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Abstract

Background: Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer
cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins
sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications
in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of
ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant
upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times.

Methods: IGROV-1 and SKOV-3 cells were pulsed with 20 pM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h
once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were
termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their
responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were
exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1
DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21<P" and p27*" and cleavage of
downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was
limited to cytostasis or progressed to lethality.

Results: Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that
displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity
the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins,
which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher
concentrations causing lethality.

Conclusions: Antiprogestins carrying a backbone similar to mifepristone are cytotoxic to ovarian cancer cells in a
manner that does not depend on the sensitivity the cells have to the standard ovarian cancer chemotherapeutics,
cisplatin and paclitaxel. Thus, antiprogestin therapy could be used to treat ovarian cancer cells showing resistance
to both platinum and taxanes.
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Background
Epithelial ovarian carcinoma is a highly lethal disease, mostly
a consequence of its frequent detection at an advanced stage
and its ability to metastasize within the peritoneal cavity.
Debulking surgery followed by platinum-taxane based
chemotherapy is the standard of care for patients with
advanced stage ovarian cancer. However, despite an encour-
aging response rate of 65%—80% to first-line chemotherapy,
most patients relapse with chemoresistant disease. This
presents a challenge in the clinic as no reliable second-line
therapies have been shown to be a suitable success for these
patients, leading to a lack of remarkable improvements in
the cure rate over the past thirty years (rev.in [1-6]).
Following surgery and platinum-taxane treatment
patients are not usually further treated until recurrence
is clinically evident. Thus, one strategy worth studying is
the development of chronic therapeutic approaches to
follow standard front-line therapy for ovarian cancer
patients. One such possibility for maintenance therapy is
the use of antiprogestin compounds that can be chronically
given with minimal toxicity [7]. Our laboratory studied the
effect of antiprogestin mifepristone, which successfully
blocked the growth of ovarian cancer cells in vitro and
in vivo [8], and prevented the repopulation of ovarian
cancer cells that escaped cisplatin (CDDP) [9] or CDDP-
paclitaxel (PTX) [10] therapies. We have also found that
antiprogestins mifepristone, ORG-31710, and ulipristal
(CDB-2914), when used at pharmacologic concentrations,
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cause cytostasis by blocking the activity of cyclin-dependent
kinase 2 (Cdk2), thus preventing the cells from moving to-
wards the G1/S transition, and, consequently, synthesizing
DNA; moreover, these compounds increased the accumula-
tion of cyclin-dependent kinase inhibitors p21“P* and
p27""P!as well as promoted their association to Cdk2,
leading to its reduced activity [8,11].

If antiprogestin therapy to control ovarian cancer
repopulation or recurrence following initial standard
platinum-taxane chemotherapy is to be used, it would
almost always encounter cells that have escaped chemo-
therapy and consequently acquired various degrees of
resistance to the front-line platinum and taxane deriva-
tives. Herein we set up to study whether mifepristone and
a group of mifepristone-related compounds with unique
modifications in position C-17 of the steroid ring (por-
trayed in Figure 1) are capable of abrogating the growth of
ovarian cancer cells that developed clinically relevant
resistance to CDDP and PTX.

Methods

Cell culture and treatments

The human ovarian carcinoma cell lines SKOV-3 and
IGROV-1 were obtained from the American Type Culture
Collection (ATCC, Manassas, VA) and the laboratory of Dr.
Howell (University of California, San Diego), respectively.
Cultures were propagated under conditions previously
described in detail [10,11].

Mifepristone (RU-38486)

I ! |
/N g /N
OH
O AL
o [o)

Proellex (CDB-4124)

OMe

Figure 1 Chemical structure of antiprogestins used in the study.
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Cisplatin (CDDP; cis-diamminedichloroplatinum II)
(Sigma Chemical Co, St Louis, MO) was prepared fresh
in 0.9% NaCl every time it was used. A stock of 100 uM
paclitaxel (PTX; Sigma) was prepared in DMSO and was
stored at -20°C.

