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cancer using molecular markers and clinical
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Abstract

Background: A high-quality risk prediction model is urgently needed for the clinical management of ovarian cancer.
However most existing models are solely based on clinical parameters, and molecular classifications in recent reports
are still being debated. This study aimed to establish a risk prediction model by using both clinicopathological and
molecular factors (the synthetic model) for epithelial ovarian cancer.

Methods: A retrospective cohort study was conducted in epithelial ovarian cancer patients (n = 161) treated with
primary debulking surgery and adjuvant chemotherapy. The expression level of 15 selected molecular markers were
measured using immunohistochemistry. A risk model was developed using COX regression analysis with overall
survival as the primary outcome. A simplified scoring system for each prognostic factor was based on its coefficient.
Independent validation (n = 40) was conducted to evaluate the performance of the model.

Results: A total of 10 out of 15 molecular markers were significantly associated with clinical characteristics and overall
survival. The synthetic model performed better than the clinicopathological risk model or the molecular risk model
alone, as assessed by analysis of the receiver-operating characteristics curve area and the Youden index. The synthetic
model included parity (>3), peritoneal metastasis, stage, tumor type, residual disease, and expression of human epidermal
growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), breast cancer 1 (BRCA1), murine sarcoma viral
oncogene homolog B (BRAF) and Kirsten rat sarcoma viral oncogene homolog (KRAS).

Conclusions: Our synthetic risk model may more accurately predict survival of epithelial ovarian cancer patients than
current models.
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Background
Risk prediction in patients with intractable disease is one of
the major challenges for both clinic treatment and basic
research, which tailors risk assessment of outcome based
on the individual’s clinical, epidemiological and molecular
factors [1]. By means of the risk prediction model, disease
can be more efficiently monitored and precisely treated.
Ovarian cancer is the most lethal gynaecologic malignancy.

Despite improvements in diagnostic methods, surgical
technologies and chemotherapeutic agents over the past
few years, the prognosis is still poor [2–5]. Therefore, the
development of a high-quality risk prediction model for
ovarian cancer to guide personalized therapy is a primary
research focus in the field.
In 1989, Van Houwelingen first reported a prognostic

index (PI) for ovarian cancer [6]. Since then, a series of
studies reported that the prognostic model, which is
based on clinical characteristics including advanced age,
higher stage and grade of tumor, presence of ascites,
poorer performance status and residual disease (>1 cm),
was able to stratify patients with poor survival [7–9].
However, ovarian cancer patients with similar clinical
characteristics also exhibit difference in prognosis, which
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may be due to high molecular heterogeneity of tumor
and/or different molecular genetics [10, 11]. It has been
reported that expression or status of certain molecular
markers, such as tumor protein 53 (TP53), epidermal
growth factor receptor (EGFR), myelin and lymphocyte
protein (MAL), and breast cancer 1/2 (BRCA1/BRCA2)
are independent predictors of patient survival in serous
ovarian cancer [12–14]. However, the accuracy of these
gene signatures remains controversial, because previous
studies are merely on serous ovarian cancer without
validation datasets.
Compared with other molecular detection techniques,

immunohistochemistry has its own advantages: lower cost,
presenting morphology for cells and tissues and less time
consuming. The aim of the current study was to elucidate
epithelial ovarian cancer (EOC) at the molecular level and
to establish a predictive model for EOC using immunohis-
tochemistry. To consider cancer heterogeneity and to im-
prove prognostic accuracy, we further integrated molecular
and clinicopathological factors into the risk model.

Methods
Patients
Our research has been approved by Ethics Committee of
Ren Ji Hospital, Shanghai Jiao Tong University, School
of Medicine, and informed consents were obtained from
all epithelial ovarian cancer patients or their direct relatives.
The tumor tissue specimens were collected from patients
who were operated and confirmed with histopathology
post-operation between June 2003 and December 2009 in
the Department of Obstetrics and Gynaecology, Ren Ji
Hospital, Shanghai, China. The subjects were divided
into two groups: an experimental group (n = 161) and a
validation group (n = 40). Each patient had undergone
cytoreductive surgery (without neoadjuvant chemother-
apy, NACT) and a standardized post-surgical course of
chemotherapy based on platinum. The following factors
were recorded for the experimental group (n = 161): the
clinicopathological characteristics (Table 1), the effect
of chemotherapy based on the platinum (Table 1) and
follow-up outcome. Platinum-resistant ovarian cancer
(PROC) was defined as recurrence within 6 months of
the completion of platinum-based chemotherapy and
disease progression within 6 months during or after
chemotherapy [15].

