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Abstract

Background: Antibody resistance, not only de novo but also acquired cases, usually exists and is related with lower
survival rate and high risk of recurrence. Reversing the resistance often results in better clinical therapeutic effect.
Previously, we established a trastuzumab-resistant ovarian cancer cell line, named as SKOV3-T, with lower HER2 and
induced higher IGF-1R expression level to keep cell survival.

Methods: IGF-1R was identified important for SKOV3-T growth. Then, a novel anti-IGF-1R monoclonal antibody,
named as LMAb1, was used to inhibit SKOV3-T in cell growth/proliferation, migration, clone formation and in vivo
carcinogenicity.

Results: In both in vitro and in vivo assays, LMAb1 showed effective anti-tumor function, especially when being
used in combination with trastuzumab, which was beneficial to longer survival time of mice as well as smaller
tumor. It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of
IGF-1R and downstream MAPK, AKT pathway transduction.

Conclusion: We achieved satisfactory anti-tumor activity using trastuzumab plus LMAb1 in trastuzumab-resistant
ovarian cancer model. In similar cases, not only acquired but also de novo, good curative effect might be achieved
using combined antibody therapy strategies.
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Introduction
An antibody (Ab), also known as an immunoglobulin (Ig),
is a large Y-shape protein produced by plasma cells that is
used by the immune system to identify and neutralize for-
eign object, such as bacteria and virus, which is called
“antigen”. Monoclonal antibody (mAb) recognizes a unique
part of the antigen specifically, e.g. tumor associated anti-
gens like EGFR or HER-2, and these mAbs have been
widely used as standard treatment in clinical trails.
Along with more knowledge of the structure and poten-

tial modifications of mAbs plays an increasingly important
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role in cancer immunotherapy. Over the past few years
many biological technologies have been invented to
prepare therapeutic antibody drugs, including chimeric,
humarized or fully human antibodies, radioimmunothera-
peutic agents, antibody-drug conjugates (ADCs), and bi-
specific T cell engagers (BiTEs), etc. As early as 1998, the
FDA approved the use of Trastuzumab, the first anti-
HER2 humanized antibody, for HER2-positive breast can-
cer. In 2012, the FDA approved another anti-HER2 drug,
Pertuzumab, for advanced or metastatic breast cancer with
high or low expression level of HER2. There has also been
a lot of excitement about the development of antibody-
drug conjugates, as these drugs are designed to improve
local delivery of highly toxic chemotherapeutics meanwhile
simultaneously attempting to minimize systemic toxicity.
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In 2013, an anti-HER2 ADC drug, trastuzumab emtansine,
was approved by the FDA for patients with metastatic
HER2-positive breast cancer [1].
HER2, a receptor tyrosine-protein kinase also known as

erbB-2/CD340, belongs to the transmembrane epidermal
growth factor type II receptor family. It represents the
prototype of a stable molecular abnormality endowed with
well-characterized functional consequences. It has been
found in several of the most common solid tumors, in-
cluding but not limited to ovarian, breast, colon, non-
small cell lung cancer, endometrial, prostate and cervical
cancer [2-5]. More importantly, HER2 overexpression has
been shown to correlate with a worse prognosis in both
node-positive and node-negative breast cancer patients.
It also has potential therapeutic and diagnostic value in
other types of solid tumor, e.g. multiple gynecologic
cancers [6].
Trastuzumab (Herceptin®, Genentech, CA, USA) is a

humanized monoclonal IgG1 antibody that works both
through initiation of ADCC and recruitment of NK cells
as well as restrain of downstream effectors [7-9]. It was
FDA-approved in 1998 as an adjunct to cyclophospha-
mide, paclitaxel and/or doxorubicin in the treatment of
early-stage HER2 positive breast cancer, and as a single
drug for adjuvant treatment of early-stage, HER2 posi-
tive, high-risk ER/PR-negative breast cancers following
multi-modality anthracycline-based therapy [10]. Trastu-
zumab has provided a promising therapeutic advantage
in not only breast cancer but in other tumor types;
moreover, combination therapy with trastuzumab and
chemotherapeutics is generally more effective than single
agents in HER2 positive breast and gastric cancer.
Pertuzumab (Omnitarg®, Genentech, South San Francisco,

