITC-conjugated anti-CD68 monoclonal antibodies. The asterisk indicates the percentage of M1 or M2 TAMs in the total cell population, as determined
through flow cytometry. (D) The correlations between the total, M1, and M2 TAM densities, as determined through immunofluorescence and the TAM
ratios in the total cells analyzed through flow cytometry. R indicates the square of the Pearson’s product-moment correlation coefficient.
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ratios displayed significant prognostic effects on patient
survival (p=0.009 and p=0.028, respectively, log-rank
test; Figure 3). The 5-year survival rates were 53.6% and
52.1% above the means for the overall and intra-islet
M1/M2 TAM ratios, respectively, compared with 33.9%
and 37.5% for these parameters below the means

cancer patients, we performed Kaplan-Meier survival
analyses to determine the densities of the following
groups: total, intra-islet, and intra-stromal TAMs; total,
intra-islet, and intra-stromal densities of M1 and M2
TAMs; islet/stromal ratios of total, M1, and M2 TAMs;
and overall, intra-islet and intra-stromal M1/M2 TAM

ratios. Only the overall and intra-islet M1/M2 TAM

(Figure 3).
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Figure 3 Kaplan-Meier survival analyses of TAM-related parameters in ovarian cancer patients. The overall 5-year survival rates were
compared between patient groups (less than the mean vs. greater than the mean) for each TAM-related parameter. Only two parameters, the
overall ratio of M1/M2 TAMs and the intra-islet ratio of M1/M2 TAMs, revealed significant differences between the two patient groups.
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Multivariate Cox regression analysis of the independence
of TAM-related parameters

Kaplan-Meier analysis may be affected by confounding
factors so that its results cannot reflect the actual effect
of each individual TAM characteristic. Therefore, we
performed multivariate Cox regression analysis on the
independent prognostic values of TAM-related parame-
ters. The TAM distribution patterns in the “poor survival”
and “extended survival” groups are listed in Table 3. The
reference parameters used in the multivariate analysis in-
cluded patient age, gravidity, parity, ascites, peritoneal me-
tastasis, lymphatic metastasis, size of residual site, clinical
stage, cancer histotype, and pathological grade (Table 4).
For each Cox regression analysis, one TAM parameter
was evaluated. We found that M1 TAM densities (total
and intra-islet) and M1/M2 TAM ratios (overall and
intra-islet) displayed independent effects on patient out-
come (Table 4 and Additional file 1: Tables S1-S14). Of
these parameters, the overall M1/M2 TAM ratio (> 1.371)
exhibited the lowest HR for patients (0.448, 95% confi-
dence interval [CI]: 0.238-0.842; Table 3) followed by the
intra-islet M1/M2 ratio (ratio > 1.752, HR = 0.510, 95% CI:
0.264-0.986; Additional file 1: Table S13).

Prognostic effects of overall and intra-islet M1/M2 TAM
ratios in ovarian cancer histotypes

The prognostic effects of the overall and intra-islet M1/
M2 TAM ratios for patients with serous (64 cases), mu-
cinous (14 cases), endometrioid (17 cases), clear cell (12
cases), and undifferentiated (5 cases) ovarian cancers
were further evaluated. The mean overall and intra-islet
M1/M2 ratios were calculated for each ovarian cancer
histotype (Table 5). Multivariate Cox regression analyses
indicated that the HRs for the overall M1/M2 ratio lost
their significance in three of the five histotypes analyzed,
and the HRs of the intra-islet M1/M2 ratio were the
lowest (0.576, 95% CI: 0.333-0.996) in the serous histo-
type and highest (0.97, 95% CIL: 0.912-0.991) in the
endometrioid histotype (Table 5). We also analyzed the
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relationship between the histotype-specific HRs of the
intra-islet M1/M2 ratio and the corresponding 5-year
survival rates for each cancer histotype (Figure 4). To
reflect the actual hazards of the intra-islet M1/M2 ratio
on enrolled patients, the HRs were further multiplied by
the ratio patients presenting an intra-islet M1/M2 ratio
greater than the mean (because the analyzed HRs were
only significant in these patients; Table 5) for each his-
totype (Figure 4). However, no significant correlations
were observed using either approach, indicating that the
intra-islet M1/M2 ratio does not contribute to the dif-
ferent outcomes of ovarian cancer histotypes.