Mifepristone was commercially obtained (Sigma).
ORG-31710 was provided by N.V. Organon (Oss, The
Netherlands). Ulipristal (a.k.a. CDB-2914) was provided
by HRA Pharma (Paris, France). Proellex (a.k.a. CDB-
4124), 17a-hydroxy CDB-4124 (17a-hydroxy-proellex),
and CDB-4453 (mono-demethylated CDB-4124) were
kindly provided by Repros Therapeutics, Inc (The
Woodlands, TX). The antiprogestins were prepared as a
stock 20 mM solution in DMSO and stored at -20°C.
The maximum concentration of DMSO reached in the
culture was 0.2% (v/v).

Cell proliferation and viability

Following the indicated treatments, triplicate cultures
were trypsinized, pelleted by centrifugation at 500 g for
5 min, and washed with PBS. The cells were resuspended
in ViaCount reagent (Guava Technologies, Hayward, CA)
and studied using the Guava ViaCount application in the
Guava EasyCyte Mini microcapillary cytometer (Guava
Technologies) as we previously reported [9]. When indi-
cated, the concentration of drugs that caused inhibition of
50% in growth (IC50) were determined using software
designed to study drug interaction, which calculates the
median effective dose or Dm that is similar to the IC50
(Calcusyn, Biosoft, Cambridge, UK).

Generation of platinum-taxane escape (PTES) cells
Ovarian carcinoma IGROV-1 and SKOV-3 cells were
plated into T75 cm?® culture flasks. When the culture
reached 90% confluence, the cells received one chemo-
therapeutic challenge consisting of 20 pM CDDP for
1 h followed by 100 nM PTX for 3 h, which was re-
peated weekly for six weeks. Upon the repopulation
following the last chemotherapeutic challenge, the
cells were considered as Platinum-Taxane-EScape cells
(PTES), and were trypsinized and stored in liquid
nitrogen for subsequent uses. Figure 2A displays a
schematic summary of the experimental procedure
implemented.

Determination of sub-G1 DNA content

After 96 h of the indicated treatments, the cells were
trypsinized, pelleted, washed, fixed and analyzed by
microcytometry as we previously described in detail
[10].

Western blotting
After 48 h of the indicated treatments, the cells were har-
vested, washed with PBS, pelleted and maintained at -80°C
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until further use. The preparation of the cell lysates for gel
electrophoresis has been detailed previously [12]. Primary
antibodies for the following proteins were used at the
indicated dilutions: p21“P' (clone 6B6; 2 pg/ml) and
cyclin E (clone HE12; 0.5 pg/ml), were from BD Pharmigen
(San Diego, CA); p27"%1 (clone 57; 1:2,000) was from BD
Transduction Laboratories (San Diego, CA); Cdk2 (M2;
1:1,000) and HSC-70 (sc-7298; 1:5,000) were from Santa
Cruz Biotechnology (Santa Cruz, CA); and poly (ADP-
ribose) polymerase (PARP) (#9542; 1:1000) was from Cell
Signaling Technologies (Danvers, MA).

Results

Generation of ovarian cancer cells with clinically relevant
resistance to CDDP and PTX

We used pulse-selection with clinically relevant doses
and exposure times of CDDP and PTX to develop two
ovarian cancer cells lines with double resistance that
would reflect the clinical setting. We selected two cell
lines with different genetic backgrounds and known initial
sensitivities to CDDP and PTX, and pulse-challenged
them with concentrations and times of exposure of the
drugs resembling those used in the clinic. To pulse the
cells we chose 1 h exposure to CDDP and 3 h exposure to
PTX, which are the times patients receive the chemother-
apeutics in tandem intravenously [13]. Furthermore, we
selected 20 uM CDDP which is the peak plasma level
reached following an intravenous bolus of 100 mg/m?
CDDP [14]. In terms of PTX, we selected 100 nM because
this concentration can be reached when the agent is given
at a dose of 175 mg/m? [15]. This is an approximation
without considering the metabolism of the drugs in the
body, yet we mimic the clinic by exposing the cells to the
drugs for a maximum of only 1 h for CDDP and 3 h for
PTX. We also simulated the six cycles of chemotherapy
received by patients by allowing one week recovery in be-
tween each pulse/challenge with the drugs. Thus, we ex-
posed IGROV-1 and SKOV-3 cells to weekly rounds of
combination therapy consisting of 20 uM CDDP for 1 h
followed by 100 nM PTX for 3 h. Each cycle was followed
by culture in drug-free media with the media being
replaced every two days. After six cycles of treatment, the
sibling cells that still survived and escaped the chemother-
apy were termed, respectively, IGROV-1 PTES and SKOV-
3 PTES, where PTES means Platinum-Taxane-EScape cells.
These cells were considered as in vitro recurrent
(Figure 2A). When compared to the parental IGROV-1
cells, the PTES siblings had lesser tendency to growth in
layers, displayed larger cytoplasm, and showed frequent
multi-nucleation (Figure 2B). As for the PTES derivatives
of SKOV-3, they displayed extended cytoplasm and seemed
flattened when compared to their parental counterparts
(Figure 2C).
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Figure 2 Generation of ovarian cancer cells resistant to CDDP and PTX. (A) Graphical representation of the procedure performed to
generate cells with lower sensitivity to both CDDP and PTX. Lighter cells represent growing cells whereas darker cells are cells that survive
therapy. Cells showing nuclear fragmentation represent those dying in response to chemotherapy. Phase contrast images at lower or higher