CA, USA) is a humanized IgG1 mAb. It is a HER heterodi-
merization inhibitor that binds domain II of the extracellular
HER2. Pertuzumab received the US FDA approval for
the treatment of HER2-positive metastatic breast can-
cer on June 8, 2012. Compared to trastuzumab, pertu-
zumab inhibits a broader array of downstream signal
transduction pathways through inhibition of lateral sig-
nal transduction [11-15].
Trastuzumab emtansine (Kydcyla/T-DM1, Genentech/

Roche) is a novel antibody-drug conjugate approved in
2013 with trastuzumab for targeted delivery and anti-
microtubule agent DM1 for cytotoxicity. In contrast to
trastuzumab, T-DM1 not only inhibits the growth of
cancer cells by binding to the HER2 receptor, but also
kills them by emtansine, for emtansine can enter cells
and bind to tubulin [16]. T-DM1 has demonstrated ro-
bust clinical activity in pretreated HER2-positive breast
cancer patients with a 43.6% objective response rate and
median PFS of 9.6 months [17]. The global marketing of T-
DM1 may over 3 billion in 2018 predicted by Bloomberg
Limited Partnership recently.
Although antibody drugs against cancers have made
great clinical achievements, there still exist many cases
in which the patients do not respond to the antibody at
the very beginning; besides, many patients who received
antibody treatment relapsed because of subsequent anti-
body resistance. For instance, many HER2-positive breast
cancers do not respond to trastuzumab treatment (de novo
resistance), while many trastuzumab-responsive patients
develop resistance after continuous trastuzumab infusion
within one year (acquired resistance) [18,19]; meanwhile,
although the treatments have improved, the major problem
in the hematological multiple myeloma (MM) is the re-
sistance to therapy. Most patients will eventually re-
lapse or become resistance to bivatuzumab, which is a
humanized anti-CD44v6 variant monoclonal antibody
to inhibit cell adhesion to hyaluronan [20,21]; besides,
two anti-epidermal growth factor receptor (EGFR)
mAbs, the chimeric IgG1 mAb cetuximab and the hu-
man IgG2 mAb panitumumab, have shown relevant
clinical effect in chemotherapy-refractory metastatic
colorectal cancer (mCRC) [22-25]. Because of common
resistance to anti-EGFR mAbs, recent guideline recom-
mendations suggest that anti-EGFR mAbs be given only
to patients with KRAS wild-type mCRC [26,27]. How-
ever, the overall response rate is still not high, ranging
from 17% to 60% [28-37].
Antibody resistance phenomenon exists in so many

cases that researchers work hard about it, and a lot of
articles have been published. The available methods in-
clude combination therapy, that is, the mAb was used
plus chemotherapy, or radiation therapy, or other mAbs.
In a phase III study of women with HER2-positive breast
cancer that treated with trastuzumab, the combination
therapy with capecitabine and the multi-tyrosine kinase
inhibitor lapatinib, which inhibits both HER2 and EGFR,
substantially extended progression-free survival time for
4 months [38]. In a randomized clinical trial, breast can-
cer patients that progressed after previous trastuzumab
therapy were recruited. They were treated with trastuzu-
mab plus capecitabine, which provided significant bene-
fit compared with capecitabine alone [39]; Furthermore,
in some cases, antibody resistance was dealt with anti-
angiogenic agents, e.g. bevacizumab, an anti-VEGF mAb,
which can improved the overall survival rate in meta-
static colorectal and lung cancers when combined with
chemotherapy [40,41], and progression-free survival in
metastatic breast and ovarian cancer [42], etc..
In our previous work, an acquired trastuzumab-resistant

cell model of human ovarian cancer, SKOV3-T, was estab-
lished, and IGF-1R molecule was found by microarray
analysis and preliminarily testified to be pivotal in cell pro-
liferation. In this study, we confirmed the key role of IGF-
1R in SKOV3-T cells compared to SKOV3 in cell growth/
proliferation, in vitro clone formation, invasion/migration,
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cell cycling and in vivo carcinogenic effect; then a novel
anti-IGF-1R human antibody, LMAb1, was prepared and
the activity was confirmed to inhibit the carcinogenesis of
trastuzumab-resistant ovarian cancer cells both in vitro
and in vivo.