Discussion

The role of TAMs in cancer progression has been inves-
tigated in many types of human malignancies, including
lung cancer, oral squamous cell carcinoma, esophageal
cancer, gastric cancer, pancreatic cancer, liver cancer,
intrahepatic cholangiocarcinoma, colorectal cancer, thy-
roid cancer, breast cancer, endometrial cancer, cervical
cancer, bladder cancer, and prostate cancer [29,30,35-47].
The majority of these studies indicated that TAM infiltra-
tion density, differentiation status, and microlocalization
influence the 5-year patient outcome. To our knowledge,
the current study represents the most comprehensive ana-
lysis of TAMs in ovarian cancer based on a large-scale
study population. Moreover, we compared the different
histotypes of ovarian cancer, illustrating the unique patho-
logical effects of cancer histotypes on TAM characteris-
tics. This study enhances our understanding of TAMs and
contributes to the growing data regarding the prognostic
value of TAMs in clinical oncology.

Our data demonstrated that serous, mucinous, and
undifferentiated ovarian cancer histotypes most frequently
display TAM infiltration. Among these histotypes, a subtle
difference existed; for serous and undifferentiated ovarian
cancers, the TAMs gathered in the cancer islet, whereas
for mucinous ovarian cancer, the TAMs accumulated in
the stromal region (Table 2). There are several possible

Table 3 Intratumoral TAM densities and differentiation patterns in relation to patient survival time

Patient groups Total TAM densities*

M1 TAM densities*

M2 TAM densities*

Overall Islet Stroma Overall Islet Stroma Overall Islet Stroma
Poor survival group 41.7+£30.1 194+£143 223+£169 220+150 108+8.1 11.2+95 196+175 85+84 11.1+£103
Extended survival group  386+27.8 184+133 202+£168 227+17.1 120+£95 108=+10.1 159+11.8 64+4.1 94 +87
p value® 0.583 0713 0518 0535 0819 0.503 0.822 0.761 0.199
Patient groups Islet/stroma ratio of* Overall ratio of Intra-islet ratio of Intra-stroma ratio of
Total TAMs M1 TAMs M2 TAMs  M1/M2 TAMs* M1/M2 TAMs* M1/M2 TAMs*
Poor survival group 1.0+06 15+15 09+0.7 1.3+£06 1.7£10 12+07
Extended survival group  1.1+£06 14411 09+06 1.5+£05 18+£07 14+07
p value 0.113 0.364 0.930 0.061 0.802 0.225

*The data are represented as mean + standard deviation.
#Statistical significance, two-sided Student’s t test.
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Table 4 Multivariate Cox regression analysis of clinical,
pathological, and TAM-related prognostic factors for
ovarian cancer®

Parameters HR 95% ClI p value
Age 0234
<40 1 (reference) -
40 - 49 1.016 (0.205, 4.931)
50-59 1.664 (0.386, 7.181)
60 - 69 1.239 (0292, 5.253)
> 70 0.329 (0.043, 2.492)
Gravidity 0.726
0-1 1 (reference) -
2-3 1.000 (0.424, 2.355)
4-5 0.904 (0.345, 2.367)
>5 0612 (0.184, 2.031)
Parity 0.851
0-1 1 (reference) -
2-3 1.068 (0.536, 2.129)
Menopause 0.944
Yes 1 (reference) -
No 0.969 (0407, 2.304)
Ascites 0.120
Yes 1 (reference) -
No 0421 (0.142, 1.252)
Peritoneal metastasis <0.001*
Yes 1 (reference) -
No 10.753 (3.768, 30.685)
Lymphatic metastasis 0678
Yes 1 (reference) -
No 0.814 (0.307, 2.156)
Stage <0.001"
| 1 (reference) -
Il 35 (0.781, 15.677)
Il 6.1 (1.733, 21.469)
Y 385 (7.377, 200.926)
Histotype 0.003"
Serous 1 (reference) -
Mucinous 0.119 (0.017, 0.855)
Endometrioid 0.560 (0.116, 2.707)
Clear cell 0.780 (0.146, 4.159)
Undifferentiated 5952 (1.339, 26451)
Grade 0.002*
G1 1 (reference) -
G2 4.557 (2.373,8753)
G3 8.197 (2456, 27.362)
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Table 4 Multivariate Cox regression analysis of clinical,
pathological, and TAM-related prognostic factors for
ovarian cancer* (Continued)