Immunohistochemistry
Using immunohistochemistry, 15 molecular markers were
selected for analysis in specimens after evaluating a range
of published prognostic molecular markers [11, 12, 16–22]
(Additional file 1: Table S1) and considering the tumor
characteristics [23]. The immunohistochemistry was per-
formed as following: briefly, paraffin-embedded tumor
specimens were antigen retrieved in a microwave at >90 °C

for 15 min after dewaxing and rehydration, then were
blocked with 5 % bovine serum albumin (BSA) for 1 h to
reduce non-specific binding. The specimens were incubated
sequentially with a rabbit anti-BRCA1 polyclonal antibody
(SANTA CRUZ, Dallas, Texas, USA), a mouse anti-P53
monoclonal antibody (SANTA CRUZ, Dallas, Texas, USA),
a rabbit anti-human epidermal growth factor receptor 2
(HER2) polyclonal antibody (SANTA CRUZ, Dallas, Texas,
USA), a mouse anti-murine sarcoma viral oncogene homo-
log B (BRAF) monoclonal antibody (SANTA CRUZ, Dallas,
Texas, USA), a mouse anti-Kirsten rat sarcoma viral onco-
gene homolog (KRAS) monoclonal antibody (MILLIPORE,
Billerica, Massachusetts, USA), a rabbit anti-Ki67 poly-
clonal antibody (SANTA CRUZ, Dallas, Texas, USA), a
rabbit anti-vascular endothelial growth factor (VEGF) poly-
clonal antibody (SANTA CRUZ, Dallas, Texas, USA), a
rabbit anti-Notch homolog 3 (NOTCH3) polyclonal anti-
body (SANTA CRUZ, Dallas, Texas, USA), a rabbit anti-
cyclin E1 (CCNE1) polyclonal antibody (SANTA CRUZ,
Dallas, Texas, USA), a rabbit anti-erythroid transcription
factor (GATA2) polyclonal antibody (SANTA CRUZ,
Dallas, Texas, USA), a rabbit anti-forkhead box protein M1
(FOXM1) polyclonal antibody (SANTA CRUZ, Dallas,
Texas, USA), a rabbit anti-BRCA2 polyclonal antibody
(SANTA CRUZ, Dallas, Texas, USA), a rabbit anti-EGFR
polyclonal antibody (SANTA CRUZ, Dallas, Texas, USA), a
rabbit anti-phosphatase and tensin homolog (PTEN)
polyclonal antibody (Zhongshan, Beijing, China), a mouse
anti-multidrug resistance (MDR1) monoclonal antibody
(SANTA CRUZ, Dallas, Texas, USA) for 2 h at 1:100
dilution and a horseradish peroxidase (HRP)-conjugated
goat anti-mouse or anti-rabbit IgG antibody (Zhongshan,
Beijing, China; 1:100) for 1 h. 3,3′-diaminobenzidine
tetrahydrochloride (DAB; Zhongshan, Beijing, China) and
hematoxylin were used to colour the slides. The semiquan-
titative evaluation of the staining for 15 molecular markers
was performed by two pathologists in blind fashion, as
described in the Additional file 1 [12, 24–32].

Statistical analysis
The outcome was the survival time from diagnosis to
the date of death. The surviving patients’ cut-off was the
date of the last follow-up if the duration of follow-up
was more than 5 years.
Multiple imputations have been advocated as an appro-

priate method to manage missing data [33]. The sequential
regression multiple imputation (SRMI) method, serving as
an imputation model, was applied to make up the missing
data. We then used the multiple-imputed data sets to ana-
lyse the variables [34].
SPSS 19.0 software (IBM, Armonk, New York, USA)

was used for the analyses. The differences in survival ac-
cording to clinicopathological and 15 molecular factors
were assessed by using a log-rank test and a univariate
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analysis. We established the risk model of survival via
multivariate COX regression and estimated hazard rate
(HR). Each risk factor’s score was calculated from beta-
coefficient in the multivariate analysis. The risk model
for every patient was the sum of the scores of each fac-
tor. The receiver-operating characteristics (ROC) curve
area and the Youden index were then utilized to calcu-
late the cut-off points of the risk model. Based on the
cut-off points, the risk model of survival was divided
into two classes: low risk and high risk. We then
adopted an independent validation in the validation
group and used the Kaplan-Meier method to analyse the
difference between the two risk classes. For all analyses,
P < 0.05 was considered significant.