Methods
Regents
Trastuzumab (Herceptin®) was obtained from F. Hoffmann-
La Roche Ltd.; Antibodies for western blot against EGFR,
p-EGFR (Tyr1068), HER2, p-HER2 (Tyr1248), HER3,
p-HER3 (Tyr1289), Akt, p-Akt (Ser473), ERK1/2, p-ERK1/2
(Thr202/Tyr204), Src, p-Src (Tyr416), IGF-1R, p-IGF-1R
(Tyr1135/Tyr1136), GAPDH and corresponding secondary
antibodies were purchased from Cell Signaling Technology;
PE conjugated anti-EGFR and anti-HER3, FITC-conjugated
Annexin V antibodies and propidium iodide (PI) were
from eBioscience; PE conjugatedanti-HER2 antibody
was from BD; Electrophoresis reagents and Hybridization
Nitrocellulose Filter membranes were from Bio-Rad; BCA
protein assay and enhanced chemiluminescent (ECL) re-
agents were from Pierce; Cell culture medium Dulbecco’s
modified Eagle medium (DMEM) and fetal bovine serum
(FBS) were purchased from HyClone; Human IGF-1,
NRG1-β1/HRG1-β1 was from R & D; IGF-1R expressing
plasmid pCMV6-IGF1R was from OriGene; Lentiviral
delivery system was packaged by Gene Pharma (China);
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide] and agarose (cell culture level) were
purchased from Sigma-Aldrich; Matrigel and Transwell
chamber was from Millipore. All other chemicals were
obtained from commercial source of analytical grade.

Cell culture
Human ovarian cancer cell line SKOV3 was from ATCC
(American Type Culture Collection, ATCC No. HTB-
77). The cells were cultivated in DMEM supplemented
with 100 units/ml penicillin, 100 units/ml streptomycin,
10% FBS and 4 mM L-glutamine.
Acquired trastuzumab-resistant ovarian cancer cell

line SKOV3-T was developed through continuously cul-
turing SKOV3 cells in the presence of 20 μg/ml trastu-
zumab. Surviving cells were pooled together and tested
for dose response to trastuzumab as described before
[43]. SKOV3-T cells are now maintained in the presence
of 10 μg/ml trastuzumab.
All the cells were incubated in a humidified incubator

(Thermo, America) at 37°C with 5% CO2.

Proliferation assay
The cells were loaded in 96-well plate with 2 × 103 cells
per well with or without various concentration of anti-
body supplemented with 40 ng/ml of IGF-1 for 72 hours.
Human IgG isotype was added as negative control. The
medium was removed from each well and 10 μL of
CCK-8 solution was added to 100 μL medium in each
well for 1–4 hours’ incubation at 37°C. The absorbance
was measured at 450 nm on a Tecan Spectrophotometer
(Tecan SPECTRAFluor, Tecan, Männedorf, Switzerland).

Transwell assay
Cells were digested to a suspension with a density of 1 ×
104/ml. Cells were seeded into the transwell chamber
(Millipore, USA) which membrane was coated by a dilu-
tion of Matrigel (50 mg/L). The chamber was placed into
a 24 well culture plate, with 500 μl of DMEM medium
containing 10% serum added outside of the chamber, and
200 μl cell suspension were added in the chamber. After
3, 6, 9, 24 hours, the cells were stained and placed under
the fluorescence microscope for observation.

Agar clone formation assay
Preparation of agarose hydrogels: Agarose was pur-
chased from Sigma-Aldrich, St. Louis, USA. Hydrogel was
prepared by dissolving agarose (0.6%, 1.2% w/t) in aqueous
solvent at the temperature of 90°C. Once the temperature
of this solution is lowered to room temperature, gelation
will occur.
Cells were harvested using 0.25% trypsin. counted, and

then loaded in agarose scaffolds. Briefly, cells were sus-
pended in 0.6% agarose with the cell density of 1000
cells/1000 μL. The low agarose (2 × DMEM, 10% FBS,
1.2% agarose) molds were allowed to gelation at 4°C for
20 min, and then transferred to 6well culture plate, then
add the up agarose (2 × DMEM, 10% FBS, 0.6% agarose).
The plate was placed in incubator containing 5% CO2 at
37°C. As control, cell aggregates were cultured with the
same condition as that of experiment group. Culture
media were changed every 3 days. Assays were per-
formed at time points of 14 days.

