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Abstract

Background: The standard treatment of ovarian cancer with chemotherapy often leads to drug resistance and
relapse of the disease, and the need for development of novel therapy alternatives is obvious. The MOC31PE
immunotoxin binds to the cell surface antigen EpCAM, which is expressed by the majority of epithelial cancers
including ovarian carcinomas, and we studied the cytotoxic effects of MOC31PE in ovarian cancer cells.

Methods: Investigation of the effects of MOC31PE treatment on protein synthesis, cell viability, proliferation and
gene expression of the ovarian cancer cell lines B76 and HOC7.

Results: MOC31PE treatment for 24 h caused a dose-dependent reduction of protein synthesis with IDsq values of
less than 10 ng/ml, followed by reduced cell viability. In a gene expression array monitoring the expression of 84
key genes in cancer pathways, 13 of the genes were differentially expressed by MOC31PE treatment in comparison
to untreated cells. By combining MOC31PE and the immune suppressor cyclosporin A (CsA) the MOC31PE effect on
protein synthesis inhibition and cell viability increased tenfold. Cell migration was also reduced, both in the
individual MOC31PE and CsA treatment, but even more when combining MOC31PE and CsA. In tumor metastasis
PCR arrays, 23 of 84 genes were differentially expressed comparing CsA versus MOC31PE + CsA treatment. Increased
expression of the tumor suppressor KISST and the nuclear receptor NR4A3 was observed, and the differential
candidate gene expression was confirmed in complementary gPCR analyses. For NR4A3 this was not accompanied
by increased protein expression. However, a subcellular fractionation assay revealed increased mitochondrial NR4A3

in MOC31PE treated cells, suggesting a role for this protein in MOC31PE-induced apoptotic cell death.

Conclusion: The present study demonstrates that MOC31PE may become a new targeted therapy for ovarian
cancer and that the MOC31PE anti-cancer effect is potentiated by CsA.
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Background

Ovarian cancer is the leading cause of death from
gynecological cancers and the patients are commonly di-
agnosed late with advanced disease. In general, the pa-
tients respond well to the primary treatment involving
cytoreductive surgery and chemotherapy. However, more
than 70% of the patients relapse, and in the recurrent
disease, resistance to chemotherapeutic drugs is com-
mon [1,2]. New targeted therapies are under evaluation,
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and immunotoxins (ITs) may represent an interesting al-
ternative. ITs consist of an antibody, that with high affin-
ity binds to the target antigen on the cancer cell surface,
and a covalently bound toxin. Our MOC31PE immuno-
toxin binds to the cell surface antigen EpCAM, which is
expressed by the majority of epithelial cancers including
ovarian carcinomas. Upon internalisation Pseudomonas
exotoxin A (PE) inhibits protein synthesis by ADP-
ribosylation of elongation factor 2 and induces apoptosis.
EpCAM is a transmembrane glycoprotein, functioning
as an epithelial-specific cell-cell adhesion molecule and
may be involved in cellular signaling, migration, prolifer-
ation, and differentiation [3]. Recently, it has been
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suggested that EpCAM is a cancer stem cell marker and
may be expressed by cells undergoing epithelial to mes-
enchymal transition (EMT), lacking other epithelial
markers [4]. EMT-like cellular processes may be import-
ant during cancer metastasis, and EpCAM is thus an ex-
cellent candidate for therapeutic targeting of epithelial
cancers. In a retrospective study of 500 ovarian cancer
patients, EpCAM showed consistently high expression
across different tumor stages and subtypes [5] and the
protein was over-expressed in cancerous tissues com-
pared with non-cancerous ovarian surface epithelium
and inclusion cysts [6]. Notably, MOC31PE also induces
cell death in chemotherapy-resistant cancer cells [7] and
may hence be used in patients with recurrent disease
lacking other therapeutic options.

The immune suppressor cyclosporin A (CsA) was in-
troduced in combination with IT to inhibit the host im-
mune response during repeated IT administrations. In
parallel with reduced anti-IT antibody production, syner-
gistic cytotoxic effects were observed in vitro and in vivo
[8]. The immunosuppressive effect of CsA is caused by
binding to cyclophilin A (CypA) [9]. This complex binds
and inhibits calcineurin a key enzyme for IL-2 produc-
tion in T-cells. CypA over-expression has been reported
in many human cancers and has also been suggested as
a potential therapeutic target [10]. Interestingly, CsA has
been reported to reverse chemotherapeutic resistance in
patients with recurrent ovarian cancer [11,12]. In the
present work, we have studied the effects of MOC31PE
treatment alone and in combination with CsA on pro-
tein synthesis, cell proliferation, viability, and migration
on the ovarian cancer cell lines B76 [13] and HOC7
[14], which both express high amounts of EpCAM. Fur-
thermore, MOC31PE-induced alterations in gene tran-
scription were quantified in two different PCR-arrays:
Cancer Pathway Finder and Tumor Metastasis.

Materials and methods

Materials

RPMI-1640, PBS, Glutamax, and Hepes were obtained from
Lonza (Austria). Fetal calf serum was purchased from PAA
(GE Healthcare, UK), MEM w/o leucine, 0.25% Trypsin/
EDTA from Gibco, and YoYo-1 fluorescent dsDNA
staining from Molecular Probes (Life Technologies, UK),
and tritiated Leucine from Perkin Elmer (Waltham, MA).
Cyclosporine A was purchased from Calbiochem (San
Diego, CA) and dissolved in ethanol to 8.3 mM stock solu-
tion. The GenElute Mammalian total RNA kit and general
laboratory chemicals were from Sigma Aldrich (St. Louis,
MO), the Cell Titer 96 AqueousOne solution (MTS) cell
proliferation assay was from Promega (Madison, WI). RT>
Profiler PCR Array System, including the cDNA synthesis
kit, and SYBR green were from SABiosciences (Qiagen
Nordic). Chemicals for validation of gene expression were
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from Applied (Life Technologies, UK). Plastic ware for cell
culture was from Nunc (Thermo Scientific), gels and
buffers for protein electrophoresis from Life Technologies,
HRP-conjugated antibodies from Dako (DK), and chemilu-
minescent super-signal substrate from Thermo Scientific.