Results
Description of the study cohort
The clinicopathological characteristics of the experimental
group (n = 161) were presented in Table 1. The median
survival was 48 months (range: 8–123 months); the inter-
national federation of gynaecology and obstetrics (FIGO)
stage was predominantly III (49.7 %) and I (34.2 %) at
initial diagnosis; and the histopathology mainly exhibited
serous epithelial ovarian cancer (70.8 %); the proportions
of other pathological subtypes (mucinous, endometrioid,
clear cell and undifferentiated cancer) were similar; 73.9 %
patients underwent the ideal tumor reductive surgery.

Predictors of survival
Clinicopathological characteristics
Based on the univariate analyses of clinicopathological
characteristics, six variables, including parity, peritoneal
metastasis, FIGO stage, tumor type [35], residual disease
and platinum resistance were statistically significant risk
factors for overall survival (P ≤ 0.05). Overall survival
was more significantly associated with the tumor type
than with the WHO grade (the area under the ROC
curve was 0.815 vs. 0.787) (Fig. 1).

Molecular markers
The immunohistochemistry results of the molecular
markers were presented in Additional file 1: Figure S1.

Table 1 Patient characteristics and potential prognostic factors

Characteristics N (%) Median survival (months) Pb

Age 0.095

<40 7 4.3 83.0

40–49 31 19.3 33.1

50–59 62 38.5 36.0

60–69 33 20.5 46.0

≥70 26 16.1 60.3

Parity 0.019*

0–1 77 47.8 62.2

2–3 66 41.0 52.0

>3 15 9.3 45.0

Menopause 0.716

Yes 106 65.8 45.0

No 53 32.9 49.4

Ascites 0.735

Yes 62 38.5 37.0

No 97 60.2 59.5

Peritoneal metastasis 0.004*

Yes 89 55.3 31.6

No 71 44.1 60.0

Lymphatic metastasis 0.905

Yes 69 42.9 26.3

No 91 56.5 58.6

FIGO stage 0.025*

I 55 34.2 62.1

II 18 11.2 42.0

III 80 49.7 35.0

IV 7 4.3 18.3

Histotype 0.954

Serous 114 70.8 38.7

Mucinous 15 9.3 63.0

Endometrioid 13 8.1 59.0

Clear cell 9 5.6 60.4

Undifferentiated 10 6.2 29.0

Grade 0.415

G1 33 20.5 61.0

G2 57 35.4 55.0

G3 69 42.9 30.1

Tumor typea 0.003*

I 57 35.4 61.0

II 101 62.7 36.0

Residual disease <0.0001*

≤0.5 cm 119 73.9 58.0

>0.5 cm 40 24.8 19.4

Table 1 Patient characteristics and potential prognostic factors
(Continued)

Platinum resistance <0.0001*

Yes 36 22.4 22.0

No 123 76.4 58.0
*statistical significance
aBased on morphological and molecular genetic analysis, EOC are divided
into two categories: type I tends to be low-grade neoplasms; while type II
is high-grade neoplasms [35]
bLog-rank test
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Using the Kaplan-Meier survival analysis, 10 molecular
markers were identified to be significant correlated with
overall survival (Additional file 1: Figure S2).