Flow cytometry
Cells were collected and stained with appropriate PE
conjugated antibodies against membrane markers. For
each sample, data from approximately 15,000 cells were
analyzed using a BD-FACStar™ instrument. Data analysis
(the percentage and intensity of stained cells, etc.) was
performed on a FACS Calibur flow cytometer using the
BD CellQuest™ program.

Western blot
Cell monolayers were washed with cold PBS before they
were lysed in cell lysis buffer (20 mM Tris at pH 7.0, 1%
Triton-X 100, 0.5% NP-40, 250 mM NaCl, 3 mM EDTA,
3 mM EGTA, 2 mM DTT and protease inhibitor cock-
tail). Cell lysate supernatants were collected by 12000 × g
centrifugation for 15 minutes at 4C°. Total protein con-
centrations in these fractions were determined by BCA
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protein assay. The samples were electrophoretically sep-
arated on SDS-PAGE and transferred to NC membrane.
The membranes were blocked with 5% non-fat dry milk
dissolved in TBST (10 mM Tris HCl, 150 mM NaCl
containing 0.05% Tween 20, pH 7.4) for 1 hour before
probing overnight at 4°C with the appropriate primary
antibody (HER1, HER2, HER3, HER4, IGF-1R). In the
second day, after washed with TBST three times, the
membranes were incubated with HRP-conjugated sec-
ondary antibody for 1 hour at room temperature. Signals
were detected by X-ray Film following incubation with
ECL.
In antibody treating assay, cells were cultivated in

6-well plate and serum starved overnight. In the next
day, renew the culture with/without diluted Lmab1 at
the concentration of 0.8, 4, 20 μg/ml or 20 μg/ml of
trastuzumab for 4 hours.Then cells were stimulated with
20 ng/mL of IGF-I for 20 min. Then cells were collected
for western blot analysis.

Cell cycle
Cells were collected by digestion and prepared by fixation
in 75% ethanol overnight (at least 18 hours) at −20°C.
Then cells were stained with 50 μg/ml PI and 100 μg/ml
RNase A for 30 min at 37°C in the dark. Quantification of
the cell cycle distribution was done by flow cytometry
analysis.

Lentivirus systems for down-regulation of IGF-1R
The Lentivirus system was used to knock down IGvirusF-
1R expression. The RNAi delivery system was used to de-
liver shRNAs against IGF-1R as described previously [44].
SKOV3 cells were seeded in a 6-well plate (approximately

5 × 104 cells per well with 2 ml of growth medium). Growth
medium was replaced with 2 ml of lentiviral medium con-
taining 8 μg/ml of polybrene at final. After 24 hours,
medium was replaced with puromycin-containing growth
medium to select transduced cells.

In vivo carcinogenic and immunotherapy assays
Groups of 5-wk-old female BALB/c athymic, nu/nu
(nude) mice were inoculated on fat pad with 2 × 106/
0.1 ml SKOV3 or 1 × 106/0.1 ml SKOV3-T cells on day
0. Since day 7, mice bearing palpable tumors were ran-
domized into four groups with 6 mice per group (n = 6).
Then mice were observed twice a week about body
weight, survival rates and tumor volumes according to
the following equation: Tumor volume (mm3) =1/2 ×
(length) × (width)2. Pairwise differences between groups
were compared.
In in vivo immunetherapy assay, mice were inocu-

lated with 1 × 106/0.1 ml SKOV3-T cells. On day 7,
mice were treated i.v. once a week for four times with
5 mg/kg trastuzumab (group 2), 5 mg/kg Lmab1 (group 3),
2.5 mg/kg Lmab1 (group 4), 5 mg/kg trastuzumab plus
5 mg/kg Lmab1 (group 5), 5 mg/kg trastuzumab and
2.5 mg/kg Lmab1 (group 6), natural saline (N.S.) were set
as negative control (group 1).
Care, in animal assays, we followed the Guidelines for

the welfare and use of animals in cancer research. Use
and treatment of mice were in strict agreement with
international guidelines for the care and use of labora-
tory animals and approved by Animal Ethics Committee
of Institute of Basic Medical Sciences.