magnifications of the morphologies displayed by IGROV-1 and the IGROV-1 PTES (B) and that of SKOV-3 and SKOV-3 PTES siblings (C). Scale
bar, 100 pm.

Ovarian cancer cells escaping six cycles of CDDP-PTX presentation of data when CDDP and PTX were com-
therapy have reduced sensitivity to a further round of bined in different doses, we defined the concept of Com-
chemotherapy bination Dose Proportion (CDP). We termed CDP a
We next confirmed whether the sibling cells that had  combination of doses and exposure times that when
regrown after surviving six rounds of CDDP-PTX ther- equal to 1 are within the range of clinical achievability.
apy developed reduced sensitivity to an additional che-  Thus, a CDP of 1 means 20 uM CDDP for 1 h plus 100
motherapeutic challenge, when compared to their nM PTX for 3 h. Accordingly, for instance, a CDP of 0.5
parental counterparts. We tested the growth of cells means that the inhibition of growth by 50% was achieved
after a single exposure to increasing doses of CDDP,  using half the concentration of each of the drugs (in this
PTX, or a combination of both. To simplify the case 10 uM CDDP for 1 h plus 50 nM PTX for 3 h).
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Figure 3 Characterization of ovarian cancer cells made resistant to CDDP and PTX. (A) Percent of cell growth [a-c] and sub-G1 DNA
content [d-f] in IGROV-1 and IGROV-1 PTES cells. (B) Percent of cell growth [a-c] and sub-G1 DNA content [d-f] in SKOV-3 and SKOV-3 PTES cells.
Percent growth was expressed in relation to the growth of vehicle treated controls considered as 100%. Percent specific sub-G1 was calculated
by the following equation: specific sub-G1=[100* (sub-G1 treatment - sub-G1 control) / (100 - control sub- G1)]. Data presented in panels [a-f]
were collected after 96 h treatment. FRA; fold resistance acquired; CDP: combination dose proportion, where CDP 1 represents 20 uM CDDP +

CDDP + 200 nM PTX.

100 nM PTX, CDP 0.25 represents 5 uM CDDP + 25 nM PTX, CDP 0.5 represents 10 uM CDDP + 50 nM PTX, whereas CDP 2 represents 40 uM

In terms of growth inhibition, IGROV-1 PTES required
2.2 fold higher concentration of CDDP and 9.1 fold higher
concentration of PTX to have their replication rate dimin-
ished by 50% (IC50), which is depicted as fold resistance
acquired (FRA; Figure 3A, panels [a] and [b] and Table 1).
When CDDP and PTX were combined, the doses needed
to block 50% of growth increased by 2.2 fold (Figure 3A,
panel [c] and Table 1). The induction of cell death was
assessed for the previous treatment approaches four days
after drug exposure by quantifying the percentage of cellu-
lar particles with DNA content below G1, which is indica-
tive of cells undergoing nuclear fragmentation during