The relationships between the molecular markers
and the clinicopathological features were illustrated in
Additional file 1: Table S2. The patients with strong
staining or complete absence of P53 expression, which
presumably lost P53 function (Strong staining or
complete absence of P53 expression is defined as TP53
mutation) tended to display increased peritoneal me-
tastasis (P = 0.027) and later FIGO stage (P = 0.024).
The tumor type was closely associated with the expression
of P53 (P = 0.002). The strong staining or complete
absence of P53 which is equivalent to loss of P53 function
was most frequently observed in serous carcinomas
(70.8 %). The significant association between high HER2
expression and the tumor type (P = 0.025) as well as with
residual disease (P = 0.002) was observed. Strong staining
of KRAS (the KRAS mutation commonly had strong stain-
ing) in the tumor cell nuclei was significantly associated
with FIGO stage (P = 0.011), tumor type (P = 0.025) and
WHO grade (P = 0.027). The absence or weak staining of
BRCA1 which was considered as BRCA1 mutation, was
also significantly associated with tumor type (P = 0.048).
The absence or weak staining of BRAF (Negative and
weak staining in tumor cell cytoplasm was considered to
be mutation BRAF) (P = 0.045) and high EGFR expression
(P = 0.041) were associated with the ovarian cancer histo-
type. Serous (69.5 %) and mucinous (11.3 %) ovarian
cancer had high proportions of low BRAF expression,
while serous (63.6 %) and endometrioid (13.6 %) ovarian
cancer exhibited high EGFR expression. Two of the most
striking findings were that (a) highly significant associations
were discovered between the overexpression of HER2 (26/
36 resistant patients, P = 0.013), KRAS (32/36 resistant pa-
tients, P = 0.004), low expression of PTEN (36/36 resistant
patients, P = 0.043) and platinum resistance, and (b) plat-
inum resistance (P = 0.043), residual disease (P < 0.001), the
expression of VEGF (P = 0.031) and HER2(P = 0.008), the
expression of BRCA1(P = 0.05) and KRAS (P = 0.021) were
significantly associated with overall survival in patients with
the same stages and treated with uniform therapies. There
were no associations between clinicopathological character-
istics and the expression of VEGF, NOTCH3, and BRCA2.

The risk models
To evaluate the association between ovarian cancer patient
outcomes and the clinicopathological characteristics as well
as molecular markers, we established three risk models: the
clinicopathological model, the molecular model and the
synthetic model comprising both clinicopathological char-
acteristics and molecular markers. First, we performed a
multivariate COX regression analysis to independently
assess the relationship between clinical characteristics or
molecular markers and patient survival. The results showed
that parity, peritoneal metastasis, FIGO stage, tumor type
and residual disease were independent prognostic factors

Fig. 1 Kaplan-Meier survival curve and ROC curve of WHO grading
system and tumor type. a Kaplan-Meier survival curve of WHO grading
system. b Kaplan-Meier survival curve of tumor type. c ROC curve of
WHO grading systems and tumor type. The area was 0.815 (blue line:
tumor type) vs. 0.787 (green line: WHO grade)
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among the clinical characteristics (Table 2). Among the
molecular markers, HER2, KRAS, BRCA1, BRAF, and
EGFR were independent and statistically significant prog-
nostic factors for ovarian cancer patient outcomes (Table 2).
The risk score of each predictor was obtained from the
coefficient of the COX regression model. Consequently, the
total score for the clinicopathological model was 7 points,
while the total score for the molecular model was 5 points.
The score for the synthetic model was generated using
the sum of the scores of the above independent

clinicopathological and molecular factors (12 points).
The three scoring systems were shown in Table 3.
In the synthetic model, the ROC area was 0.942 with a

cut-off at 6.5 points compared with the clinicopathologi-
cal model (ROC area: 0.869, cut-off point: 2.5) and
molecular model (ROC area: 0.884, cut-off point: 2.5)
(Fig. 2a). Then we validated the three risk models for
discrimination in an independent validation dataset.
Likewise, the ROC area of the synthetic model (ROC
area: 0.798, cut-off point: 6.5) was largest than the

Table 2 The Cox regression analysis of prognostic factors in epithelial ovarian cancer

Factors β Hazard ratio 95 % confidence interval P

Clinicopathological factors

Parity 0.009

0–1 Reference

2–3 0.103 0.668 0.410–1.089

>3 1.069 2.911 1.203–7.044

Peritoneal metastasis 0.047

No Reference

Yes 1.086 2.963 1.013–8.664

FIGO stage 0.021

I Reference

II 0.722 2.058 0.603–7.025

III 1.150 3.158 0.730–13.658

IV 1.470 4.351 1.611–11.746

Tumor type <0.001

I Reference

II 1.613 5.017 2.501–10.067

Residual disease <0.001

≤0.5 cm Reference

>0.5 cm 1.553 4.725 2.418–9.233

Molecular factors

HER2 <0.001

Low expression Reference

High expression 1.242 3.463 1.839–6.523

KRAS <0.001

Low expression Reference

High expression 1.332 3.787 1.959–7.319

BRCA1 0.003

High expression Reference

Low expression 0.957 2.604 1.398–4.849

BRAF 0.012

High expression Reference

Low expression 1.043 2.838 1.261–6.383

EGFR 0.036

Low expression Reference

High expression 0.622 1.862 1.042–3.327
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Table 3 Scoring system for the three risk models in epithelial ovarian cancer

