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Abstract

Background: Recent advances in high-throughput technology and the emergence of large-scale genomic datasets
have enabled detection of genomic features that affect clinical outcomes. Although many previous computational
studies have analysed the effect of each single gene or the additive effects of multiple genes on the clinical
outcome, less attention has been devoted to the identification of gene-gene interactions of general type that are
associated with the clinical outcome. Moreover, the integration of information from multiple molecular profiles
adds another challenge to this problem. Recently, network-based approaches have gained huge popularity. However,
previous network construction methods have been more concerned with the relationship between features only,
rather than the effect of feature interactions on clinical outcome.

Methods: We propose a mutual information-based integrative network analysis framework (MINA) that identifies gene
pairs associated with clinical outcome and systematically analyses the resulting networks over multiple genomic
profiles. We implement an efficient non-parametric testing scheme that ensures the significance of detected gene
interactions. We develop a tool named MINA that automates the proposed analysis scheme of identifying outcome-
associated gene interactions and generating various networks from those interacting pairs for downstream analysis.

Results: We demonstrate the proposed framework using real data from ovarian cancer patients in The Cancer Genome
Atlas (TCGA). Statistically significant gene pairs associated with survival were identified from multiple genomic profiles,
which include many individual genes that have weak or no effect on survival. Moreover, we also show that integrated
networks, constructed by merging networks from multiple genomic profiles, demonstrate better topological properties
and biological significance than individual networks.

Conclusions: We have developed a simple but powerful analysis tool that is able to detect gene-gene interactions
associated with clinical outcome on multiple genomic profiles. By being network-based, our approach provides a better
insight into the underlying gene-gene interaction mechanisms that affect the clinical outcome of cancer patients.
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Background
Through the development of high-throughput sequen-
cing technology and collaborative projects such as The
Cancer Genome Atlas (TCGA), the integrative analysis
of clinical data and genomic data at different molecular
levels has emerged as a prominent tool for improving
our understanding of the biological mechanisms under-
lying cancer. Many computational attempts have been
made to identify molecular abnormalities that affect clin-
ical outcomes and therapeutic targets, by integrating
multiple genomic profiles and clinical data [1–15]. In
particular, the association between various genomic fea-
tures and the clinical outcome of cancer patients has
been studied extensively. Previous studies have often fo-
cused on the association between each single gene and
clinical outcomes [16–19], and have not been able to de-
tect the combined effects of multiple genomic features.
Other approaches are based on regression models that
can describe the effects of multiple features. For ex-
ample, the cox regression or sparse regression frame-
work, like elastic net analysis, is effective in finding gene
expression signatures associated with the overall survival
of cancer patients [20]. However, these methods are lim-
ited to detection of the additive effect of multiple fea-
tures on clinical outcome, and do not translate well for
more general types of interaction effects.
More recently, network information either between pa-

tients or between genes has been shown to significantly
improve the accuracy of predicting clinical outcomes, such
as survival in cancer patients. Kim et al., developed an inte-
grated framework by graph-based semi supervised learn-
ing, to handle multi-level genomic data for the prediction
of clinical outcomes in ovarian serous cystadenocarcinoma
[10]. The similarity network between patients is first con-
structed by using genomic feature values, and then the net-
work information is utilized in learning the clinical label of
new patients. Cox-regression for predicting cancer patient
survival has also been successfully extended to incorporate
the network structure among genes [21]. However, many
of the existing networks used for such analyses are con-
structed either by a simple correlation approach between
features, or taken from the existing knowledge base, such
as protein-protein interaction networks. Neither type of
network contains information about the effect of gene in-
teractions on clinical outcomes, from a given dataset. In al-
ternative ways, there were studies to consider effect of
clinical outcomes of constructed networks. Vandin et al.
proposed mutated sub-networks associated clinical out-
come with HotNet algorithm [22, 23], Pauling et al. pro-
posed network integration method with hybrid network
construction and differential network mapping for condi-
tion specific key pathways [24]. However, these studies fo-
cused only interaction or association between single gene
and clinical outcomes.
In terms of genomic features, gene signatures based
on mRNA expression have been most widely investi-
gated to date, while other features such as Copy-
Number Alteration (CNA), miRNA, or methylation
levels, are gaining more attention recently. For example,
Gorringe et al., tried to identify genomic loci interactions
of CNA in samples from ovarian cancer patients, al-
though found no association with survivability [25].
In this paper, we propose a new integrative framework

to identify interacting gene pairs that affect the clinical
outcome of cancer patients. Our approach of Mutual
information-based Integrative Network Analysis (MINA)
allows systematic investigation of gene-gene interactions
associated with clinical outcome, via gene network con-
struction and analysis. Unlike many existing models,
which consider the effects of each single gene or mul-
tiple but additive interaction effects on clinical outcome,
the proposed method focuses on identifying the gene-
gene interaction effect of any type on clinical outcome.
By building a gene interaction network, we obtain a glo-
bal view of the gene interaction landscape that is associ-
ated with the clinical outcome of patients. To gain
better insight into the gene interactions that affect clin-
ical outcome, we utilized available genomic profiles
across different molecular levels. We find that the result-
ing integrated network has a greatly enhanced level of
scale-freeness and biological significance than each net-
work based on a single genomic profile.
Our method is different from many previous computa-