Cells and immunotoxin

The human ovarian cancer cell lines B76 [13] and HOC-7
[14] were a gift from Dr C. Marth (Innsbruck Medical
University, Innsbruck, Austria). In this study B76 was our
main cell line and HOC-7 was used to confirm key results.
The cell lines were cultivated in RPMI 1640 medium
added Glutamax, Hepes and 8% heat-inactivated fetal calf
serum. The monoclonal antibody MOC31 [15] binds epi-
thelial cell adhesion molecule (EpCAM, CD326) and was
conjugated to whole Pseudomonas exotoxin A as previ-
ously described [16].

Protein synthesis and cell viability

The [*H]-leucine incorporation assay was used to quan-
tify protein synthesis [16] and the Cell Titer 96 Aqueou-
sOne solution (MTS) assay was used to determine cell
viability as previously described [17].

Cell proliferation, membrane damage and scratch-wound
healing in the IncuCyte

Cells were seeded in 96 well plates and grown to = 50%
confluency, transferred to the IncuCyte (Essen BioSciences,
Ann Arbor, Mi) after the medium was replaced with fresh
medium with or without IT and/or CsA. Membrane dam-
age was measured after adding YoYo-1, a dye that emit
fluorescence when it binds to double-stranded DNA. The
cytotoxic index is defined as the number of fluorescent ob-
jects in a well, divided by the total number of fluores-
cent objects obtained after 0.1% Triton X-100 is added
to open all cells in the well. For migration studies, the
wound maker tool was used to make scratch wounds in
confluent cell culture monolayers in 96 well image-lock
plates (Essen BioSciences). Plates were incubated in the
IncuCyte for 24 h and an integrated metric called rela-
tive wound density (RWD) was used to quantify effects
on migration. This metric measures the cell density in
the wound area relative to the cell density outside the
wound area.

RNA isolation and PCR array analyses

The cells were seeded in 6 well plates, grown to =~ 80%
confluency and treated for 24 h before RNA was isolated
from adherent cells using the GenElute Mammalian total
RNA kit (Sigma Aldrich) and quantified in a Picodrop
spectrophotometer (Picodrop Ltd, UK). RNA isolated for
PCR array assays was treated with DNase I (Invitrogen)
and the RNA quality was checked in the UV spectropho-
tometer. For cDNA synthesis (1 pg/reaction) the RT?
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first strand kit from SABiosciences was used. The result-
ing cDNA was diluted and qPCR was run as described
in the PCR array protocol (SABiosciences RT> Profiler
PCR Array System) using a BioRad ICycler. Gene ex-
pression was tested using either Cancer Pathway Finder
(untreated, IT 10 ng/ml) - or Tumor Metastasis (2 pM
CsA, CsA +IT 10 ng/ml) array. There are primers for 84
test genes and 5 reference genes (B2M, HPRTI,
RPL13A, GAPDH, and ACTB) on each 96-well plate.
Data analysis was performed as described in the protocol
from the manufacturer and by using their PCR Array
Data Analysis Web portal (www.SABiosciences.com).

Validation of PCR array data

Gene expression was validated in independent experi-
ments with RNA isolated as described above. The high
capacity RNA to DNA master mix was used for cDNA
synthesis (1 pg RNA/ reaction). Gene expression was mea-
sured using qPCR analyses with TagMan probes using the
7500 Real Time PCR machine (Applied Biosystems). Each
sample was tested in duplicate. Fold change in expression
was calculated using the comparative C, method with
RPL37A as a reference gene since the expression of this
gene was similar in control and experimental groups.
The gene list and corresponding probes are shown in
Additional file 1: Table S1.

Subcellular fractionation, gel electrophoresis, and antigen
detection

Cells were grown to 70-80% confluency in 75 cm? flasks
and treated with MOC31PE and/or CsA for 24 h. The
cells were washed with cold PBS and lysed in 500 pl SF
buffer (250 mM sucrose, 20 mM Hepes, 10 mM KCl,
1.5 mM MgCl,, 1 mM EDTA and 1 mM EGTA, pH 7.5)
and the protease inhibitor cocktail was added (Mini-
Complete, Roche). Cells were scraped from the flasks
and the lysates were passed through 25G needles 10
times, and incubated on ice for 20 min. The nuclear pel-
let was centrifuged out at 720 g for 5 min and the result-
ing supernatant centrifuged at 10000 g for 10 min to
separate the cytosolic (supernatant) and mitochondrial
(pellet) fractions. Pellets were washed with 500 ul SF
buffer, passed through 25G needles 10 times and re-
centrifuged. Finally, the pellets were resuspended in
50 pl lysis buffer (10 mM Tris pH 7.5, 1% SDS, 1 mM
NazVO, 0.1% Triton X-100, and 10% glycerol) and
briefly sonicated. For total cell lysates, cells were lysed in
boiling lysis buffer as previously described [17]. Proteins
were resolved on 4-12% Nu-PAGE gels and blotted onto
PVDF membranes for antigen detection. The purity of
the fractions was validated with antibodies detecting o-
tubulin (cytosol, Cell Signaling), lamin B1 (nucleus,
Abcam), and F;Fy-ATP synthase (mitochondria, Calbiochem).
NR4A3 in the fractions was detected on separate blots
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using a polyclonal anti-NR4A3/NOR-1 antibody (Novus
Biologicals). Chemiluminescence signals were recorded
using the G:Box system with a CCD camera from SynGene
and quantified using the provided GeneTool software.