Scoring Impact factors Clinicopathological model Molecular model Model comprising
clinicopathological
and molecular factors

Parity Peritoneal
metastasis

FIGO
stage

Type Residual
disease

HER2
expression

KRAS
expression

BRCA1
expression

BRAF
expression

EGFR
expression

0 0–3 Absent I I ≤0.5 cm Low Low High High Low

1 >3 Present II–IV High High Low Low High

2 II >0.5 cm

Total score 7 5 12
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clinicopathological model (ROC area: 0.620, cut-off
point: 2.5) and the molecular model (ROC area: 0.794,
cut-off point: 2.5) (Fig. 2b). And these patients in valid-
ation group were divided into low- and high-risk classes
according to the cut-off points in each model (Table 4).
The differences between the two classes were significant for
all three risk models (Table 4). The Kaplan-Meier survival
analysis assessing the low- and high-risk classes for the
three risk models was shown in Fig. 3. P value of the syn-
thetic model was the most significant (P < 0.001). Moreover,
the results showed that three patients with unfavorable
outcomes classified as low risk by clinicopathological model

were upgraded to high risk by molecular and synthetic
model, and 14 patients whose survivals were close to
median as high risk by clinicopathological model were
downgraded to low risk by synthetic model.

Discussion
These molecular markers may be beneficial for predicting
the outcome and the response to treatment for EOC,
because these biomarkers can evaluate multiple genetic
alterations, compared with the classical clinicopathological
prognostic factors [36, 37]. To our best knowledge,
although several molecular prognostic models for serous

Fig. 2 ROC curves of the three risk models in the experimental group and the validation group. a In the experimental group, the areas under the
curve were as following: the molecular risk model (blue line: 0.884), the clinicopathological risk model (green line: 0.869), and the synthetic model
(yellow line: 0.942). b The ROC areas in the validation group were shown: the synthetic model (green line: 0.798), the clinicopathological model
(yellow line: 0.620) and the molecular model (blue line: 0.794)
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ovarian cancer have been established, there is not a
clinical unified and widely applicable model. With respect
to EOC, Carsten proposed the prognostic index system,
which contained clinical pathological characteristic and
300 genes [38]. This prognostic system was considered to
be a thorough genetic screening of EOC. In contrast, our
synthetic model is a preliminary exploration to use only a
handful of molecular biomarkers in conjunction with
clinicopathological factors to generate a prognostic model
for EOC. Notably, immunohistochemistry of these mo-
lecular markers has been now widely and routinely used
for clinical diagnosis, and the uniform criteria for each
molecule has been defined in immunohistopathology. In
order to improve the detection efficiency and refrain from
wasting EOC cancer specimen, we can prepare tissue
microarray (TMA) with which all molecular markers can
be tested on one slide. Even though immunohistochemis-
try is a semi-quantitative approach, we have validated its
reliability by quantitative methods, such as flow cytometry
in previous experiments [39]. Thus, the outcome of EOC
patients after surgery can be conveniently and rapidly pre-
dicted using our model, and the individualized treatment
regimen can be subsequently tested.
Importantly, our three risk models were validated in

an independent cohort and could be applied to stratify
patients into two risk classes. Nevertheless, the ROC
curve area of the synthetic model was the largest. Using
the cut-off point scoring system, the two risk classes in
the synthetic model were more statistically significant
than those in clinicopathological model or the molecular
model. Moreover, the molecular model improved the
accuracy of risk class classification which was previously
classified in clinicopathological model. Our current data
suggested that the biomarkers could be integrated in the
risk model, which might lead to an improvement of
clinicopathological stratification. Indeed, our synthetic
risk model showed the best performance in estimating
EOC patient survival.