tional network analysis schemes in that an edge between
genes in our network directly implies the interactive ef-
fect of a pair of genes on clinical outcome. For instance,
Languino et al. constructed a correlation gene network
from data for the NCI-human tumor cell lines [26].
Hong et al. proposed integrative network construction
scheme from two independent dataset of ovarian cancer
patients [27]. Network-based stratification, which was
proposed by Hofree et al. uses mapping scheme from
public databases to construct gene-gene interaction net-
work [28]. However, all of those proposed methods con-
structed networks using information in features only
and there was no consideration of the clinical outcome
during the network construction. Thus, edges in the
networks only represent the strength of interaction be-
tween two genes without difference of the outcomes in
samples. On the other hand, we proposed an outcome-
guided mutual information network in which edges re-
flect both the interaction effect and difference in the
clinical outcome of the given samples. Moreover, the
outcome-guided network could improve the survivabil-
ity prediction performance of the network-based Cox-
regression in comparison with traditional networks
such as a correlation network or static protein-protein
interaction network [29].
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Instead of relying on parametric tests, which may suf-
fer from a large number of pairwise tests and multiple
testing issues, we use an information-theoretic measure
of mutual information and a non-parametric approach
to extract significant interactions among genes. Mutual
information has been widely used as an association
measure in the context of genome-wide association
studies for detecting epistasis, but rarely in the associ-
ation between general genomic features and clinical out-
comes. It has the advantages of being flexible and easily
applied to both discrete and continuous variables. We
implemented an efficient non-parametric testing scheme
based on permutation, for measuring the statistical sig-
nificance of detected interactions.
Here, we apply the proposed method to TCGA data

from ovarian cancer patients. Ovarian cancer is a fatal
gynecological cancer that is the leading cause of genital
system cancer death and fifth-most common fatal cancer
among women in the United States [30]. The cancer
shows a high recurrence and poor survival rate [31],
which cannot be addressed by standard treatment. In
this study we detected novel strong pair-wise interac-
tions associated with survival in ovarian cancer, includ-
ing many genes with little marginal effect. We also
present the topological properties and biological signifi-
cance of networks constructed from multiple genomic
profiles.

Methods
Mutual information for identifying gene-gene interactions
associated with clinical outcome
Using genomic profile data, we identify genomic interac-
tions that are associated with clinical outcome, by utiliz-
ing an information-theoretic measure of mutual
information [32]. It has been used successfully to detect
linear or non-linear association between two random
variables [33–36]. In most previous studies for detecting
interactions based on mutual information, it has been
used as a measure of association between a pair of genes
[34, 33]. In other words, focus was on interactions or
correlations between genes. We take a different ap-
proach by using mutual information to assess the
strength of association between a pair of genes and the
clinical outcome of given samples. Below, we include a
brief description of mutual information and how we
modify it to capture genomic interactions associated
with clinical outcome.
Entropy of a discrete random variable X is defined as

H Xð Þ ¼ −
X

x∈X
p xð Þ log2p xð Þ;

and joint entropy of two random variables X and Y is de-
fined as
H X;Yð Þ ¼ −
X
x∈X

X
y∈Y

p x; yð Þ log2p x; yð Þ:

Mutual information of two random variables X and Y
is defined as

I X ;Yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ:
In order to measure the strength of association between

a pair of genes and clinical outcome, we use the extended
version of mutual information, which is as follows:

I X1;X2 ;Yð Þ ¼ H X1;X2ð Þ þ H Yð Þ−H X1;X2;Yð Þ:
Here, X1 and X2 denote random variables for two

genes, and Ydenotes random variables for the clinical
outcome of patients.
When a random variable is discrete, its probability dis-

tribution can be easily approximated by the frequency of
each possible value. If a genomic profile consists of con-
tinuous valued features, then it is not straightforward to
calculate mutual information directly, because the re-
spective probability distribution for the continuous vari-
able is unknown by given values [37]. To address this,
we use the histogram-based technique [34] to discretize
continuous values. This technique divides the range of a
set of continuous values into equal-sized bins. The binning
interval of an i-th gene in a genomic profile is determined

as Max V ið Þ−Min V ið Þ
B , where B denotes the number of bins and

Vi is a continuous-valued vector for the gene in the profile.
The size of the vector is the number of samples in the pro-
file. As the result of discretization, a continuous expres-
sion value from a profile goes into one of the B bins.
We also discretize the clinical outcome variable as bin-

ary and divide patients into two groups based on sur-
vival months. As in previous studies dealing with
binarized clinical information [14, 38], we define the
short-term and long-term groups as the patients that
survived less than or equal to 36 months, or more than
36 months, respectively.
Discretization of a genomic profile induces a partition

on the set of samples. Then entropy of a random variable
X can be defined in terms of the partition as follows:

H Xð Þ ¼ −
Xn
i¼1

Aij j
Sj j log2

Aij j
Sj j ;

where X = {A1, A2,…, An} is a partition on the set of sam-
ples S, i.e. S =A1 ∪A2 ∪⋯∪An and Ai ∩Aj =∅ for distinct
i and j. Joint entropy of two partitions X = {A1, A2,…, An}
and Y = {B1, B2,…, Bm} can also be defined as follows:

H X;Yð Þ ¼ −
Xn
i¼1

Xm
j¼1

Ai∩Bj

�� ��
Sj j log2

Ai∩Bj

�� ��
Sj j :
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It can be naturally extended to joint entropy of any
number of multiple partitions.