Statistical analyses

Statistical significance was evaluated with two-tailed Students
t-test except for qPCR validations where non-parametric
Mann—Whitney tests were used. In both tests p-values at
0.05 were considered statistically significant.

Results

MOC31PE immunotoxin inhibits protein synthesis and
reduces cell viability

The ovarian cancer cell line B76 was used to investigate
intracellular effects of MOC31PE (IT) and CsA on pro-
tein synthesis and cell viability. The expression of
EpCAM is high in these cells (as assessed by immuno-
magnetic selection with MOC31 antibody-coated beads;
Additional file 2: Figure S1). The IDs, value for inhib-
ition of protein synthesis was 8 ng/ml of MOC31PE
(Figure 1A). Cell viability was quantified in a MTS assay.
In 10 ng/ml IT-treated cells the viability was decreased
to 80 percent of untreated control (Figure 1B). Protein
synthesis was inhibited more efficiently when using the
combination of IT with 2 pM CsA compared to IT treat-
ment alone (Figure 1A). By combining IT with CsA the
IDs, value for inhibition of protein synthesis with IT was
ten times less than for IT alone. CsA alone showed none
or negligible effects on protein synthesis and cytotox-
icity. Although 1 ng/ml IT resulted in 20 percent reduc-
tion of protein synthesis, no significant reduction of cell
viability was observed after 24 h (Figure 1B). By extend-
ing the incubation period to 48 h, the fraction of meta-
bolically active cells decreased further in all treatment
groups (Figure 1B). With 10 ng/ml IT alone 22 percent
cell viability was observed, whereas the addition of CsA
reduced the cell survival to only 13 percent.

MOC31PE immunotoxin induces cell membrane damage
and reduces cell migration

Membrane damage was determined by quantifying the
number of fluorescent objects in an IncuCyte, where cells
were analyzed every second hour for up to 48 h after add-
ing the fluorescent probe YoYo-1. Addition of YoYo-1
alone did not induce membrane damage. No differences
in the number of fluorescent objects were observed during
the first 12 h of treatment, indicating intact cell mem-
branes. The fluorescence increased in IT treated cells after
approximately 15 h (Figure 2A). Figure 2B shows the cyto-
toxic index (CI) obtained after 48 h treatment. A dose
dependent IT-response was observed with doses from
1 ng/ml to 100 ng/ml. The membranes of the cells were
more damaged by the combination of IT and CsA,
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Average + SD for each treatment tested in triplicate is shown.

Figure 1 The inhibitory effect of MOC31PE immunotoxin on protein synthesis and cell viability. B76 cells were seeded in 48-well plates
(A) and the next day the medium were changed and added IT and/or CsA. Protein synthesis was analysed after 24 h, measuring the amount of
[*H]-leucine protein incorporation. Values for treated cells are shown as the percentage of the values obtained in non-treated control cells. One
representative experiment with three wells (average + SD) for each treatment is shown. The experiment was repeated twice. For the cell viability
test (B), cells were seeded in 96-well plates and added IT and/or CsA as described above. The MTS reagent was added after 24 h treatment and
absorbance read after additional 4 h. Average + SD of three independent experiments is shown. In each experiment each treatment were tested
at least in triplicate wells. The lower graph (B) is one representative experiment of three independent experiments with treatment for 48 h.

control CsA IT1 CsA+IT1 IT10 CsA+IT 10

decreasing the IT dose needed by a factor of approxi-
mately ten compared to IT alone. Only a minor increase
in CI was seen after exposure to CsA alone.

The wound healing assay mimics parts of the cancer
metastasis process by measuring in vitro cell migration
[18]. In control wells (untreated cells) the relative wound
density (RWD) was 91 percent at start of the experiment
(average of three wells, Figure 3A) and pictures taken
after 22 h revealed almost complete wound closure
(Additional file 3: Figure S2). In wells containing cells
treated with IT (10 ng/ml), cell migration was inhibited
as the RWD decreased to 66 percent (p =0.02), and for
CsA alone the RWD was 70 percent (p =0.005). A fur-
ther reduction was observed when cells were treated
with a combination of IT and CsA (RWD =39 percent,
p=0.008). Results from five independent experiments
are summarized in Figure 3B.

Effects of MOC31PE immunotoxin on gene expression

Previously, microarray analyses have revealed IT-induced
differential expression of many transcripts [19]. To focus
here on IT-induced changes in gene regulation two differ-
ent PCR arrays were selected. One aim was to identify
which cancer pathways were affected by IT treatment.
The tumor metastasis array was used to study effects of
the combination of CsA and IT, as this combination was
previously shown to increase survival in a metastasis
model in nude rats [8]. In two independent experiments,
mRNA was isolated from cells treated for 24 h with
10 ng/ml IT. Expression of 13 genes was more than two-
fold changed in IT treated samples compared to non-
treated controls (Table 1). Increased gene expression was
detected for 11 targets and decreased expression for two
targets. The Cq values in the control samples were 25 or
more cycles for nine of the 13 affected gene products. Six
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Figure 2 Increased membrane leakage followed in an IncuCyte live-imaging device. B76 cells were seeded in 96-well plates, IT and/or CsA
were added and the fluorescence measured every second hour for 48 h (A). Membrane leakage (A) was quantified using the built in fluorescent
object count metric after adding the dsDNA-binding YoYo-1 together with T and/or CsA (n =6 wells). Filled markers are used for CsA (diamond)
and combinations of CsA and IT (triangle, CsA+IT 10 ng/ml and circle, CsA +IT 1 ng/ml). Open markers for control (diamond) and T 100 ng/ml
(square), 10 ng/ml (triangle), 1 ng/ml (circle). Results were filtered and fluorescent objects with an area > 100 um2 is shown. The cytotoxic index
(B) is the ratio of fluorescent objects before and after lysis of the cells by adding Triton X-100. The average with SD of 4 independent experiments
each with six wells for each treatment is shown. The Cl index obtained for untreated cells was subtracted in each experiment.