Our risk models suggested that tumor type and residual
disease were the strongest survival predictors, indicating
the importance of the initial cytoreductive surgery to EOC
outcome. The tumor type of EOC was defined by Shih
based on morphological and molecular analysis [35]. Type
I includes low-grade serous carcinoma, mucinous car-
cinoma, low-grade endometrioid carcinoma and clear
cell carcinoma, which tend to be low-grade neoplasms
with the mutations of BRAF, KRAS and PTEN; whereas
type II is composed of high-grade serous carcinoma,
high-grade endometrioid carcinoma and undifferenti-
ated carcinoma which are high-grade neoplasms with
high human leukocyte antigen-G (HLA-G) expression
and TP53 mutation as markers. The low-grade and
high-grade serous carcinoma is respectively the proto-
typic subtype of the two types. The University of Texas
M.D. Anderson Cancer Center illuminated that low-
and high-grading system of the serous ovarian cancer
was associated with survival and was clinically feasible
[40]. This is in line with our research that tumor type is
closely associated with the overall survival, and we fur-
ther revealed that the tumor type classification showed
a better prognostic value than the WHO grading sys-
tem. With respect to residual disease, we found that a
residual tumor size ≤0.5 cm was optimal for cytoreduc-
tion, which was a predictor in the COX regression
model (HR: 4.725, P < 0.001), and the molecular marker
HER2 was significantly associated with residual disease
(P = 0.002). We also observed that other clinicopathological
factors, including peritoneal metastasis and FIGO stage,
were associated with EOC survival. These findings were
consistent with Rutten’s model, which is the most recog-
nized prognostic clinicopathological model for EOC pa-
tients in recent years [41]. In addition, increased parity
(especially a parity >3) was associated with high EOC risk.
The parity result differed from Yang’s study in which no
clear association was determined between parity and ovar-
ian cancer survival [42]. In contrast, Poule found that a

Table 4 Performance of the three risk models in the validation group

Model Score No (%) Death (%) Median Pc

Clinicopathological model 0–2a 12(30.0) 3(25.0) 38.0

3–7b 28(70.0) 19(67.9) 24.5 0.003

Total 40 22(55.0) 27.0

Molecular model 0–2a 20(50.0) 9(45.0) 30.5

3–5b 20(50.0) 13(65.0) 24.0 0.032

Total 40 22(55.0) 27.0

Model comprising molecular
and clinicopathological factors

0–6a 19(47.5) 6(31.6) 30.6

7–12b 21(52.5) 16(76.2) 25.0 <0.001

Total 40 22(55.0) 27.0
aLow-risk
bHigh-risk
cThe results were calculated using the Kaplan –Meier method
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Fig. 3 The validation of the three risk models using the Kaplan-Meier survival analysis. a The clinicopathological risk model. b The molecular risk
model. c The clinicopathological-molecular risk model. The blue line denotes the low-risk class and the green line denotes the high-risk class
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long-time oral-contraception was strongly correlated with
less aggressive epithelial ovarian cancer due to fewer life-
time ovulatory cycles [43]. Thus, we consider that a larger
sample size will be necessary to determine whether the
ovulatory and multiparous increase the risk of EOC patient
outcome and try to uncover the underlying mechanism.
Gene expression signatures may predict ovarian

cancer outcome only in certain subtypes of ovarian
cancer, including late-stage, platinum-treated and ser-
ous ovarian cancer [14, 44, 45]. Our study sought to
find molecular markers to predict overall survival for
all EOC types. HER2, KRAS, BRCA1, BRAF and
EGFR were validated in the risk model. EGFR and
HER2 are the members of the HER family, whose
EGF signaling pathway has been shown to play an
important role in tumor initiation, progression and
metastasis. And KRAS gene can regulate the signal
transduction between HER receptors and the nucleus.
KRAS mutation activates KRAS protein, which con-
tinuously stimulates the EGFR activation [46]. BRAF
is the downstream effector of KRAS, which was
reported to be common mutation (28–35 %) in serous
borderline (SB)/low grade serous ovarian cancer
(LGS-OvCa) [21]. Rachel demonstrated that LGS-
OvCa patients with BRAF mutant were inclined to
peritoneal metastasis and recurrence in the case of
presence of micropapillary feature [47]. The EGFR/
HER2/KRAS/BRAF signaling pathway has been re-
ported in pancreatic cancer and colorectal cancer
other than in ovarian cancer [48, 49 ]. Once muta-
tions occur in BRAF and/or KRAS, patients are re-
fractory to anti-EGFR therapy with poor prognosis.
Skirnisdottir ever integrated EGFR into his prognostic
model for early-stage EOC [12]. Our model supported
notion that the four molecules in the EGFR/HER2/
KRAS/BRAF signaling pathway also produce the syn-
ergic effect, exerting their own effect on ovarian
cancer progression. A new developed model of pre-
diction of EOC should take the expression of HER2
family, KRAS and BRAF into account. TCGA analysis
showed that the BRCA1 and BRCA2 mutations in
22 % of the high grade serous ovarian cancer (HGS-
OvCa) samples triggered a wide range of aberrations
in DNA damage repair pathways, such as poly (ADP-
ribose) polymerase inhibitors (PARPi) [11]. Besides
the breast and ovarian cancer patients, some solid
tumors such as prostate, lung, endometrial, pancreatic
and colon cancer are also associated with BRCA1/2
mutations [50]. And Patch observed that the germline
of mutation of BRCA1 or BRCA2 was associated with
the acquired chemoresistance in HGS-OvCa [51]. In
this study, our results were in line with and extend
the importance of BRCA1 mutation in EOC, which
was one of the critical factors of molecular markers