Extraction of outcome-associated gene-gene interactions
by permutation test
Since the exact probability distribution of mutual infor-
mation computed on a dataset is generally unknown, the
p-value for the significance of a computed mutual infor-
mation value is not directly available. Instead of using an
approximate scheme such as chi-square distribution ap-
proximation [39], we use a non-parametric approach
based on the permutation strategy in [34] and derive a
threshold for the mutual information value. Specifically,
clinical outcome labels (short-term vs. long term) are
randomly permuted and the mutual information values
with respect to the permuted labels are calculated for
every pair of genes. We repeat this 30 times and com-
pute the average mutual information across 30 runs by

Iavg i; jð Þ ¼ 1
30

X30

p¼1
Iavg gi; gj; ;Yp

� �
for each pair of genes

gi and gj, and Yp for the permuted clinical outcome labels
at p-th run.
The threshold θ is determined as the maximum of aver-

age mutual information values, i.e., θ =maxi ≠ jIavg(i, j). The
pairs of genes having mutual information above this
threshold with respect to the original clinical outcome la-
bels are considered as associated with the clinical outcome
and included for further analysis.

Construction of integrative gene networks
We compute the mutual information for every pair of
genes and clinical outcome by using each genomic pro-
file separately and obtain those interactions that are as-
sociated with clinical outcome by the proposed method.
This results in an outcome-guided mutual information
gene network in which two genes are connected if their
combination is associated with clinical outcome. We de-
noted a network for each profile as follows:

Gprofile
α ¼ gi; gj

� �
jgi; gj∈P and I gi; gj;Y

� �
≥θ 1þ αð Þ

n o

where gi and gj are two genes in the set of all genes P, θ
is the threshold from the permutation strategy, and α is
the parameter for adjusting the statistical significance
level. We constructed gene networks by applying the
proposed method to each of the mRNA expression,
CNA, and methylation profiles, which we denoted as
Gα

mRNA, Gα
CNA , and Gα

METH.
To enhance our view on the gene interaction associ-

ated with clinical outcome across multiple genomic pro-
files, we can further construct an integrated network by
merging the three networks. As a pilot study, two types
of integrated networks are considered: I∃ =GmRNA ∪
GCNA ∪GMETH (integrated network with one-or-more
occurrence of association across profiles) and I∀ =
GmRNA ∩GCNA ∩GMETH (integrated network with co-
occurrence of associations in every profile) to figure out
the overall characteristic and relation of different gen-
omic profiles. Integrated network I∃ is a union-set of as-
sociations which exists at least in one of the genomic
profiles. In contrast, an edge for an association between
two genes in I∀ must be in every given single profile
networks.

Survival analysis of identified gene pairs
Once we obtain pair-wise gene features associated with
the clinical outcome, we perform the following survival
analysis to validate the result. For a given pair of genes,
the patients are stratified into two groups based on the
feature value combination of the selected genes, as in
the grouping method of Multifactor-Dimensionality Re-
duction (MDR) [40, 41]. We first set a threshold ρ as the
ratio of the number of short-term survival patients to
the total number of patients in a given dataset, which
was 146/340 in our study. For each possible combination
of feature values at the gene pair, we identify patients
with the feature combination and examine the ratio of
the number of short-term survival patients to the total
number of patients among the extracted ones. Each
combination of gene feature values is considered as
high-risk if the ratio from the combination is above the
threshold ρ, and otherwise, as low-risk. This stratifies
the patients into two groups of high-risk and low-risk,
based on the values of gene pairs. We then apply the
log-rank test to assess the significance of the difference
in survivability by the gene pair. This is performed on
the identified gene pairs as well as on each gene for
comparison.