of the detected gene products belong to the angiogenesis
pathway. Moreover, increased mRNA levels were found
for the transcription factors Jun, ETS2, and NFkf1, which
e.g. regulate the expression of tumor angiogenesis genes.
The highest increase in expression was observed for
THBS1 (Thrombospondin, 5.8 fold increase) and PDGEpB
(platelet derived growth factor, 9 fold increase). These

genes were selected for validation using qPCR with Tagman
probes. RNA was isolated in a set of independent experi-
ments from IT-treated samples and from non-treated con-
trols. In six experiments median fold changed expression
for IT treated samples compared to non-treated controls
was 5.4 for PDGEP (ranging from 2.1 to 31.1, p < 0.02) and
105 for THBS1 (4.6 to 34.9, p<0.02). The fold change
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Figure 3 Inhibitory effect of IT +/— CsA in a scratch-wound healing assay followed in an IncuCyte. B76 cells were seeded in 96-well plates
(Essen image lock) and scratch wounds made simultaneously in all wells using the wound maker tool. Relative wound density (RWD), defined as the
ratio of the cell density in the wound over the cell density outside the wound, was measured every second hour for up to 22 h (A). Open markers are
for control (diamond) and IT 10 ng/ml (triangle) and filled markers are for CsA (diamond) and the combination of CsA and IT 10 ng/ml (triangle) or IT
1 ng/ml (circle). Average RWD after 22 h in five independent experiments is summarized in (B). The value for the control wells in each experiment is
taken as 100% and used for normalization. Statistical significance was calculated using the T-test (2-tails, unequal variance).

120

— P=002  p_ggos5

IT 10

100
P 0 008

CsA+ 1T 10

RWD (percent of control)
B (o2} [o2)
o o o

N
o




Wiiger et al. Journal of Ovarian Research 2014, 7:23
http://www.ovarianresearch.com/content/7/1/23

Page 6 of 10

Table 1 Fold change in gene expression comparing control (untreated cells) and 10 ng/ml IT treated B76 cells

Cancer pathway Gene Description Fold change
Adhesion [TGa3 Integrin a3 =21
Angiogenesis FGFR2 Fibroblast growth factor receptor 2 2.1
IFNB1 Interferon 3 38
TNF Tumor necrosis factor 38
IL8 Interleukin 8 5.0
THBS1 Thrombospondin 58
PDGF{ Platelet derived growth factor 3 9.0
Cell cycle control and DNA damage repair CDC25A CDC25 phosphatase family 24
CDKNTA Cyclin dependent kinase inhibitor 24
Signal transduction molecules and transcription factors ERBB2 Epidermal growth factor receptor family -29
ETS2 Transcription factor 32
NFkB1 Transcription factor 32
JUN Transcription factor 54

Results from two independent experiments are analysed together.

values for the specific mRNA transcript varied between ex-
periments most likely due to high Cq values i.e. low expres-
sion of the mRNA. Within each experiment the variation
between technical replicates was low, typically less than
0.5 cycles.

Using qPCR, possible effects of CsA alone and in com-
bination with IT on expression of THBS1 and PDGEF[
were also investigated. In CsA treated cells the expression
of THBS1 and PDGFp was two-fold reduced (n =2) com-
pared to the expression in untreated control cells. In four
independent experiments, the combination treatment
compared to CsA alone treatment gave median fold chan-
ged expression of 34.5 (from 4.4 to 76.3, p<0.05) for
THBSI and of 13.9 for PDGFp (4.5 to 41.3, p < 0.05).

In the Tumor Metastasis Array, 23 of 84 gene products
(Table 2) were found to be at least two-fold differentially
expressed in the combination treatment compared to CsA
alone treatment. Only one mRNA, coding for MYCL-1,
was down regulated. The Cq-values for 16 of 23 mRNAs
were 25 or higher in CsA-treated cells. Four gene products,
coding for NR4A3 (nuclear receptor family 4 member 3),
KISS1 (kisspeptin 1), NME4 (expressed in non-metastatic
cells 4), and MMP9 (matrix metalloproteinase 9) were se-
lected for validation using qPCR, and the results from
the PCR array experiments were confirmed. The me-
dian fold changed expression was 16.4 for NR4A3 (ran-
ging from 3 to 25.4, p<0.05), and 11.6 for KISS1
(ranging from 3 to 38.5, p<0.05) in four independent
experiments. NME4 was up-regulated 3.8 fold and
MMP9 only weakly up-regulated (2.6 times). KISS1 and
NR4A3 expression were increased also in cells treated
with IT alone, confirming that the differential gene ex-
pression was independent of CsA. Expression of these
transcripts was also analyzed after IT treatment of the
ovarian cancer cell line HOC?. The inhibitory effect of

MOCS3IPE on protein synthesis and decreased cell viabil-
ity in HOC?7 cells is shown in the Additional file 4: Figure
S3 and Additional file 5: Figure S4. The IT induced in-
crease of NR4A3 expression was confirmed in this cell line
(Additional file 6: Figure S5) and two-fold increase of
THBS1, PDGEB, and KISS1 transcripts were also detected.