Table 1 Development of cells resistant to CDDP and PTX

Cells IC50 CDDP (uM) IC50 PTX (nM) CDP (CDDP + PTX)
IGROV-1 5404057 609+ 122 024+004

IGROV-1 PTES 121 £101° 554 +15.5° 052 +0.04°

SKOV-3 156+ 1.20 780+ 640 0.16 +0.20

SKOV-3 PTES ~ 64.1 +4.10° 1230 + 300° 1204 0.20°

CDP = Combination Dose Proportion. CDP is considered a combination of
doses and exposure times that when equal to 1 are clinically achievable

(CDP = 1 means 20 uM CDDP for 1 h plus 100 nM PTX for 3 h). For instance, a
CDP of 0.5 means that the inhibition of growth by 50% was achieved using
half the concentration of each of the drugs (i.e,, 10 uM CDDP for 1 h plus 50
nM PTX for 3 h). p < 0.001; Pp < 0.01; °p < 0.05 (Student’s t-test) compared to
parental cells.
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Figure 4 Growth inhibition and lethality of antiprogestins towards IGROV-1 and IGROV-1 PTES cells. Cells were plated in equal numbers,
allowed to attach to the surface of the culture plates for 24 h, and then were treated with either vehicle (DMSO) or the indicated concentrations
of each one of the antiprogestins for 96 h. (A) Total number of cells was recorded at the beginning of the experiment and after 96 h of treatment.
The growth of the treated groups was expressed as percentage of control. (B) Viability was assessed with the Guava ViaCount application in a similar
experimental approach to that shown in the left panel when assessing cell growth. (C) Following a similar treatment protocol as above cells were
collected, fixed in 4% paraformaldehyde, stained with propidium iodide, and analyzed by cytometry using the Guava cell cycle application.
Bars, mean +s.em. (n=3).

apoptotic death. We observed that IGROV-1 PTES re-
quired higher concentrations of CDDP, PTX, and of the
combination of CDDP plus PTX, in order to reach the
damage done by much lower doses of the drugs in the
parental cells (Figure 3A, panels [d], [e] and [f]). Similarly
to IGROV-1 PTES, when compared to the parental
SKOV-3 cells, SKOV-3 PTES displayed 4.1 fold reduction

in their sensitivity to CDDP (Figure 3B, panel [a]), 15.8
fold reduction in sensitivity to PTX (Figure 3B, panel [b]),
and a global 7.5 fold reduction in sensitivity to the com-
bination CDDP/PTX (Figure 3B, panel [c]). The reduced
sensitivity to the chemotherapeutic agents was further
corroborated in terms of reduced sub-G1 DNA content
(Figure 3B, panels [d-f].
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Although with different potencies, antiprogestins block
growth of ovarian cancer cells regardless of their
sensitivities to the combination CDDP-PTX

We next studied the responses of IGROV-1 and SKOV-
3 cells and their respective, less chemosensitive siblings
IGROV-1 PTES and SKOV-3 PTES, to a panel of anti-
progestin derivatives. Previously we have shown, using
dose-response studies, that antiprogestin RU-38486 (mife-
pristone), ORG-31710, and CDB-2914 (ulipristal) have
cytostatic effects at lower doses and lethal effects at higher
concentrations. Herein, in addition to those three antipro-
gestins, we studied CDB-4124 (proellex) and two of its
derivatives, 17-a-hydroxy CDB-4124 and CDB-4453, the
latter carrying a de-methylation in position 11 (Figure 1).
We assessed whether the panel of antiprogestins are able
to display their cytotoxic effect, either cytostasis or
lethality, in cells that had been made simultaneously
resistant (i.e., double resistant) to CDDP and PTX. Four
days after treatment with the various antiprogestins, we
evaluated the responses of the cells in terms of growth in
culture by measuring cell number and of lethality by
assessing cell viability and sub-G1 DNA content.