Network analysis
We analyzed the constructed gene networks in terms of
the network topologies and then in terms of the bio-
logical functionality through functional enrichment test.
As many previous studies have revealed the scale-
freeness of gene networks [42, 2, 43–46], we examined
the scale-freeness of the constructed gene networks
along with other topological properties at each signifi-
cance level. In a scale-free network, the distribution p(k)
of the node degrees follows a power law p(k) ~ k− γ,
where p(k) is the frequency of the node whose degree is
k. To measure scale-freeness of a network, Zhang and
Horvath [45] proposed to use the coefficient of deter-
mination R2, which is the model-fitting index of the lin-
ear model that regresses log p(k) on log k. If R2 is close
to 1.0, the network is considered scale-free. For a net-
work constructed from each genomic profile and for
each significance level with varying parameter values of
α = 0.0, 0.1, 0.5, 0.8, and 1.0, we measured the number of
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nodes, the number of edges, the number of connected
components, the size of the largest component, and the
measure of scale-freeness R2.
We performed enrichment analysis on the obtained net-

works to assess common or related biological functional-
ities of the genes belonging to the same connected
component of the network. We ran gene ontology (GO)
[47] enrichment analysis for the network in Cytoscape [48]
with Biological Network Gene Ontology tool (BINGO)
[49]. We used Ontology and annotation data in (http://
www.geneontology.org/). We ran those analysis for the co-
occurrence network, the one-or-more occurrence network,
and each of the three networks constructed by using each
profile separately.

MINA: mutual information based network analysis
framework
We developed a tool named MINA that automates the
process of identifying significant gene interactions asso-
ciated with clinical outcome and of generating various
Fig. 1 Illustration of MINA
networks from those pairs. Figure 1 illustrates the overall
process performed inside MINA. Genomic profiles, clin-
ical outcomes, and the model parameters (B, C, and α)
are used as the input. MINA then transforms continuous
feature values that may exist in some genomic profiles
(e.g., mRNA expression or methylation) and clinical out-
come to discrete value based on the parameters B (the
number of bins) and C (threshold for survival months)
and calculate mutual information value for every pos-
sible pair of genes. This tool then outputs significant
pairs of genes for a given genomic profile and the result-
ing networks.
MINA is written in C++ and runs on operating system

based on UNIX. We also used OpenMP (Open Multi-
Processing) (http://www.openmp.org), a parallel process-
ing library, to hasten the overall process. For the TCGA
dataset, it took about 2 to 3 h to run the entire process
in a common desktop computer. The source codes for
MINA are publically available at https://github.com/
hhjeong/MINA.

http://www.geneontology.org/
http://www.geneontology.org/
http://www.openmp.org
https://github.com/hhjeong/MINA
https://github.com/hhjeong/MINA
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Results
Ethics statements
All data related to human subjects used for this study is
de-identified and publicly available from The Cancer
Genome Atlas project (http://cancergenome.nih.gov/).
Therefore, this research is not classified as a human sub-
ject research and no Institutional Review Board approval
is required.

TCGA data and pre-processing
We used genomic and clinical profiles of patients with
ovarian serous cystadenocarcinoma from TCGA to dem-
onstrate our proposed method. The genomic profiles in-
cluded mRNA expression (mRNA), copy number
alteration (CNA), and methylation (METH). We initially
focused on the genomic features of 20,642 genes in the
protein-coding region of 575 patients. The clinical infor-
mation for the patients was also extracted. All datasets
were downloaded from cBioPortal [50, 51] (http://
www.cbioportal.org) that provides convenient data ac-
quisition tools for TCGA data. Table 1 summarizes plat-
forms and data types used in our study. We further pre-
processed the datasets to filter out genes or patients and
to discretize the data as described below.
We applied a two-step procedure to filter genes and

patients. In the first step, the following three filters were
applied sequentially. First, each gene with missing values
across the patient group was removed from all genomic
profiles. Then, each patient with all missing values for
the remaining genes was removed from all profiles. Fi-
nally, each gene with a missing value in at least one of
the three profiles on the remaining patients was re-
moved. Thus, we had 10,022 protein-coding genes in
common across the three profiles of mRNA expression,
DNA methylation, and copy number alteration.
As our analysis employed clinical information as a bin-

ary outcome of short-term versus long-term survival, in
the second filtering step, we further excluded patients
whose label assignments were ambiguous from the ana-
lysis. That is, the patients with no survival status or
with a survival status as living and observed survival
time of <36 months were filtered out in the second
step. As a result, we had 146 patients in the short-term
group and 194 patients in the long-term group.
The copy number alteration profile had discrete valued

features with five values of −2, −1, 0, 1, and 2, and there-
fore, we directly used this representation from GISTIC
Table 1 Summary of datasets used in this study

Genomic profile Platform Data type

mRNA Agilent microarray Continuous

CNA Affymetrix SNP 6 Discrete

methylation Illumina Infinium HumanMethylation27 Continuous
[52] to compute mutual information. We discretize
mRNA expression and DNA methylation profiles as de-
scribed before with the parameter for the number of
bins B = 5 to be consistent with CNA profile.