Effects of MOC31PE immunotoxin on NR4A3 protein
expression and subcellular localization

In the tested ovarian cancer cell lines, B76 and HOC?7,
treated with IT the largest increase in mRNA expression
was observed for NR4A3. Immunoblot of B76 protein ly-
sates with anti-NR4A3 antibody gave two proteins bands
with apparent molecular weight of 55 and 60 kDa. No
significant differences in protein level were seen when
comparing the different treatments (Figure 4A). Pro-
survival as well as pro-apoptotic functions have been as-
cribed to NR4-family members. The pro-survival effect
is due to transcription factor activity and localization in
the nucleus, whereas the pro-apoptotic effect has been
suggested to require mitochondrial localization. We per-
formed subcellular fractionation to identify the subcellular
localization and possibly infer from this the mechanism
for NR4A3 involvement during IT treatment. Three frac-
tions enriched in either nuclear proteins, cytosolic pro-
teins, or mitochondrial proteins were obtained and the
purity of the different fractions was validated by im-
munoblotting (Figure 4B). The cytosolic and nuclear
fractions were acceptably pure (less than 10% contam-
ination), whereas the mitochondrial marker protein was
detected also in the nuclear fraction, especially when
the cells had been treated with IT in combination with
CsA. In this case the nuclear fraction contained 24 per-
cent of the total F;Fy-a ATP-synthase compared to 4
percent in the corresponding fraction from control cells.
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Table 2 Fold change in gene expression comparing CsA treated B76 cells with or without 10 ng/ml IT
Cancer pathway Gene Description Fold change
Cell adhesion PNN Pinin, desmosome-associated protein 22
FAT1 Cadherin-related tumor suppressor homolog 23
Cell cyclus BRMS1 Breast cancer metastase suppressor, transcriptional repressor 20
NF2 Neurofibromin 22
Cell cyclus and transcription factor RB1 Retinoblastoma, tumor suppressor, transcriptional repressor 22
TP53 Tumor suppressor, transcription factor 23
Cell cyclus or cell proliferation NMET1 Expressed in Non-Metastatic cells, nucleoside diphosphate kinase 32
Cell growth and proliferation SSTR2 Somatostatin receptor 2, ligand somatostatin 14/28 2,1
DENR Density-regulated protein, involved in translation 26
KISS1R Receptor for KISS1 2.8
FLT4 Receptor tyrosine kinase, ligand VEGF C/D 3.1
CXCR4 CXC chemokine receptor, ligand SDF-1 34
EPHB2 Receptor tyrosine kinase, ligand ephrin-family members 10.3
Invasion MMP10 Matrix metalloproteinase 24
MMP9 Matrix metalloproteinase 53
Other METAP2 Methionyl aminopeptidase 2.1
CcD82 Metastasis suppressor 2.2
CTSK Cathepsin K, cysteine protease 42
NME4 Expressed in Non-Metastatic cells, nucleoside diphosphate kinase 76
KISS1 Metastasis suppressor 14.6
Transcription factor MYCL1 Myc-related -38
SMAD4 SMAD family member, 20
NR4A3 Nuclear-receptor subfamily 4 member A3, potential transcriptional activator 206

Results from two independent experiments are analysed together.

In fractions from control cells NR4A3 was detected
mainly as a 60 kDa band in the cytosol and as a 55 kDa
band in the mitochondrial fraction. A faint band around
60 kDa was detected in the nuclear fraction, but in this
fraction a 100 kDa band was also observed (not shown).
IT treatment increased the amount of NR4A3in the mito-
chondrial fraction, indicating a pro-apoptotic function of
NR4A3 (Figure 4B). This increase was also observed in
mitochondrial fraction from CsA treated cells, and was ac-
companied by increased NR4A3 in the nuclear fraction,
suggesting increased transcription of NR4A3 regulated
genes. NR4A3 was reduced in the mitochondrial fraction
from IT + CsA treated cells and further increased in the
nuclear fraction. Increased amount of the two NR4A3
bands and detection of the mitochondrial marker in the
nuclear fraction indicates altered intracellular compart-
ment for mitochondrial proteins as could be expected
in cells undergoing apoptosis.

Discussion
The major limitation to curative therapy for ovarian can-
cer is acquired drug resistance to the chemotherapeutic

agents used, such as Carboplatin and Paclitaxel. An add-
itional drawback is the induced severe side-effects, mainly
caused by the non-cancer cell specificity of the agents, re-
ducing the patients’ quality of life. It is therefore necessary
to identify novel drugs, which circumvent these disadvan-
tages for successful treatment of ovarian cancer. In the
present study, we have demonstrated in several different
assays that the MOC3IPE effectively inhibits protein
synthesis, proliferation and cell survival of ovarian can-
cer cells, B76 and HOC?7. Previously, we have reported
in other tumor types synergistic cytotoxic effects of
combining MOC31PE and CsA in vitro and in an ex-
perimental metastasis model in animals [8]. In agree-
ment with previous results in other tumor types, these
effects are potentiated when cells are simultaneously
exposed to the immunosuppressant CsA.