Size of residual site 0.008"
<2cm 1 (reference) -
>2cm 2.786 (1307, 5.937)

Overall M1/M2 TAM ratio 0013*
<1371 1 (reference) -
> 1371 0448 (0.238, 0.842)

*A representative table for multivariate Cox regression analysis is shown for
TAM-related parameters (i.e., overall M1/M2 TAM ratio). For the HRs of other
TAM-related parameters, see Additional file 1: Tables S1-514.

#Statistical significance.

explanations for these phenomena. First, serous and mu-
cinous cancers often express an abundant amount of mu-
cins such as Mucin 1 (i.e.,, CA153), Mucin 2, Mucin 4, and
Mucin 16 (i.e, CA125) [48-54]. Some mucins, such as
Mucin 2 and Mucin 16, are immunomodulatory factors
that can increase the expression of chemoattractants or
pro-inflammatory factors including MCP-1, IL8, and
PGE2 [50,54,55] in mucin-secreting cancer cells; therefore,
more monocytes/macrophages can be recruited into the
local tissue. In contrast, endometrioid and clear cell can-
cers express a relatively low amount of these mucins
[48,52,56], which is associated with significantly lower
TAM densities in the cancer tissue. A mucin-based theory
can partially explain the different TAM infiltration dens-
ities observed between the serous/mucinous and endome-
trioid/clear cell ovarian cancer tissues. However, for the
undifferentiated ovarian cancer histotype, we inferred that
because of its primordial nature, more embryonic proteins
could be synthesized and released [57], which could lead
to a more severe specific/non-specific immune response
in the local tissue [58]. Therefore, an increased number of
TAMs were present. To answer the question why the
TAM microlocalization patterns (including the total and
M1 TAMs) were significantly different between ovarian
cancer histotypes (Table 2), we consider these differences
might be attributed to unique gene expression profiles
and cytological behaviors of the cancer cells. For example,
the peri-cancer-islet mucin layers built by serous and mu-
cinous cancer cells are quite different. Serous cancer cells
secrete Mucin 16 as the major mucin molecule, which is
almost soluble in serum [59,60]. The mucin layer sur-
rounding the serous cancer islet is rather thin and dis-
persed [59,60]. Mucinous cancer cells secrete Mucin 2
and 5 as their major mucin forms, which create a con-
densed and gel-like layer surrounding the cancer cells
[56,59,61-63]. This heavy layer can obstruct TAM access
to the inside of the mucinous cancer islet. Meanwhile, the
infiltration contribution of M1 TAMs was more signifi-
cant than that of M2 TAMs for achieving the histotype-
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Table 5 Ovarian cancer histotype-specific HRs of overall and intra-islet M1/M2 TAM ratios*

Ovarian cancer Overall M1/M2 TAM ratio

Intra-islet M1/M2 TAM ratio

histotypes

Mean HR 95% Cl p value Mean HR 95% ClI p value
Serous 1.395 0.560 (0.244, 1.286) 0.172 1.802 0576 (0.333, 0.996) 0.048"
Mucinous 1.550 0.756 (0465, 0.937) 0.046" 1.909 0.783 (0.552, 0.973) 0.023"
Endometrioid 1.264 0.923 (0.913, 0.996) 0.049* 1480 0978 (0.925, 0.997) 0035
Clear cell 1.074 0.856 (0485, 0.993) 0.112 1.637 0.875 (0.715,0.982) 0042
Undifferentiated 1.632 0712 (0.587, 0.926) 0.074 1.884 0.681 (0467, 0.935) 0.038"