in our synthetic prognostic model. Therefore, BRCA
screening is recommended to familial-risk women to pre-
vent and diagnose EOC early. Beyond this, high HER2
expression (P = 0.013), high KRAS expression (P = 0.004)
and low PTEN expression (P = 0.043) were associated with
higher platinum chemoresistance in EOC differential from
HGS-OvCa. Ovarian clear cell carcinoma (OCCC) is char-
acterized by resistance to conventional platinum chemo-
therapy compared with other EOC histotypes [52]. The
aberrant genes studied in OCCC included PTEN and
HER2 [53]. Increased HER2 may also bind to steroid
receptor coactivator 3 (SRC3), which contributes to high
level of malignant cell proliferation and poor survival due
to platinum resistance [54]. In addition to the above
observations, Patch showed that PTEN mutation contrib-
uted to acquired chemotherapy resistance in HGS-OvCa
as well [51]. Moreover, the study by Ratner indicated that
EOC patients with mutated KRAS were more likely to be
resistant to platinum (OR = 3.18, P = 0.011) [55]. So far,
there are several pathways by which oncogenic KRAS may
induce chemoresistance: first, it activates the RAF/MEK/
ERK pathway; secondly, KRAS mutation induces COX-2
expression which heightens cancer cell binding to extra-
cellular matrix and secrets more PGE2 to facilitate cell
migration and dissemination; thirdly, KRAS mutation may
activate the transcription of cellular protective stress
response gene nuclear factor erythroid-derived 2 (NRF2)
to protect against oxidative damage and promote drug re-
sistance [56–58]. LGS-OvCa harboring KRAS mutation is
a chemoresistant disease that accounts for 10 % of serous
ovarian cancer. And recurrent and chemoresistant LGS-
OvCa patients were observed to be dramatic and durable
responses to MEK inhibitor therapy [58]. Therefore, the
KRAS/RAF/MEK/ERK pathway is now considered to be
the key mechanism in chemoresistant LGS-OvCa. Inter-
estingly, in our study of EOC with all histotypes, KRAS
was still the cause of platinum chemoresistance. We envi-
sion that our findings may provide novel pathway for
KRAS to induce chemoresistance that may ultimately lead
to more targeted therapies.
There are some limitations in our analysis. Firstly,

immunohistochemistry is the method to detect protein
expression, which might not accurately assess the muta-
tion of molecule. While the expression and function of
TP53, KRAS, BRCA, BRAF are dependent on their genes
status, they may better be detected by DNA sequencing
to precisely elucidate these molecules’ effect on EOC
prognosis. Secondly, in order to improve the model’s
sensitivity and specificity, clinical multi-centre investiga-
tions are necessary to be conducted in a validation-
emendation-validation manner. We would attempt to
solve these problems in future studies. Once resolved,
the synthetic risk model may be widely applied for clin-
ical diagnosis of EOC.

Zhang et al. Journal of Ovarian Research  (2015) 8:67 Page 10 of 12



Conclusions
Our risk model integrating clinicopathological and molecu-
lar factors was validated to predict the overall survival of
EOC patients. The information obtained from the synthetic
model may assist in the development of individualized and
targeted therapies.
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