Figure 4 shows that the six antiprogestins studied
inhibited the growth of both IGROV-1 and IGROV-1
PTES cells in dose-related manners. The magnitude of
the growth inhibition ranged with IC50s from ~11 to
35 uM depending upon the compounds (Figure 4A, and
Table 2). The growth inhibition effect did not change for
each compound in between the sibling cells, except for a
slight, yet significant decline in the ORG-31710 and
CDB-4124 IC50s for the PTES cells when compared to
the parental cells (Table 2). When we studied the lethal-
ity of the antiprogestins towards IGROV-1 and IGROV-
1 PTES we observed the six compounds impaired the
viability of the cells when used at concentrations equal
to or higher than 15 uM. The antiprogestins with higher
lethality, as indicated by their manifestation at lower
concentrations, were RU-38486, ORG-31710 and CDB-
2914, when compared to the CDB-4124 derivatives that
displayed lethality only at concentrations over 30 pM
(Figure 4B and C). Overall, the effect of the antiproges-
tins was similar in IGROV-1 and IGROV-1 PTES, sug-
gesting that their anti-cancer effect is independent of the
intrinsic sensitivity to CDDP and PTX displayed by the
ovarian cancer cells.
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In Figure 5 we show the response to antiprogestins of
the ovarian cancer cells SKOV-3 and their derivatives
SKOV-3 PTES less sensitive to CDDP and PTX. Simi-
larly to what it was found with IGROV-1 cells, both
SKOV-3 and SKOV-3 PTES were impaired in their
growth and viability by antiprogestins in a dose-related
manner, without displaying major differences in the
responses among them (Figure 5A). The magnitude in
the IC50s for antiprogestins in the SKOV-3 cell line
pair displayed a larger range when compared to the
IGROV-1 pair, expanding from~15 uM to 84 uM
(Table 2). The most potent compounds in terms of
lethality were RU-38486 and ORG-31710, with CDB-
2914 and CDB-4124 derivatives having lesser effects
(Figure 5B and C).

To further study the effect of antiprogestins on cytos-
tasis and lethality towards ovarian cancer cells of simi-
lar genetic backgrounds but different, double sensitivity
to CDDP and PTX, we cultured IGROV-1 and IGROV-
1 PTES in the presence of a fixed dose of 30 pM anti-
progestins, which for these cells represents the limiting
concentration between the induction of cytostasis and
lethality depending on the compound used (Figure 4C).
Results in Figure 6 show that exposure to the said
concentration of the compounds for 48 h caused an
increase in the abundance of the cell cycle inhibitor
p27""P! which was more notable for RU-38486, ORG-
31710, CDB-2914 and 17-a-hydroxy CDB-4124 in both
parental and PTES cells. The cyclin dependent kinase
inhibitor p21P! also increased in response to the anti-
progestins, yet this increase was more marked in PTES
cells versus parental cells when comparing treatment
versus vehicle. The increases in p21°P' and p27""?! by
antiprogestins are consistent with cell cycle arrest asso-
ciated with growth inhibition. No major differences
were observed in the expression of G1 regulatory pro-
teins Cdk2 and cyclin E in response to antiprogestins
between parental and PTES cells. In terms of signs of
lethality, the cleavage of PARP was observed in both
IGROV-1 and IGROV-1 PTES cells in response to the
compounds that had more potency in terms of reducing
cellular viability (Figure 4C), with RU-38486, ORG-
31710 and CDB-2914 displaying greater cleavage of
PARP when compared to the CDB-4124 derivatives
(Figure 6).

Table 2 Antiprogestin-induced growth inhibition toward CDDP and PTX resistant cells

Cells RU-38486 ORG-31710 CDB-2914 CDB-4124 OH-4124 CDB-4453
IGROV-1 11.7£1.80 216x1.10 155+1.10 355+390 286+340 306+270
IGROV-1 PTES 10.7+1.20 152+ 1.40° 125+ 1.10 213+1.80° 2594240 256+260
SKOV-3 15.7+£1.90 17.2+4.20 31.5+£3.10 436+5.10 84.2+9.80 449+4.60
SKOV-3 PTES 16.0+2.10 192+270 312+180 474 +390 584+830 529+210

Data shown are the IC50 (uM) expressed as the mean + s.e.m (n = 3); OH-4124 indicates 17-a-hydroxy CDB-4124. “p < 0.05 (Student’s t-test) compared to parental cells.
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Discussion