*HRs represent the multivariate Cox regression analysis results for the patient groups with an overall or intra-islet M1/M2 TAMs ratio greater than the mean. The
patient groups with an overall or intra-islet M1/M2 TAMs ratio less than the mean were set as reference groups (HR=1). To be concise, the reference groups were

omitted from the table.
#Statistical significance.

specific microlocalization patterns of intratumoral TAMs
(Table 2), suggesting that the chemotactic effect of mucins
may be more potent for M1 TAMs. Undifferentiated can-
cer cells displayed a highly disorganized tissue structure,
with the cancer islet and stromal regions interwoven;
therefore, more TAMs could obtain access to the cancer
islets. Interestingly, these increased intra-islet TAMs were
also predominantly M1 TAMs (Table 2), indicating that
chemoattractants secreted by undifferentiated cancer cells
are more effective at attracting M1 TAMs compared with
M2 TAMs. Certainly, the molecular mechanisms discussed
here require more detailed investigations, and currently,
the histotype-dependent TAM distribution patterns sug-
gest that TAMs could have diverse effects on the growth
and development of different ovarian cancer histotypes.
Moreover, our observations indicated that the infiltrat-
ing behavior of TAMs was associated with the patho-
logical grade of ovarian cancer (Table 2). Of all histotypes
of ovarian cancer, the densities of total, M1, and M2
TAMs were the highest in G3 cases, followed by G2 and
G1 cases. Several research groups have reported this
phenomenon in other human malignancies. For example,
Medrek et al. demonstrated that breast cancer cases with

a dense infiltration of macrophages were mostly of a
higher pathological grade [34]. Komohara et al. observed
that the number of intratumoral microglia/macrophages
correlated with the pathological grade of gliomas [64].
However, in colorectal cancer, Edin et al. did not observe a
correlation between TAM density and pathological grade
[29]. Thus, the relationship between TAM density and
cancer pathological grade is dependent on the exact ana-
tomic site of the cancer. Based on our observations, it is
possible that the TAM density/pathological grade relation-
ship was due to the disorganized/discontinuous tissue
structure of the higher pathological graded ovarian can-
cers, which could allow peripheral-blood monocytes/mac-
rophages (M1 or M2 TAMs) easy entry into the cancer
tissue bed [33]. Alternatively, we cannot discount the pos-
sibility that high-grade ovarian cancer cells could release
more chemoattractants or pro-inflammatory factors such
as chromatin-binding protein high mobility group Bl
(HMGBI1) [65] and calreticulin (CRT) [66] into the sur-
rounding tissues to attract more monocytes/microphages
to the cancer tissue [67]. However, in addition to the
changes in TAM densities, we did not observe any
changes in TAM microlocalization (islet vs. stroma) or
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differentiation (M1 vs. M2) between the different ovarian
cancer grades; therefore, the exact clinical significance of
varying TAM densities likely resides in the intrinsic prop-
erties of these infiltrating TAMs, which cannot be affected
by the cancer grade.