Distribution of mutual information on each genomic
profile
We calculated mutual information values using the ori-
ginal and permuted clinical outcome labels of patients,
for every pair of genes on each genomic profile in TCGA
datasets. Figure 2 shows the empirical distribution of
mutual information computed on each real profile
(mRNA, CNA, METH) used in this study. The solid
lines are with respect to the original clinical outcome la-
bels, and the dotted lines are with respect to the per-
muted labels averaged over 30 runs. The results from
the permuted labels could not create mutual information
above 0.0763, 0.0664, and 0.0782 on mRNA, CNA, and
methylation profiles, respectively. Therefore, we set
these numbers as threshold mutual information θ for
each profile separately. A pair of genes with mutual in-
formation above this threshold was considered to be as-
sociated with clinical outcome.
Gene interactions associated with clinical outcome

occur more typically with respect to mRNA expression
or copy number alteration levels, but less so with respect
to methylation levels. The mRNA expression profile pro-
duced the highest number of gene pairs (2,562,178). The
CNA profile was second with 2,472,048 pairs, and the
methylation profile had far fewer interactions with
554,048 gene pairs (Table 2). This corresponds to about
1–5 % of all pairs of genes (i.e., out of 5 × 107 pairs).
When we increase the significance level by setting the
threshold as θ × (1 + α) and varying α = 0.0, 0.1, 0.5, 0.8
and 1.0, the number of remaining edges (or gene pairs)
becomes substantially less. For example, when α = 0.5,
the numbers of gene pairs are 20,219, 23,143, and 3,641,
for mRNA expression, CNA, and methylation profiles,
respectively. The overall result is summarized in Table 2.

Survival analysis of selected pair-wise genes
We validated the significance of identified gene inter-
action effects on clinical outcome by applying the sur-
vival analysis described in Methods. Table 3 shows the
results of the log-rank test applied to the top 10 gene
pairs from each genomic profile. All of the top 10 gene
pairs induced a significant difference in survival, with p-
values ranging from 1.67 × 10− 3 to 5.08 × 10− 7 across
different profiles. In Fig. 3, the Kaplan-Meier survival
curve of the gene pair that has the highest mutual infor-
mation is shown for each profile, along with the ones de-
rived by each single gene. The top pair of genes from
the mRNA expression profile was MYO3A, a previously
identified cancer gene [53] and SWI5, a recombination

http://cancergenome.nih.gov/
http://www.cbioportal.org
http://www.cbioportal.org


Fig. 2 Empirical distribution of mutual information values. We show the distribution of mutual information values computed for every pair of
genes in each profile of mRNA expression (red), CNA (blue) and methylation (yellow). The solid lines correspond to the values with respect to the
original clinical outcome labels, and the dotted lines are with respect to the permuted labels averaged over 30 permutations
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repair homolog. The p-value from the log-rank test for
survival difference according to the gene pair was 6.62 ×
10− 5, while each single gene produced p-values of 0.02
(MYO3A) and 0.4 (SWI5). In the case of the CNA pro-
file, the top pair was from SNRPB2 and WSB2, both
cancer genes documented in COSMIC [54], with a p-
value of 1 .21 × 10− 4, whereas the p-value based on each
gene separately was 0.08 and 0.3, respectively.
For more comprehensive analysis, we ran the survival

analysis for all the extracted gene pairs obtained from
four different significance levels of α = 0.0, 0.5, 0.8 and 1.0.
Table 2 Threshold mutual information on each genomic profile

Genomic
profile

Threshold No. of gene
pairs above
threshold

Percentage

α θ (1 + α)

mRNA 0.0 0.0763 2,562,178 5.10 %

0.1 0.0839 1,125,398 2.24 %

0.5 0.1145 20,219 0.04 %

0.8 0.1373 555 <0.001 %

1.0 0.1526 45 <0.001 %

CNA 0.0 0.0664 2,472,048 4.92 %

0.1 0.0730 1,090,500 2.17 %

0.5 0.0996 23,143 0.05 %

0.8 0.1195 526 <0.001 %

1.0 0.1328 17 <0.001 %

METH 0.0 0.0782 554,048 1.10 %

0.1 0.0860 221,680 0.44 %

0.5 0.1173 3,641 0.01 %

0.8 0.1407 115 <0.001 %

1.0 0.1564 8 <0.001 %

Total 50,215,231 100.00 %
The distribution of the resulting p-value is shown in
Fig. 4 as a box plot. For comparison, we also included
the box plots for p-values for each single gene in the
identified gene pairs. Overall, the association significance
was substantially stronger in the case of gene pairs than
in single genes, across different profiles and parameter
settings. This means that there are many genes having
weak or no effects, but a strong interaction effect on
clinical outcome. Moreover, at each parameter α, the
most significant p-value becomes much larger, that is,
−log(p-value) becomes much smaller when we consider
the single genes separately, in the case of mRNA and
CNA profiles. The methylation profile behaved differ-
ently in that the top p-value at α = 0.0 was very similar
in both the pairwise and single analyses. It appears that
the gene-gene interaction at the methylation level is not
as prominent as in other profiles, and the top interaction
effects are largely based on the marginal effects of single
genes.