The MOC31PE only binds to and kill cells expressing
the antigen EpCAM, which is expressed in more than 90%
of all epithelial ovarian carcinomas and to a negligible
amount on normal cells, reducing the possibility of IT in-
duced side effects in patients. In a recently conducted
Phase I clinical study with MOC31PE, the tolerable profile
was satisfactory (Andersson et al.,, in preparation), which
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Figure 4 Mechanisms for NR4A3 protein involvement during IT-induced cell death. B76 cells were seeded in 25 cm? flasks and treated for
24 h with IT (10 ng/ml), CsA (2 uM) or the combination when cells were 70% confluent. Cell lysates were prepared and 15 pg total protein added
each SDS-PAGE lane (A). The apparent molecular weight for the main band is 60 kDa and around 55 kDa for the lower band. In (B) cells were
seeded in 75 cm? flasks and treated as in (A). Adherent cells were used for subcellular fractionation. Immunoblots were probed with the NR4A3
antibody or subcellular fraction marker antibodies as indicated. The immunoblots are from one representative experiment of three independent

is encouraging for clinical evaluation of MOC31PE against
ovarian carcinoma. Interestingly, Phase I and II trials with
CsA have shown beneficial effects on chemoresistance in
patients with ovarian cancer [11,20] indicating that the
combination of MOC31PE and CsA could be used for re-
current ovarian cancer.

Gene expression analysis was performed to identify af-
fected signaling pathways induced by the treatments and
several interesting candidate genes were found. In the
Cancer Pathway Finder array, the majority of the genes
affected by MOC31PE were related to angiogenesis,
reflecting the importance of this cancer pathway in B76
cell growth. The two genes with the highest fold increase
in expression on the array, PDGFfB and THBS1, was con-
firmed by qPCR. The PDGF network was recently iden-
tified as a biomarker for prognosis in ovarian cancer
where higher levels of PDGF pathway activity were asso-
ciated with reduced survival [21]. The angiogenesis in-
hibitor Bevacizumab (Avastin), that binds to VEGF A, is
an used molecular target agent in ovarian cancer [22].
Given the importance of the PDGF pathway, targeting of
VEGE, PDGEF, and FGF at the same time may be more

effective than targeting only VEGF [23]. THBS1 was the
first endogenous angiogenesis inhibitor identified [24]. A
role in cancer progression and cancer inhibition has
been ascribed to the protein, and different effects of
THBS1 depending on the phase of the progression have
been suggested [25]. In an early stage, high stromal ex-
pression of THBSI inhibits tumor growth whereas later
in the vascularized tumor THBS1 may increase the ad-
hesive properties of tumor cells or modulate extracellu-
lar matrix proteins thereby promoting tumor invasion.
We observed that CsA mono-treatment inhibited migra-
tion and reduced expression of some transcripts, including
THBSI in addition to potentiating IT effects. Calcineurin,
the phosphatase inhibited by CsA, has been reported to
regulate transcription of CTSK [26] and CXCR4 [27]; two
of five other affected genes. The inhibition of B76 cell mi-
gration by IT + CsA treatment may be a result of reduced
THBS1 and/or MMP9 protein levels since increased tran-
scription cannot be accompanied by increased transla-
tion due to IT-induced protein synthesis inhibition. In
the tumor metastasis array mainly increased gene ex-
pression was seen when comparing CsA alone versus
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CsA + MOC3I1PE treatment of B76 cells. Examples of
genes influenced are the metastasis suppressor KISS1
and its receptor. In ovarian carcinoma the increased ex-
pression of KISS1 has been shown to inhibit cell migra-
tion [28]. This might support the results from the
scratch-wound healing assay showing decreased migra-
tion in the B76 cells treated with MOC31PE alone or
MOC3I1PE + CsA. Higher expression of KISS1 may also
sensitize cancer cells for chemotherapy [29]. Thus our
results might support a contribution of MOC31PE as a
supplement also to reduce chemotherapy resistance in
ovarian cancer treatment.

The largest up-regulation was observed for the nuclear
hormone receptor NR4A3, a member of the NR4A sub-
family with poorly understood biological function and un-
known physiological ligands [30]. Depending on the
context, NR4A transcription factors may be pro-survival
factors or induce cell death [31]. Knock-out mice without
NR4A3 (Nor-1) and NR4A1 (Nur?77) developed spontan-
eous acute myeloid leukemia [32] suggesting tumor sup-
pressing effects. In cancer cells, growth factors and
mitogens induce expression of these transcription factors
suggesting a role in cancer growth [31]. However, induc-
tion of NR4A1l also occurs in response to apoptosis
inducing factors in cancer cells. When translocated to
mitochondria NR4A1l binds BCL-2, thereby inducing
apoptotic cell death [31] and during apoptosis in thymo-
cytes mitochondrial targeting of NR4A3 was observed
[33]. In B76 cells, the majority of the NR4A3 protein was
located in the cytosol. Two main changes in intracellular
distribution were observed. MOC31PE or CsA shifted the
protein to the mitochondrial fraction compatible with in-
duction of apoptosis. Especially in MOC31PE + CsA
treated cells increased NR4A3 was detected in the nuclear
fraction. Increased amount of 60 kDa protein points to in-
creased transcription of its target genes. Since increased
55 kDa protein in the nuclear fraction was accompanied
by increased mitochondrial marker protein, and the nu-
clear fraction was pelleted at low speed, this implies that
the mitochondrial mass has increased or that mitochon-
dria have fused to larger structures. This is most likely an
effect of the ongoing cell death. The increase in NR4A3
transcript, signals a need for NR4A3 protein synthesis. No
corresponding increased NR4A3 protein was detected as
IT inhibits protein synthesis, but translocation of NR4A3
to mitochondria enriched fractions suggests a role for this
protein in MOC31PE-induced cell-death.

In summary, these results show that a PE-containing
IT, MOC3I1PE, induces transcription of mRNAs for
genes involved in angiogenesis and tumor metastasis. In
addition, the therapeutic use of MOC31PE alone or in
combination with CsA may provide an approach to the
treatment of recurrent/chemoresistant ovarian carcin-
oma, but further investigation is needed to elucidate the

Page 9 of 10

effect of MOC31PE and CsA in ovarian cancer models
in vivo.