The relationship between cancer stage and TAM dens-
ity has reached significance in the patient population en-
rolled by our study, suggesting that the clinical stage
could potentially influence TAM infiltration (Table 2).
Ovarian cancer mainly metastasizes via peritoneal dis-
semination and implantation [1-4]. The omentum is the
most frequent site for ovarian cancer metastasis [1-4].
The peritoneal cavity is rich in “resident” tissue macro-
phages, which are widely distributed along the surface of
the peritoneum and omentum [5,12]. In the study, the
increased TAM densities (overall, intra-islet, and intra-
stromal) were found to be correlated with the degree of
the cancer tissue invasion into the peritoneal cavity and
organs. Hence, the peritoneal macrophages are probably
the primary source responsible for vigorous TAM infil-
tration observed in ovarian cancer tissues with higher
clinical stages. Furthermore, as reported in previous
studies, the innate peritoneal macrophage defensive bar-
rier can play an important role in delaying cancer progres-
sion [68] or contribute to the formation of malignant
ascites and/or promote severe peritoneal metastasis in
ovarian cancer patients [69]. Such outcomes largely de-
pend on the dominant phenotype of macrophages infil-
trating the cancer tissue [68-70]. Here, we observed that
the M2 TAM densities (overall, intra-islet, and intra-
stromal) consistently increased with clinical stage, while
the corresponding M1/M2 ratios declined as the cancer
stage increased (Table 2). Also, the islet/stroma ratio of
M2 TAMs was increased in > 2 cm residual sites; and the
intra-islet M1/M2 TAM ratio was decreased in these re-
sidual sites (Table 2). Considering that the clinical stage
(or the size of residual site) is apparently not a TAM
differentiation-inducing factor, these phenomena suggest
that the increased M2 TAM infiltration could have pro-
moted the aggressive behavior in ovarian cancer cells,
which favors their widespread metastasis in the peritoneal
cavity.

With regard to the long-term prognostic value of TAMs
in ovarian cancer patients, there have been three major
immune-microenvironment theories: the TAM density
theory [29]; the M1-dominant theory [71]; and the M2-
dominant theory [40]. The TAM density theory supposes
a differentiation-independent role for TAMs in the out-
come of cancer patients, while the latter two emphasize
the differentiation status-dependent roles of TAMs in the
5-year survival. The data obtained by our study both sup-
ports and conflicts with these theories, which reflects the
unique effects of TAMs in ovarian cancer. All these con-
sistencies and inconsistencies require a more thorough
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analysis to provide an in-depth understanding of the clin-
ical significance of TAMs.

For the density theory, a number of early studies indi-
cated that a high density of intratumoral TAMs corre-
lates with reduced patient survival, regardless of the
TAM phenotypes [43,72,73]. Moreover, results from ani-
mal models that used macrophage-depleted mice to ex-
plore the role of TAMs in cancer progression agreed
with these clinical findings [74,75]. However, in recent
years, increasing evidence indicates a different effect of
TAMs on patient prognosis. A representative study of
446 colorectal cancer specimens by Forssell et al. indi-
cated that intensive macrophage infiltration at the can-
cer front is associated with an improved prognosis [76].
Furthermore, Edin et al. indicated that a simultaneous
increase in M1 and M2 TAM densities at the invasive
front of colorectal cancer predicts a positive outcome
[29]. Ohri et al. obtained similar observations in non-
small cell lung cancer (NSCLC), and they speculated
that M2 TAMs might exert the same effect as M1 TAMs
in cancer islets; otherwise, their observations could not
be explained [30]. Our current study analyzed the prog-
nostic value of TAM density based on four TAM-related
parameters, namely, the densities of the overall, intra-
islet, and intra-stromal TAMs and the islet/stroma TAM
ratio. However, none of the four parameters correlated
with patient prognosis in either Kaplan-Meier survival
or multivariate Cox regression analyses. These results
suggest that increased TAM infiltration alone, even
when present in the cancer islet, cannot provide as
powerful of a tumoricidal effect in ovarian cancer com-
pared with that observed in colorectal or lung cancer.
There are several probable reasons for the difference in
these effects. One potential explanation is that ovarian
cancer cells of any histotype might be less sensitive or
more resistant to TAM attacks than colorectal or lung
cancer cells. Unfortunately, there is little in vivo or
in vitro evidence to support this assumption. The second
potential explanation is that the infiltrating TAM density
may not have been sufficient to exert an overwhelming
killing effect that could suppress cancer cell growth and
metastasis. Ma et al. reported a mean TAM density of
168.3 mm™ (range, 0-554.9 mm™) within lung cancer
tissue [77], which is a greater density than the TAM
density (mean, 40.3 mm™>; range, 3.3 - 159.7 mm) that
we detected in ovarian cancer tissue (Additional file 1:
Table S1). Therefore, the low intratumoral TAM density
somewhat weakens the TAM density theory in the ovar-
ian cancer cases studied. The third explanation is that the
M2 TAMs detected in ovarian cancer tissue might retain
their original nutritional effect on cancer cells, which
could compete against the anticancer effect of their M1
counterparts. As such, no prognostic value of the in-
creased total TAM density was observed in the study.
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Both the M1- and M2-dominant theories were formu-
lated after the roles of the classically or alternatively acti-
vated macrophages in killing or maintaining in vitro
cultured cancer cells were demonstrated [78,79]. Many
clinical studies have correlated improved prognosis with
increased M1 TAM and decreased M2 TAM densities in
various human malignancies [40,47,71,80]. Similarly, we
demonstrated an improved long-term survival effect of
M1 TAMs in ovarian cancer patients, as assessed using
the multivariate Cox regression model (Additional file 1:
Tables S4 and S5). However, for M1 TAMs, only the in-
creased cell density in cancer islets reached significance
for improved prognosis, while the increase in intra-
stromal M1 TAM density did not affect patient outcome.
Previously, Ohri et al. argued that mature macrophages
with anticancer activity must interact intimately with
target cancer cells to exert their tumoricidal properties,
which could logically underlie the clinical significance of
infiltrating M1 TAMs [30]. From this perspective, our
findings provide further evidence supporting Ohri’s the-
ory. Nevertheless, our results were obtained after nor-
malizing several confounding factors such as patient age,
cancer stage, histotype, and grade, and we also excluded
the prognostic effects from their antagonizing counter-
parts such as M2 TAMs. Moreover, no single M1- or
M2-related parameter provided prognostic significance
under more complicated conditions such as Kaplan-
Meier survival analysis. Thus, in contrast to patients
with pancreatic, esophageal, and breast cancer, increased
M1 TAM density alone cannot achieve a predominant
prognostic value in ovarian cancer patients [16,40,41].
These pathological findings indicate that the long-term
effects of M1 or M2 TAMs function in a more compli-
cated manner in ovarian cancer, which does not simply
comply with the known M1- and M2-dominant rules.