Many studies with chemoresistant ovarian cancer cells
in vitro have been done using cells obtained from pa-
tient’s ascites and that are not chemotherapy naive. For
instance, PEO4 cells were obtained from a patient that
received platinum-based therapy nine months earlier and
display a ~8 fold resistance to CDDP when compared to
their platinum sensitive counterparts PEO1 cells [16,17].
Another example is the SKOV-3 cell line, which is consid-
ered semi-resistant to platinum in vivo as was obtained

from a patient that did not respond to the maximal toler-
ated dose of platinum [18]. The chemoresistance of these
cells developed within the in vivo environment of the pa-
tient, can be considered clinically relevant and is usually
reported to involve between 2- to 5-fold increases in their
IC50 values when compared to the parental cells (reviewed
in [19]). However, there are also various cell line pairs that
were made resistant to platinum-therapy by stepwise
exposure to CDDP in vitro, and, because they are highly
stable, such as the OV2008 and OV2008/C13 or the
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A2780 and A2780/CP70 siblings, they have been very use-
ful to study mechanisms of chemoresistance in the labora-
tory [20]. Yet, because these cells exhibit over 8-fold
increase in resistance, they should be considered less rele-
vant from a clinical standpoint [12,19]. Furthermore, there
is significant heterogeneity in the type of resistance pa-
tients develop after front line platinum-taxane chemother-
apy, including patients that show high sensitivity, others
that show sensitivity to one agent but resistance to the
other, or patients that show resistance to both drugs [21].
We decided to develop cell lines with resistance to
both platinum and taxanes, within the range of clinical
relevance. We utilized the IGROV-1 and SKOV-3 cell
lines as IGROV-1 cells were previously reported to be
capable of acquiring cross-resistance to PTX when made
resistant to CDDP [22], whereas SKOV-3 cells, with clin-
ically relevant endogenous resistance to CDDP, were
made PTX resistant upon pulse selection [23]. We gen-
erated clinically relevant IGROV-1 and SKOV-3 cells re-
sistant to CDDP and PTX by exposing them to both
drugs in six pulse-selection challenges. We termed the
IGROV-1 and SKOV-3 derivatives IGROV-1 Platinum
Taxane EScape or PTES and SKOV-3 PTES, respectively,
which showed double resistances in the range of 2-7
folds compared to their parental cells. We then asked if
the sibling cell lines depict cross-resistance to the anti-
growth effect of antiprogestins. Indeed we confirmed
that all antiprogestins utilized in the study (i.e., mifepris-
tone, ORG-31710, CDB-2914, CDB-4124, 17-a-hydroxy
CDB-4124 and CDB-4453) blocked the growth of the
parental and resistant derivatives cells with overall simi-
lar potency, with cytostasis manifested at concentrations
lower than 15 pM, and lethality manifested at doses

higher than 15 pM. These results are in agreement with
a previous study we performed using the antiprogestin
mifepristone in OV2008 cells and compared its effect
against that observed in the highly resistant OV2008/C13
siblings. Mifepristone killed cells when used at doses
higher than 20 pM, whereas at lower doses, it caused
cytostasis that was reversed when the drug was removed
from the culture [8]. The anti-growth effect of mifepris-
tone was also independent of the presence of the tumor
suppressor p53, because it did not discriminate between
A2780 wt 53 platinum sensitive cells and A2780/CP70
platinum resistant cells carrying a mutant version of p53
[24-26], IGROV-1 cells with p53 wt expression [27], or
SKOV-3 reported to carry a single nucleotide deletion in
the p53 gene leading to no expression of p53 [28-31].
Mifepristone is one of the most popular antiprogestins
ever developed. It was synthesized in the early 1980’ as
an antiglucocorticoid but soon afterward was found to
block the transcriptional activity of progesterone recep-
tors (PR). Because of such an antiglucocorticoid effect,
new generation antiprogestins were developed aiming at
reducing antiglucocorticoid activity while maintaining or
enhancing antiprogesterone activity. Such compounds in-
clude ORG-31710 and the CDB family members studied
here, CDB-2914 and CDB-4124. The differences between
the compounds are in the substitutions localized at the
positions 11 and 17a. Whereas the dimethylaminophenyl
substitution at the 113-position seems to confer antipro-
gestin activity [32-34], modifications in position C-17 are
mostly geared at modifying the antiglucocorticoid receptor
activity of the compounds. Thus, ORG-31710 and the CDB
derivatives are considered to have potent antiprogestin
activity with less antiglucocorticoid activity when compared
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to mifepristone [35,36]. Of these compounds, mifepristone
has been approved in the US to terminate early pregnancy
(working as an antiprogestin) or ameliorating the hypergly-
cemia in patients with endogenous Cushing’s (working as
an antiglucocorticoid) (reviewed in [37]). CDB-2914
(ulipristal) and CDB-4124 (proellex) are currently under
intense investigation to assess their capacity to mitigate
signs and symptoms associated with increased cell growth
in endometriosis and uterine fibroids (reviewed in [38]).