Additional files

Additional file 1: Table S1. Tagman probe/primers from Applied
Biosystems (Life Technology) that were used for validation
gene-expression data that were observed with the PCR array technology.

Additional file 2: Figure S1. Cell surface expression of EpCAM was
detected using magnetic beads coated with the MOC31 antibody. B76
cells were detached from the plastic with EDTA and incubated for

30 min with these beads or control beads (IgG). Upper panel show very
good binding and thus high expression of the antigen EpCAM whereas
no binding was seen with control beads.

Additional file 3: Figure S2. Pictures of B76 cells taken immediately
after scratching confluent cell layers (0 h) and after incubating wells with
media containing MOC31PE (10 ng/ml) or CsA + MOC31PE for 24 hours
in the scratch assay. Control wells were added only growth media. After
24 h the wound is closed in the control well and still open in treated
wells.

Additional file 4: Figure S3. Protein synthesis in HOC-7 ovarian cancer
cells after 24 h incubation with MOC31PE. A dose-dependent decreased
incorporation of *H-leu was observed compared with the incorporation
of *H-leu in control cells.

Additional file 5: Figure S4. Effect of MOC31PE on HOC-7 ovarian
cancer cell viability measured using the MTS-assay. Cells were incubated
with [T for 24 and 48 hours as indicated.

Additional file 6: Figure S5. Gene expression of selected genes in
HOC-7 ovarian cancer cells tested in gPCR with Tagman probes. RNA was
isolated from untreated cells and cells treated with 10 ng/ml IT in 2-4
independent experiments. Fold-changed expression with standard
deviation is shown. The Cq in control samples were higher than 25.

Competing interests
The authors declare that they have no competing financial or non-financial
competing interests.

Authors’ contributions

MTW provided, analyzed, and interpreted experimental data and drafted the
manuscript. HB was involved in experimental data acquisition, @F and KF
participated in interpretation of the data and revisions of the manuscript, YA
substantially contributed to the conception and design of the study,
interpretation of experimental data and major revisions of the manuscript.
All authors have approved the final version of the manuscript.

Acknowledgments

We are grateful for the financial support from the Inger and John Fredriksen
Foundation for Ovarian Cancer Research. This project has also financially
been supported by the Norwegian ExtraFoundation for Health and
Rehabilitation through EXTRA funds and the Norwegian Research Council.

Author details

'Department of Tumor Biology, Institute for Cancer Research,

Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
’Department of Gastroenterological Surgery, Norwegian Radium Hospital,
Oslo University Hospital, University of Oslo, Oslo, Norway. University of Oslo,
Oslo, Norway.

Received: 25 September 2013 Accepted: 11 February 2014
Published: 15 February 2014

References

1. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, et al:
Phase Il trial of carboplatin and paclitaxel compared With cisplatin and
paclitaxel in patients with optimally resected stage Ill ovarian cancer: a
gynecologic oncology group study. J Clin Oncol 2003, 21:3194-3200.


http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S1.pdf
http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S2.pdf
http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S3.pdf
http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S4.pdf
http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S5.pdf
http://www.biomedcentral.com/content/supplementary/1757-2215-7-23-S6.pdf

Wiiger et al. Journal of Ovarian Research 2014, 7:23
http://www.ovarianresearch.com/content/7/1/23

2. Bamias A, Pignata S, Pujade-Lauraine E: Angiogenesis: a promising
therapeutic target for ovarian cancer. Crit Rev Oncol/Hematol 2012,
84:314-326.

3. Patriarca C, Macchi RM, Marschner AK, Mellstedt H: Epithelial cell adhesion
molecule expression (CD326) in cancer: a short review. Cancer Treat Rev
2011, 38:68-75.

4. Tveito S, Andersen K, Karesen R, Fodstad O: Analysis of EpCAM positive
cells isolated from sentinel lymph nodes of breast cancer patients
identifies subpopulations of cells with distinct transcription profiles.
Breast Cancer Res 2011, 13:R75.

5. Kébel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C, et al: Ovarian
carcinoma subtypes are different diseases: implications for biomarker
studies. PLoS Med 2008, 5:1749-1759.

6. Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, et al:
Comparison of expression profiles in ovarian epithelium In Vivo and
ovarian cancer identifies novel candidate genes involved in disease
pathogenesis. PLoS ONE 2011, 6:217617.

7. Risberg K, Fodstad @, Andersson Y: Anti-melanoma activity of the 9.2.27PE
immunotoxin in dacarbazine resistant cells. / Immunother 2010, 33:272-278.

8. Andersson Y, Engebraaten O, Fodstad O: Synergistic anti-cancer effects of
immunotoxin and cyclosporin in vitro and in vivo. Br J Cancer 2009,
101:1307-1315.

9. Xavier M: Drug immunosuppression therapy for adult heart
transplantation. Part 1: immune response to allograft and mechanism of
action of immunosuppressants. Ann Thorac Surg 2004, 77:354-362.

10.  Obchoei S, Wongkhan S, Wongkham C, Li M, Yao Q, Chen C: Cyclophilin A:
potential functions and therapeuti target for human cancer. Med Sci
Monit 2009, 15:RA221-RA232.

11. Morgan RJJ, Synold T, Gandara D, Muggia F, Scudder S, Reed E, et al: Phase
Il trial of carboplatin and infusional cyclosporine with alpha-interferon in
recurrent ovarian cancer: a California cancer consortium trial. Int J
Gynecol Cancer 2007, 17:373-378.