Among all the investigated TAM-related parameters,
we only demonstrated that the increased overall and
intra-islet M1/M2 TAM ratios possessed the prognostic
significance in both the Kaplan-Meier survival and
multivariate Cox regression analyses. These findings are
tenable because the biological effects of M1 and M2
TAMs antagonize each other, and neither TAM type
could create a predominant effect in all the examined
cancer tissues. Furthermore, we noted that the intra-
stromal M1/M2 TAM ratio did not possess any statis-
tical prognostic significance. Considering Ohri’s theory
and the fact that intra-stromal M1 TAM density was not
an independent factor influencing the 5-year cancer sur-
vival (Additional file 1: Table S3), this result is rational,
as it demonstrates the necessity of the direct interaction
between TAMs and cancer cells to create a tumoricidal
effect. In addition, we noted that the prognostic value of
the intra-islet M1/M2 TAM ratio varied between histo-
types, suggesting that the tumoricidal effects of M1

Page 13 of 16

TAMs or nutritional effects of M2 TAMs were altered in
various ovarian cancer histotypes. Endometrioid ovarian
cancer is less malignant than most other ovarian cancer
histotypes including serous, clear cell, and undifferenti-
ated cancers [2,21-24]. Similarly, the infiltration density
of TAMs was much lower in endometrioid ovarian can-
cer tissue compared with other ovarian cancer histo-
types. Therefore, the M1/M2 ratio of the intratumoral
TAMs may play a less prominent role in endometrioid
ovarian cancer progression than the M1/M2 ratio ob-
served in other ovarian cancer histotypes. Regarding the
serous ovarian cancer histotype, progression occurs
more quickly and often induces vigorous TAM infiltra-
tion into the cancer tissue bed. These serous cancer cells
could be more sensitive to the killing or nutritional ef-
fects of M1 or M2 TAMs, respectively, than other can-
cer cell histotypes. Therefore, the M1/M2 TAM ratio
exerted the greatest influence and led to the highest HR
in our study. Our results are consistent with previous re-
ports demonstrating the prognostic value of the M1/M2
TAM ratio in several other malignancies including gli-
oma, melanoma, prostate cancer, and liver metastases of
colorectal cancer [64,81-83]. These cancers and ovarian
cancer should possess similar TAM response properties.