We have found that mifepristone, the compound with
the highest antiglucocorticoid effect, is the most potent
against the growth of ovarian cancer cells either sensitive
or resistant to the combination CDDP/PTX. The new gen-
eration antiprogestins represented by the CDB compounds
are effective, but with a higher IC50. It is interesting to
note that either the 17-a-hydroxylated or demethylated
forms of CDB-4124 did not show superior potency over
CDB-4124 in terms of growth inhibition, suggesting that
the anti-growth effect of the molecules resides in a yet to
be identified functional group.

CDB-4124 and the putative mono-demethylated metab-
olite CDB-4453 are all potent antiprogestins but have
limited antiglucocorticoid activity when compared against
mifepristone or CDB-2914 [35,39]. Because the anti-
growth potency of the CDB derivatives was slightly
reduced when compared to that of mifepristone or ORG-
31710, these results suggest that the antiprogestin function
of the molecule may be unrelated to its anti-growth
capacity. Indeed we have shown that cancer cells of differ-
ent tissues of origin and different degrees of hormone-
dependency, such as MCEF-7 breast cancer cells carrying
PR, MDA-MB-231 breast cancer cells with no PR expres-
sion, PR negative and androgen receptor positive LNCaP
prostate cancer cells, and PR negative androgen receptor
positive PC3 prostate cancer cells are all inhibited by mife-
pristone with similar potency [40], strongly suggesting that
the presence of the PR is not required for the inhibition of
cancer growth triggered by antiprogestins. Further sup-
porting this hypothesis it was shown that mifepristone
blocked the growth of estrogen receptor negative and PR
negative MDA-MB-231 breast cancer cells [41].

In another line of reasoning, it is possible that the anti-
glucocorticoid effect of the molecules may have some role
in the antigrowth effect, as all cell lines being studied
express glucocorticoid receptors (GR) [40]. The human
NR3C1 gene undergoes alternative splicing generating two
main isoforms, GRa and GRp. Considerable evidence indi-
cates that the GRa isoform drives GR-mediated transactiva-
tion activity, whereas GRP is a natural dominant negative
inhibitor of GRa; however, GRP can directly regulate genes
not controlled by GRa (reviewed in [42]). We have shown
that mifepristone blocked the growth of cancer cells with
very low expression of GRa, such as OVCAR-3 ovarian
cancer cells, MCF-7 breast cancer cells, and U-20S
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osteosarcoma cells [40], suggesting that the presence of
GRa may not be required for the antigrowth effect of anti-
progestins. It remains to be determined, however, whether
GRp, which was reported capable of binding mifepristone
[43], plays a role in the anti-growth effect of antiprogestins,
as this receptor isoform seems to be present in all cell lines
we studied so far [40].

Conclusions

Antiprogestins of different generations with higher or
lesser antiglucocorticoid activity can block the growth of
ovarian cancer cells that have been made resistant to
CDDP and PTX in a clinically relevant manner. Although
the molecular mechanisms driving the growth inhibition
by antiprogestins requires more detail, it is clear that the
drugs could be developed further for anti-ovarian cancer
therapy, in particular for those cases that show upfront
resistance to standard of care, or for recurrent patients
with platinum and/or taxane resistant disease. Due to the
low toxicity of these drugs, their potential use as mainten-
ance therapy or antirepopulation therapy following stand-
ard of care is anticipated. In this regard we have
demonstrated that mifepristone was capable of abrogating
the regrowth of cancer cells that escaped CDDP [9] or the
combination CDDP/PTX therapy [10]. The results pre-
sented herein highlight the fact that other antiprogestins in
addition to mifepristone can be efficacious against plat-
inum/taxane double-resistant ovarian cancer cells. Whether
or not ovarian cancer cells may develop resistance to anti-
progestin therapy after exposure to the drugs for long
periods of time, remains to be investigated.
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