Outcome-guided mutual information gene networks
We constructed outcome-guided mutual information
gene networks by considering genes as nodes, and con-
necting two gene nodes if their combination was signifi-
cantly associated with clinical outcome. For a network
constructed from each genomic profile and also for each
significance level with varying parameter values of α =
0.0, 0.1, 0.5, 0.8, and 1.0, we measured the number of
nodes, the number of edges, the number of connected
components, the size of the largest component, and the
measure of scale-freeness R2 (Table 4).
Overall, networks based on mRNA expression and

CNA profiles tended to have a larger value of R2 as α in-
creases, with the maximum at α = 0.8. The networks
based on the methylation profile tended to have smaller



Table 3 Top 10 gene pairs for each genomic profile

Genomic profile Gene pair Chromosome Mutual information p-value

mRNA MYO3A SWI5 10p11.1 9q34.13 0.1753 6.62E-05

CYTH3 ZC3H14 7p22.1 14q31.3 0.1710 8.70E-08

ARHGDIA DNMBP 17q25.3 10q24.31 0.1688 1.81E-05

AK1 THBS1 9q34.1 15q15 0.1670 3.82E-07

MCM3 PCDHB5 6p12 5q31 0.1645 1.20E-05

CRYAB TTPAL 11q22.3-q23.1 20q13.12 0.1627 1.57E-07

CYP39A1 NUAK1 6p21.1-p11.2 12q23.3 0.1627 2.01E-08

CMBL KRT23 5p15.2 17q21.2 0.1624 1.67E-03

CYTH3 FBXW8 7p22.1 12q24.23 0.1616 4.66E-06

CYTH3 IDE 7p22.1 10q23-q25 0.1605 4.16E-08

CNA SNRPB2 WSB2 20p12.1 12q24.23 0.1432 1.21E-04

KIF16B WSB2 20p11.23 12q24.23 0.1411 1.52E-04

SNRPB2 TAOK3 20p12.1 12q 0.1377 1.70E-04

SNRPB2 TESC 20p12.1 12q24.22 0.1372 1.22E-04

PEBP1 SNRPB2 12q24 20p12.1 0.1370 1.70E-04

NOS1 SNRPB2 12q24.22 20p12.1 0.1367 1.22E-04

KIF16B TAOK3 20p11.23 12q 0.1355 2.13E-04

KIF16B TESC 20p11.23 12q24.22 0.1352 1.53E-04

KIF16B PEBP1 20p11.23 12q24 0.1349 2.13E-04

FBXW8 SNRPB2 12q24.23 20p12.1 0.1348 1.87E-04

METH F2RL3 SLC7A11 19p12 4q28-q32 0.1670 1.14E-04

CCM2L TMEM129 20q11.21 4p16.3 0.1618 2.60E-04

CAND1 YTHDC1 12q14 4q13.3 0.1598 5.86E-04

ENSA PTHLH 1q21.3 12p12.1-p11.2 0.1584 2.59E-06

CDH8 DYRK2 16q22.1 12q15 0.1582 5.08E-11

FOXL1 NRTN 16q24 19p13.3 0.1575 1.55E-07

FOLR2 TMEM129 11q13.3-q14.1 4p16.3 0.1570 1.04E-05

SYT8 ZBTB1 11p15.5 14q23.3 0.1566 1.91E-04

IL23A ZBTB1 12q13.13 14q23.3 0.1559 3.62E-06

MFAP4 ZBTB1 17p11.2 14q23.3 0.1557 3.51E-05
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R2 when we increased α. We then examined the I∀ and
I∃ at each setting. The number of gene interactions
appearing across all three profiles was relatively small.
For example, at α = 0.1, the number of edges in I∀ was
only 95, while the one-or-more occurrence network (I∃)
at the same significance level had more than 2 million
edges. There was no common edge across all of the pro-
files at a significance level of 0.5 or higher. Also, we did
not find a shared edge between any pair of profiles at a
significance level 0.8 or higher.
Interestingly, the integrated network, either by taking

the intersection or the union of edges, appeared to have a
significantly enhanced scale-freeness. The co-occurrence
network I0.1

∀ had the highest R2 value of 0.950, and the
one-or-more occurrence network with I0.8

∃ had the
second highest R2 value of 0.913. This may suggest that
integrated networks are more effective in identifying func-
tional gene modules across multiple molecular levels than
networks constructed by using each profile separately. We
selected these two networks to run further analysis. The
graphical representation of the selected intersection net-
work and the union network is shown in Fig. 5 and Fig. 6,
respectively.
We performed gene ontology (GO) enrichment ana-

lysis to assess common or related biological functions of
the genes belonging to the same connected component
of the constructed network. We ran the analysis for each
of the three networks based on mRNA, CNA, and
methylation profiles, and for their one-or-more occur-
rence network at α = 0.8. The co-occurrence network at



Fig. 3 Kaplan-Meier survival plots of the gene pair with the highest mutual information value for each single profile. We show the Kaplan-Meier
survival curve of the gene pair having the highest mutual information along with the ones derived by each single gene
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α = 0.1 was analyzed due to its superior scale-freeness
and network sparseness at a higher significance level.
We first compared the number of enriched GO terms

from each constructed network (Fig. 7). The mRNA
profile revealed the greatest number of significant
terms among the single networks, which was expected.
There was no shared GO term between the CNA and
methylation profiles, which may suggest distinct func-
tional roles for each profile on clinical outcome. I0.8