The histotype-specific roles of TAMs in the progres-
sion of ovarian cancer have been carefully evaluated in
our study. Although our data demonstrated that the
overall and intra-islet M1/M2 TAM ratios are independ-
ent prognostic factors for patient survival, we could not
establish an effective relationship between the histotype-
specific HRs of these two ratios and the 5-year survival
rates of patients (Table 5 and Figure 4). These data sug-
gest that the biological effects of TAMs, which are dif-
ferentially exerted on each cancer histotype, were not
robust enough to independently alter the overall clinical
behavior of an ovarian cancer histotype. Altered TAM
distribution patterns such as the TAM densities (except
for the overall, intra-islet and intra-stromal M2 TAM
densities) and the islet/stroma ratio of total TAMs
(Table 2) that were tightly associated with cancer histo-
types did not effectively influence the outcome of an in-
dividual patient (Figure 3) and they were not correlated
with or the overall 5-year survival rates of different his-
totypes of ovarian cancer (Table 2 and Additional file 1:
Tables S4 and S5) histotype. Moreover, multivariate Cox
regression analysis indicated that the major factors that
determine cancer patient fate still resided in several
main clinical-pathological characteristics (Table 3 and
Additional file 1: Tables S1-S14). Compared with the
HRs of cancer stage, histotype, grade, and the size of the
residual site, none of the parameters related to density,
differentiation, or microlocalization of TAMs (including
the overall and intra-islet M1 TAM densities) reached a
higher HR value, indicating that all of the investigated
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TAM parameters have a minor influence on disease pro-
gression. Based on these TAM parameter analyses, we
conclude that TAM distribution patterns can only be
utilized to predict the outcome of an individual patient,
but they are not applicable for explaining the different
outcomes observed between cancer histotypes. These
different outcomes should still be attributed to the char-
acteristic proliferation, migration, invasion, and anti-
apoptosis ability possessed by ovarian cancer cells of a
particular histotype.

Conclusions

In conclusion, the present study demonstrates that the
overall and intra-islet M1/M2 ratios are effective TAM
parameters to predict the outcomes of ovarian cancer
patients, especially for those with a serous histotype. Al-
though the total and M1 TAM densities and the islet/
stroma ratio of total TAMs exhibited ovarian cancer
histotype-specific characteristics, patient prognosis is de-
termined by the dominant TAM phenotype in the can-
cer tissue, which showed no special distribution patterns
among the cancer histotypes. Moreover, for M1 TAMs
to exert their anticancer effects on ovarian cancer cells,
it would be better if they reside in the islet region and
maintain contact with the cancer cells. Our observations
implicate the necessity for personalized immunomodula-
tory therapy in ovarian cancer patients with different
TAM distribution statuses, which may promote M1
polarization of TAMs and accelerate their intra-islet in-
filtration; therefore, the long-term survival of the pa-
tients could be improved.

Additional file

Additional file 1: Tables S1-S14. Describe the multivariate Cox
regression analytic results for the following TAM-related parameters (for
the overall M1/M2 TAM ratio, see Table 4): total TAM density (Table S1);
intra-islet TAM density (Table S2); intra-stromal TAM density (Table S3);
overall M1 TAM density (Table S4); intra-islet M1 TAM density (Table S5);
intra-stromal M1 TAM density (Table S6); overall M2 TAM density (Table S7);
intra-islet M2 TAM density (Table S8); intra-stromal M2 TAM density

(Table S9); islet/stroma ratio of total TAMs (Table S10); islet/stroma ratio of
M1 TAMs (Table S11); islet/stroma ratio of M2 TAMs (Table $12); intra-islet
M1/M2 TAM ratio (Table S13); and intra-stromal M1/M2 TAM ratio
(Table S14).
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