12. Sood A, Sorosky J, Squatrito R, Skilling J, Anderson B, Buller R: Cyclosporin A
reverses chemoresistance in patients with gynecologic malignancies.
Neoplasia 1999, 1:118-122.

13. Marth C, Zeimet AG, Herold M, Brumm C, Windbichler G, Mller-Holzner E,
et al- Different effects of interferons, interleukin-1f3 and tumor necrosis
factor-a in normal (OSE) and malignant human ovarian epithelial cells.
Int J Cancer 1996, 67:826-830.

4. Buick RN, Pullano R, Trent JM: Comparative properties of five human
ovarian adenocarcinoma cell lines. Cancer Res 1985, 45:3668-3676.

15. Myklebust AT, Beiske K, Pharo A, Davies CL, Aamdahl S, Fodstad @:
Selection of anti-SCLC antibodies for diagnosis of bone marrow
metastasis. Br J Cancer 1991, 63:49-53.

16.  Engebraaten O, Sivam G, Juell S, Fodstad @: Systemic immunotoxin
treatment inhibits formation of human breast cancer metastasis and
tumor growth in nude rats. Int J Cancer 2000, 88:970-976.

17. Andersson Y, Le H, Juell S, Fodstad &: AMP-activated protein kinase
protects against ant-epidermal growth factor recetor-pseudomonas
exotoxin A immunotoxin-induced MA11breast cancer cell death.

Mol Cancer Res 2006, 5:1050-1059.

18.  Arwert EN, Hoste E, Watt FM: Epithelial stem cells, wound healing and
cancer. Nat Rev Cancer 2012, 12:170-180.

19.  Risberg K, Guldvik 1J, Palchaudhuri R, Xi Y, Fodstad @, Hergenrother PJ, et al.
Triphenylmethyl derivatived enhances the anticancer effect of
immunotoxins. J Immunother 2011, 34:438-447.

20.  Chambers S, Chambers J, Davis C, Kohorn E, Schwartz P, Lorber M, et al:
Pharmacokinetic and phase | trial of intraperitoneal carboplatin and
cyclosporine in refractory ovarian cancer patients. J Clin Oncol 1997,
15:1945-1952.

21. Ben-Hamo R, Efroni S: Biomarker robustness reveals the PDGF network as
driving disease outcome in ovarian cancer patients in multiple studies.
BMC Syst Biol 2012, 6:3.

22. Itamochi H: Targeted therapies in epithelial ovarian cancer: molecular
mechanism of action. World J Biol Chem 2010, 1:209-2200.

23. Bell-McGuinn K, Konner J, Tew W, Spriggs DR: New drugs for ovarian
cancer. Ann Oncol 2011, 22:viii77-Viii82.

24.  Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA,
et al: A tumor suppressor-dependent inhibitor of angiogenesis is
immunologically and functionally indistinguishable from a fragment of
thrombospondin. Proc Natl Acad Sci 1990, 87:6624-6628.

Page 10 of 10

25. Kazerounian S, Yee KO, Lawler J: Thrombospondins in cancer. Cell Mol Life
Sci 2008, 65:700-712.

26.  Combs MD, Braitsch CM, Lange AW, James JF, Yutzey KE: NFATC1
promotes epicardium-derived cell invasion into myocardium. Dev 2011,
138:1747-1757.

27. Cristillo AD, Bierer BE: Regulation of CXCR4 expression in human T
lymphocytes by calcium and calcineurin. Mol Immunol 2003, 40:539-553.

28. Hata K, Dhar DK, Watanabe Y, Nakai H, Hoshiai H: Expression of metastin
and a G-protein-coupled receptor (AXOR12) in epithelial ovarian cancer.
Eur J Cancer 2007, 43:1452-1459.

29. Jiffar T, Yilmaz T, Lee J, Hanna E, El-Naggar A, Yu D, et al: KiSS1 mediates
platinum sensitivity and metastasis suppression in head and neck
squamous cell carcinoma. Oncogene 2011, 30:3163-3173.

30. Pearen MA, Muscat GEO: Minireview: nuclear hormone receptor 4A
signaling: implications for metabolic disease. Mol Endocrinol 2010,
24:1891-1903.

31, Moll U, Marchenko M, Zhang X: p53 and Nurr77/TR3 - transcription factors
that directly target mitochondria for cell death induction. Oncogene 2006,
25:4725-4743.

32, Mullican S, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al:
Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development
of acute myeloid leukemia. Nat Med 2007, 13:730-735.

33. Thompson J, Burger ML, Whang H, Winoto A: Protein kinase C regulates
mitochondrial targeting of Nur77 and its family member Nor-1 in
thymocytes undergoing apoptosis. £ur J Immunol 2010, 40:2041-2049.

doi:10.1186/1757-2215-7-23

Cite this article as: Wiiger et al: The MOC31PE immunotoxin reduces
cell migration and induces gene expression and cell death in ovarian
cancer cells. Journal of Ovarian Research 2014 7:23.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Materials
	Cells and immunotoxin
	Protein synthesis and cell viability
	Cell proliferation, membrane damage and scratch-wound healing in the IncuCyte
	RNA isolation and PCR array analyses
	Validation of PCR array data
	Subcellular fractionation, gel electrophoresis, and antigen detection
	Statistical analyses

	Results
	MOC31PE immunotoxin inhibits protein synthesis and reduces cell viability
	MOC31PE immunotoxin induces cell membrane damage and reduces cell migration
	Effects of MOC31PE immunotoxin on gene expression
	Effects of MOC31PE immunotoxin on NR4A3 protein expression and subcellular localization

	Discussion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