∃

indicated the greatest number of enriched GO terms
with 62 additional BP (Biological Process), 21 CC (Cel-
lular Component), and 11 MF (Molecular Function)
terms, which were not found in networks constructed
by any of the single genomic profiles. Therefore, the in-
tegration of networks may provide a better insight into
the gene interaction landscape associated with clinical
outcome.
We further investigated the genes in the largest com-

ponent of I0.8
∃, which were enriched with 176 GO terms

(112 BP, 42 CC, and 22 MF terms). The five most significant
GO terms in the largest component were poly(A) RNA
binding (GO:0044822), nucleoplasm (GO:0005654), extracel-
lular vesicular exosome (GO:0070062), apoptotic process
(GO:0006915), and protein ubiquitination (GO:0016567).
These GO terms are closely related to ovarian cancer,
based on previous studies. For example, apoptotic
process is a cell death term, and Jäättelä reported that
defects in apoptotic signaling pathways are common in
cancer cells [55]. In addition, protein ubiquitination is a
highly relevant term as ubiquitin-mediated proteins



Fig. 4 Boxplots for p-values from survival analysis. The distribution of
p-values from the survival analysis for the extracted gene pairs
obtained from different significance levels of α is shown as a boxplot
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have an important role in the mutation of a target onco-
gene [56]. Table 5 summarizes significantly enriched GO
terms with the corresponding p-values for the largest con-
nected component of the I0.8

∃. To present more specific
functionality, we show the term at the lowest level from
the root of the directed acyclic graph for each GO cat-
egory if multiple terms along the same path from the root
are found to be significant.
We also found that major hub genes of the I0.8

∃ net-
work are related with ovarian cancer-related pathways.
For example, Cytohesin 3 (CYTH3), the first hub having
the largest number of neighbors in the network, is in-
volved in the PI3K pathway (M14532) in MSigDB [57].
This pathway is a common drug target of human can-
cer, including ovarian cancer [58, 59]. Furthermore,
Minichromosome maintenance complex component 3
(MCM3), the third hub, is included in the cell cycle
pathway (hsa04110) [60], which is important to the
cancer research because alterations in the mechanism
characterize the abnormal proliferation of human ma-
lignant tumors [61]. Previous research also reported
that the cell cycle arrest in the G2/M phase via the
blockade of cyclin B1/CDC2 in human ovarian cancer
cells [62]. From this observation, we presume that in-
teractions of major hub genes with connected
neighbors can play an important role in determining
the overall survival of ovarian cancer patients.
For the I∀, many BP terms were discovered in the lar-

gest connected-component, but not from CC or MF cat-
egories. Table 6 shows the most significant GO terms
for the largest connected-component of the co-
occurrence network. The 5 most significant GO terms
were hemopoiesis (GO:0030097), immune system devel-
opment (GO:0002520), aging (GO:0007568), T cell dif-
ferentiation (GO:0030217) and positive regulation of
apoptotic process (GO:0043065). Immune system devel-
opment and T cell differentiation are terms correspond-
ing to the immune system, which has a significant role
in cancer development and progression [63]. Positive
regulation of apoptotic process is a cell death term, and
is enriched in genes regulated by Ubiquitin carboxyl ter-
minal hydrolase 1 (UCHL1) [64], which is a putative
tumor suppressor in ovarian cancer. The hub genes also
have known roles in cancer progression. For example,
the top hub gene in the network was ST6GALNAC1
which is known to have an important role in ovarian
cancer [65].

Discussions
We have proposed a new network-based analysis frame-
work to detect gene pairs associated with the clinical
outcome and to analyze the resulting networks systemat-
ically. Our survival analysis showed that there are a large
number of gene pairs that are significantly associated
with survival in ovarian cancer in which each single gene
has very weak or no association. From the integration of
the profiles, we also showed that networks constructed
by combining information across different genomic pro-
files had better scale-freeness and revealed more bio-
logical significance than a network that was constructed
by using only one genomic profile.
In our analysis, the co-occurrence network consisted

of a moderate level of interactions in single genomic
profiles, but integration of the interactions revealed high
biological significance in terms of GO BP terms. In con-
trast to the I0.1

∀, the I0.8
∃ consisted of stronger interac-

tions for each genomic profile, and significant CC and
MF terms were enriched. Interestingly, networks from
interactions with high association strength at each pro-
file did not have any shared edges. We also found that
sub-networks in the I0.8

∃, which were connected by in-
teractions of mRNA and methylation, had many hubs
connected to many peripheral nodes, but sub-networks
from CNA had a tendency to interconnect genes with-
out any dominant hub gene structure.
In this study, we took a simple network integration

scheme, which showed enhanced network properties
despite its simplicity. A more complicated network inte-
gration scheme may be employed in our future analyses,