Results
Acquired trastuzumab-resistant SKOV3-T cells grow faster
than SKVO3
Human ovarian cancer SKOV3 cells, which over express
HER2, werecultured continuously for 8 months in the
presence of 10 μg/ml trastuzumab, resulting in the ac-
quisition of trastuzumab resistance in the surviving cell
population. Compared with the parental cells, the resist-
ant SKOV3 cells had a significant higher viability or pro-
liferative capacity in cell proliferation assay (Figure 1A)
in 96-well plate and cell counting assay (Figure 1B); mean-
while, SKOV3-Tdisplayeddramatically increased colony for-
mation on the agar cloning assay, for the clones were
obviously bigger and much more than SKOV3 (Figure 1C);
furthermore, in transwell assays, SKOV3-T exhibited stron-
ger migration capacity, for after 24 hours, about 626
SKOV3-T cells moved while only less than 100 SKOV3
cells moved across the well (Figure 1D); furthermore, in
in vivo carcinogenic assay, the mean volume of
SKOV3-T transplanted tumor was significantly larger
than SKOV3 (Figure 1E). These results suggest that
trastuzumab-resistant ovarian cancer cells SKOV3-T
growth much faster and migrate better than SKOV3,
suggesting stronger malignancy and metastasis charac-
ter of SKOV3-Tin vivo than non-resistant cells.

IGF-1R can promote the proliferation of SKOV3
According to our previous work, based on the mRNA
array analysis, IGF-1R up-regulation (Figure 2A) was
proved to play a key role in SKOV3-T proliferation
in vitro. To the opposite, the expression level of HER2
in SKOV3-T was dramatically lower than SKOV3by flow
cytometry method (Figure 2A).To further examine the
role of IGF-1R in ovarian cancer cells, IGF-1R-pCMV6
plasmid, a eukaryotic expression vector subcloned with
full IGF-1R exon sequence, was transfected into SKOV3
using lipofectamine 2000, generating a pool of IGF-1R-
positive SKOV3 cells (Figure 2B). As shown in Figure 2C,
the transfected cells had much higher viability or prolif-
erative capacity than SKOV3; meanwhile, they also dis-
played increased colony formation capacity (Figure 2D);
furthermore, according to the cell cycling assay, SKOV3-
IGF-1R cells (pool) has S-phase cells than SKOV3,



Figure 1 Acquired trastuzumab-resistant cell line SKOV3-T cells grow faster than SKOV3. SKOV3 cells were cultivated for 8 months in the
presence of 20 μg/ml trastuzumab continuously to obtain SKOV3-T cells. The comparison of SKOV3-T and parental SKOV3 cells by (A) cell proliferation,
(B) cell counting, (C) agar clone formation, (D) transwell, and (E) in vivo carcinogenic assays. In cell counting assays, cells were cultured in day 0 at the
start concentration of 1 × 104 per 24-well, and in day 1 to day 6, the cells were digested everyday and the whole cell number was counted. The
trastuzumab-resistant SKOV3-T seemed to have significantly enhanced cell growth/proliferation, clone formation, stronger invasion and migration
character both in vitro and in vivo versus non-resistant SKOV3 cells.
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suggesting much quicker cell multiplication rate of
SKOV3-IGF-1Rcells (Figure 2E); in in vivo tumor forma-
tion assay, IGF-1R positive cells exhibited more rapid
growth capacity than parental cells (Figure 2F), indicat-
ing thatIGF-1R can promote the proliferation of SKOV3.
All above demonstrated the importance of membrane
IGF-1R as well as its downstream cascade in retaining/
promoting the survival of SKOV3-T, especially when
HER2-related signal pathway was down-regulated.

IGF-1R knockdown by shRNA could inhibit the
proliferation of SKOV3-T
As shown above, IGF-1R could fasten the cell growth of
SKOV3, which was similar to the quick growth of
SKOV3-T. In order to further analyze the biofunction(s)
of IGF-1R in SKOV3-T cells, a lentivirus vector to knock
down IGF-1R was packed and transduced into SKOV3-
T cells, while cells transduced with virus CON054 were
set as negative control. As shown in Figure 3A, IGF-1R
expression was inhibited according to flow cytometry
and western blot analysis. Furtherly, cell proliferation
assay showed that SKOV3-T KD cells grow more slowly
than SKOV3-T (Figure 3B); similarly, the agar clone
formation capacity of SKOV3-T KD cells was weaker
(Figure 3C); meanwhile, in the cell cycling assay shown
in Figure 3D, SKOV3-T KD exhibited less S-phase cells
(28.84%) than SKOV3-T (31.23%), indicating thatIGF-
1R could affect the cell cycle, thus influence the cell