Table 4 Network Topologies for different α values

α Profile Vertices Edges Number of components Size of largest component R2

0.0 mRNA 9,997 2,562,178 1 9,997 0.643

CNA 10,021 2,472,048 1 10,021 0.590

METH 9,801 554,048 1 9,801 0.839

I∀ 1,244 1,538 61 1,105 0.914

I∃ 10,022 5,385,486 1 10,022 0.366

0.1 mRNA 9,943 1,125,398 1 9,943 0.758

CNA 9,934 1,090,500 1 9,934 0.749

METH 9,118 221,680 1 9,118 0.842

I∀ 138 95 44 27 0.950

I∃ 10,022 2,396,372 1 10,022 0.505

0.5 mRNA 6,466 20,219 25 6,418 0.810

CNA 2,886 23,143 9 2,855 0.831

METH 2,166 3,641 25 2,116 0.700

I∃ 8,032 46,975 11 8,012 0.864

0.8 mRNA 641 555 112 358 0.804

CNA 245 526 10 106 0.892

METH 145 115 32 58 0.690

I∃ 1,002 1,196 137 579 0.913

1.0 mRNA 73 45 28 11 0.797

CNA 13 17 1 13 0.363

METH 15 8 7 3 1.000

I∃ 100 70 35 23 0.803

Fig. 5 I0.8
∀ of whole genomic profiles
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Fig. 6 I0.8
∃ of whole genomic profiles

Fig. 7 Four-way Venn diagram summarizing the number of shared and unique GO terms enriched in the network from each profile
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Table 5 Significantly enriched GO terms in the largest component of I0.8
∃

Category ID Description p-value Adjusted p-value (FDR) Count Total

MF GO:0044822 poly(A) RNA binding 4.37E-12 1.35E-09 50 1180

CC GO:0005654 nucleoplasm 1.93E-09 6.54E-08 63 1745

CC GO:0070062 extracellular vesicular exosome 2.39E-09 7.09E-08 59 1589

BP GO:0006915 apoptotic process 1.32E-07 1.20E-05 49 1305

BP GO:0016567 protein ubiquitination 1.75E-07 1.52E-05 28 542

CC GO:0005730 nucleolus 5.61E-06 1.06E-04 38 1072

CC GO:0031226 intrinsic component of plasma membrane 1.66E-05 2.89E-04 49 1612

BP GO:0006366 transcription from RNA polymerase II promoter 1.60E-05 6.57E-04 26 611

CC GO:0005887 integral component of plasma membrane 5.07E-05 8.34E-04 46 1546

BP GO:0071156 regulation of cell cycle arrest 2.62E-05 9.70E-04 10 116

BP GO:0001775 cell activation 5.63E-05 1.86E-03 31 856

BP GO:0045087 innate immune response 7.46E-05 2.34E-03 34 993

CC GO:0000228 nuclear chromosome 1.60E-04 2.43E-03 19 453

MF GO:0042803 protein homodimerization activity 4.87E-05 3.26E-03 26 781

MF GO:0019901 protein kinase binding 4.93E-05 3.26E-03 22 603

MF GO:0008201 heparin binding 5.51E-05 3.40E-03 11 182

BP GO:0071901 negative regulation of protein serine/threonine kinase activity 1.29E-04 3.69E-03 10 140

BP GO:0007596 blood coagulation 1.36E-04 3.80E-03 22 541

CC GO:0005783 endoplasmic reticulum 3.16E-04 4.27E-03 51 1918

BP GO:0051222 positive regulation of protein transport 1.88E-04 4.88E-03 15 301

BP GO:0000086 G2/M transition of mitotic cell cycle 2.27E-04 5.70E-03 10 150
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such as that used in similarity network fusion using
multiple genomic datasets [15]. Besides, we plan to in-
vestigate the detection power and robustness of the
proposed method through extensive simulation study
and real data experiments. Another extension includes
the application of the integrative network to network-
based Cox-regression method using heterogeneous
types of data. We expect that this application would
enhance the prediction power and help to understand
the complex interaction between different types of
Table 6 Significantly enriched GO terms in the largest component o

Category ID Description

BP GO:0030097 hemopoiesis

BP GO:0002520 immune system development

BP GO:0007568 aging

BP GO:0030217 T cell differentiation

BP GO:0043065 positive regulation of apoptotic process

BP GO:0006915 apoptotic process

BP GO:0001890 placenta development

BP GO:0050870 positive regulation of T cell activation

BP GO:0023014 signal transduction by phosphorylation

BP GO:0071214 cellular response to abiotic stimulus

BP GO:0001525 angiogenesis
genomic profiles for the survivability of cancer
patients.

Conclusions
In this paper, we have proposed a simple but powerful
method to detect gene pairs that are associated with the
clinical outcome. By being network-based, our approach
could provide a better insight into the underlying gene-
gene interaction mechanisms that affect the clinical out-
come of cancer patients.
f I0.1
∀

p-value Adjusted p-value (FDR) Count Total

1.82E-05 6.81E-03 6 699

4.12E-05 6.81E-03 6 809

3.03E-04 1.36E-02 4 399

4.69E-04 1.99E-02 3 185

7.47E-04 2.02E-02 4 507

5.92E-04 2.02E-02 6 1320

1.07E-03 2.44E-02 3 246

1.08E-03 2.44E-02 3 247

1.49E-03 2.90E-02 3 276

1.68E-03 2.93E-02 3 288

4.53E-03 4.90E-02 3 409
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