Figure 2 IGF-1R can promote the proliferation of SKOV3. (A) IGF-1R expression was up-regulated in SKOV3-T while HER2 was opposite by
flow cytometry analysis; (B) IGF-1R-positive SKOV3 cell preparation by eukaryotic transfection with pCMV6-IGF-1R plasmid. Cell proliferation (C)
and agar clone formation (D) assays both indicated the enhanced carcinogenic activity of IGF-1R-positive SKOV3 cells, while according to cell
cycle analysis (E), SKOV3-IGF1R owned more S-phase cells in order to multiply quicker; Similarly, in vivo tumor model (F) further displayed more
rapid tumor growth of SKOV3-IGF1R, indicating that IGF-1R can promote the cell survival and multiplication in ovarian cancer SKOV3 cells. To be
clear, in this figure, “SKOV3” sample means original pCMV6 transfected cells.
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proliferation of SKOV3-T. Further in vivo experiment also
displayed the importance of IGF-1R in SKOV3-T, for the
mean tumor volume of SKOV3-T was ~1257 mm3, while
SKOV3 KD was ~1115 mm3 (Figure 3E).

Anti-IGF-1R mAb (LMAb1) could inhibit the proliferation
of SKOV3-T
Since the trastuzumab resistant SKOV3-T cells have
higher IGF-1R level than parental SKOV3 cells, a novel
anti-IGF-1R mAb, named as LMAb1, was screened out
from a natural fully human phage library in our lab
(Chinese patent: 201410271608.8). Here, in SKOV3-T
cells, LMAb1 could inhibit cell proliferation, for in
10 μg/ml LMAb1 treated samples, cell survival rate
was ~75% contrasting to non-treated groups (Figure 4A);
meanwhile, the agar clone formation of SKOV3-T was
also inhibited by LMAb1. When the concentration of
antibody reached 50 μg/ml, the average clone number
was ~757 contrasting to ~1102 of SKOV3-T (Figure 4B);
furthermore, in transwell assay, the migration capacity
was inhibited on a dose dependent manner, for after
15 hours, about 300 SKOV3-T cells per well were



Figure 3 IGF-1R knockdown could inhibit the proliferation of SKOV3-T. (A) IGF-1R expression was knocked down in SKOV3-T cells using
lentivirus system and cells were analyzed by flow cytometry (up panel) and western blot (down panel) analysis; Cell proliferation (B) and clone
formation (C) analysis both indicated that in SKOV3 KD cells, the cell growth was inhibited, while according to cell cycle analysis (D), SKOV3-T KD
cells owned less S-phase cells in order to slower cell multiplification; In in vivo carcinogenic model, SKOV3-T KD exhibited slower tumor growth
rate contrasting to SKOV3-T (E), indicating that IGF-1R was important to SKVO3-T cells when HER2-related cascade was blocked. To be clear, in this
figure, “SKOV3-T” sample means control virus treated SKOV3-T cells.
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migrated, while less cells moved across the hole in anti-
body treated samples. Here, four different scales of each
sample were photographed and counted. Contrasting to
the control sample (the mean cell number of each scale
was about 30), the 100 μg/ml antibody treated sample
showed less than 10 migrated cells (Figure 4C); In
in vivo experiments, LMAb1 showed certain anti-tumor
capacity, especially in the groups treated with LMAb1
combined with trastuzumab. In contrast to the SKOV3-T
group with the mean tumor volume of ~1161 mm3 and
the trastuzumab treated group (~1123 mm3), the groups
administrated with LMAb1, whether alone or plus trastu-
zumab, has the mean tumor volume of 600 ~ 700 mm3

(Figure 4D). More interestingly, the mean survival time of
LMAb1 plus trastuzumab treated mice was much longer.
As shown in Figure 4E, in week 8, about half of LMAb1



Figure 4 LMAb1could inhibit the proliferation of SKOV3-T. (A) LMAb1 could inhibit cell proliferation of SKOV3-T at a dose dependent manner.
Similarly, the character of clone formation (B) and invasion/migration identified by transwell assay (C) could also be inhibited by LMAb1 in resistant
SKOV3-T cells; (D & E) in vivo immunotherapy of LMAb1 combined with/without trastuzumab to SKOV3-T xenograft model in nude mice. D: mean
tumor volume and E: overall survival rate; (F) LMAb1 could inhibit IGF-1R signal pathway transduction, for it could inhibit the MAPK and AKT activation
stimulated by IGF-1. Presumably, for IGF-1R was dramatically up-regulated in acquired trastuzumab-resistant SKOV3-T cells, specific anti-IGF-1R antibody
(LMAb1) could block the IGF-1R-driven signal cascade in order to help slower cell growth, reduce clone formation, shorten S-phase, and inhibit
invasion and migration of cells.
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plus trastuzumab treated mice survived, while there was
only one or fewer mice was still alive in other groups. For
the IGF-1R is essentially expressed by most organs and
tissues, therefore anti-IGF-1R antibody such as LMAb1
might have side-effects, which may influence the survival
rate of mice as well as the anti-tumor effects. According
to the cell signaling assays shown in Figure 4F, LMAb1
could block the IGF-1 induced activation of pERK, pAKT
and pIGF-1R along with the increase concentration of
LMAb1, indicating that inhibition of PI3K-AKT as well as
MAPK cascade might be one of the anti-tumor mecha-
nisms of anti-IGF-1R antibody LMAb1.
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Discussion
There are more and more antibody resistance clinical
cases, while many patients with cancer do not respond
to antibody treatment (de novo resistance). More and
more patients who receive antibody treatment have the
problem of the relapse and antibody resistance (acquired
resistance). Some acquired antibody resistant cases showed
low recurrence-free survival, cancer-related survival, and/
or overall survival (OS), and high risk of local and distant
recurrence.
Type I insulin-like growth factor receptor (IGF-1R)

has been founded for decades for its role in growth and
tumorigenesis [45]. Not until recently had advances in
medicinal chemistry and biotechnology provided the
tools for targeting the insulin-like growth factor (IGF)
pathway in patients. IGF-1R belongs to the insulin re-
ceptor (IR) family that includes the IR, IGF-1R, IGF-1R/
IR, and the mannose 6-phosphate receptor (also known as
IGF-2R). IGF-1R can be activated by the ligands insulin-
like growth factor-1 (IGF-1) or insulin-like growth factor-
2 (IGF-2). Intracellular signaling of IGF-1R is mediated
through IR substrates and Src-homology collagen protein
(Shc) [46], which leads to activation of the mitogen-
activated protein kinase (MAPK) pathway and the PI3K-
AKT pathway [47]. IGF-1R is ubiquitously expressed in
normal tissues and plays an important role in growth and
various physiological functions, including those involving
the cardiac and neurological systems, as well as glucose
homeostasis. The influence on glucose probably occurs
through feedback down-regulation of HGH by circulating
IGF-1 and the local effect of IGF-1 on IGF-1R in the mus-
cles or kidneys to promote glucose uptake [48,49].
Extensive in vitro and in vivo studies have implicated

IGF-1R, IGF-1, and IGF-2 signaling in cancer develop-
ment, progression, and maintenance. IGF-1R expression
is critical for anchorage-independent growth, a well
identified property of cancer cells. IGF-1 and IGF-2 are
strong mitogens in a variety of cancer cell lines, includ-
ing breast cancer [50-53], colon cancer [54,55], prostate
cancer [56], and myeloma [57]. High circulating levels of
IGF-1 have been associated with increased risk of pros-
tate, breast, and colon cancers [45]. The IGF/IGF-1R
pathway have been shown to have extensive cross-talk
with the epidermal growth factor receptor (EGFR), es-
trogen receptor (ER) and human epidermal growth fac-
tor receptor 2 (HER2) signaling pathways and to play an
important role in the resistance mechanisms of EGFR/
HER2-targeted agents and cytotoxic drugs [58]. Recent
work also indicated a potential role for IGF-1R in the re-
sistance to RAF-MEK inhibitors [59] and mTOR inhibi-
tors [60], however, there were rare report to show the
importance of IGF-1R in antibody-resistant cases. IGF-1R
can be founded in most solid tumors and hematological
malignancies examined to date, and IGF-2 overexpression,
IGFBP modulations, and IGF-2R down-regulation have
also been founded in cancer cells [46,61,62]. Nevertheless,
unlike other growth factor receptors such as EGFR and
HER-2, activating mutations of the IGF-1R gene have not
been reported, and gene amplification is rare in the
tumors that have been tested [63]. On the other hand, sev-
eral genetic abnormalities can lead indirectly to IGF/IGF-
1R overexpression and signaling. Some tumors, including
hepatocellular carcinoma and breast cancer, have been as-
sociated with loss of heterozygosity of the IGF2R gene
[64]. Loss of imprinting of IGF-2, first described in Wilms
tumor, has since been identified in adult tumors and is as-
sociated with an increased risk of colon cancer [65,66].
These genetic changes may increase IGF-2 production or
its bioavailability for IGF-1R signaling.
At least seven human or humanized anti–IGF-1R mAbs

entered clinical trials: Cixutumumab [67-69], Figitumumab
[70-74], Dalotuzumab [75-77], Ganitumab [78-81], R1507
[82], SCH. 717454 [83], AVE1642 [84,85] and BIIB022 [86],
etc.. Common mechanisms of antibody action include
blockade of the receptor from ligand binding and internal-
ization/degradation of IGF-1R [87]. In addition, anti-IGF1R
mAbs also down-regulate the IGF-1R/IR hybrid receptor
[88]. Common treatment have emerged adverse events
that include hyperglycemia.
IGF-1R signaling has been causally linked to de novo or

acquired resistance to trastuzumab and EGFR-targeting
agents in a lot of models. In vitro and in vivo tumor models
have also demonstrated direct interactions between IGF-
1R, EGFR/HER-2 [61,85-88], and co-localization of IGF-1R
and HER-2. Treatment of resistant cells with IGF-1R inhib-
itors was shown to inhibit transactivation of HER2 and re-
store sensitivity to trastuzumab [89].
Our previous study reported the trastuzumab-resistant

ovarian cancer cells, SKOV3-T, with lower HER2 and
higher IGF-1R and HER3 expression level than parent
SKOV3 cells. The two new biomarkers were suggested
to be important in maintaining the cell growth [43]. Ac-
cording to our work, in SKOV3-T cells, epitope escaping
might exist during long-term treatment with trastuzu-
mab, which was possibly the main reason why SKOV3-T
possessed resistant capacity to trastuzumab. When full
length of HER2 gene was transfected into SKOV3-T, the
sensitivity to trastuzumab could be recovered (data not
shown); meanwhile, the IGF-1R expression level was up-
regulated in SKOV3-T cells, which should be important
to keep cell survival at the absence of HER2 (Figure 1).
Here, we identified the role of IGF-1R in cell growth/
proliferation, migration, cell cycling, clone formation,
and in vivo carcinogenic character (Figures 2 and 3);
Based on the data above, we prepared an IGF-1R mAb
called LMAb1 to treat SKOV3-T. LMAb1 showed cura-
tive effect against the resistant cells; In vivo assays
showed its effective anti-tumor function, especially when
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being used in combination with trastuzumab, which was
beneficial to higher survival rate of mice as well as
smaller tumor. It was inferred that trastuzumab might
ease the side-effect of LMAb1 in vivo with unknown
reason, for mice treated with LMAb1 only didn’t con-
tribute to obvious longer survival time, although the
tumor volume was indeed smaller than control group(s);
besides, we also evidenced preliminarily that the mech-
anism of antibody included the inhibition of IGF-1R and
downstream MAPK, AKT pathway activation (Figure 4).
Similarly, we also use LMAb1 to treat MCF-7 cells, an
IGF-1R-positive breast cancer cell line, which showed
satisfactory anti-tumor activity by flow cytometry, cell
proliferation and transwell in vitro (data not show).

Conclusion
In conclusion, we achieved satisfactory anti-tumor activity
with combination therapy strategy, e.g. trastuzumab plus
anti-IGF-1R mAb (LMAb1), in trastuzumab-resistant
ovarian cancer model. According to our work, it should
be inferred that in similar cases with resistance to a single
antibody drug, not only acquired but also de novo, com-
bination therapeutic strategies might achieve better cura-
tive effect.
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