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Abstract

Background: Improved methods for the early and specific detection of ovarian cancer are needed.

Methods: In this experimental study, we used folic acid (FA)-targeted iron oxide (Fe304) nanoparticles (NPs) as
a T2-negative contrast agent for magnetic resonance (MR) imaging to accurately detect ovarian cancer tissues in
an intraperitoneal xenograft tumor model. Human serous ovarian cell line (Skov-3), with overexpressed FA receptors,
was chosen as the targeted tumor cell mode. For in vivo experiments, the cells were injected intraperitoneally into
nude mice to produce intraabdominal ovarian cancers. FA-targeted and non-targeted Fe;O, NPs were prepared.

Results: FA-targeted Fes0, NPs with a mean size of 9.2 + 1.7 nm have a negligible cytotoxicity to human serous
ovarian cell line (Skov-3). Importantly, the results of cellular uptake suggested that FA-targeted FesO4 NPs have a
targeting specificity to Skov-3 cells overexpressing FA receptors. FA-targeted FesO4 NPs could be specifically localized
by magnetic resonance (MR) imaging to the intraperitoneal human ovarian carcinoma tissues, as documented by a
statistically significant difference (p =0.002, n=3) in T, signal intensities of xenograft tumor tissues when injected with
FA-targeted and non-targeted FesO4 NPs at 4 h post-injection.

Conclusion: FA-targeted Fe;0, NPs appear to be promising agents for the detection of human ovarian carcinoma by
MR imaging, and possibly also for the hyperthermal treatment of the tumors.
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Background

Ovarian cancer is the sixth most commonly diagnosed
cancer in the world, accounting 4 % of all cancers in
women [1], and it is the leading cause of death from
gynecologic malignancies in the western world [2, 3].
Most ovarian cancers are first diagnosed in an advanced
stage because patients’ symptoms may be minimal or
nonspecific and no reliable biomarkers are available [4].
Tumor-debulking surgery is the first choice of manage-
ment for most patients with ovarian cancer [5], but most
ovarian cancers recur after surgery and are intractably
drug resistant [6]. Therefore, although some advances in
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cytoreductive surgery and case-effective chemotherapy
have been made in the last decade, the prognosis for
ovarian cancer, especially for epithelial ovarian cancer
still is limited.

In most tertiary medical centers, magnetic resonance
(MR) imaging is generally performed for imaging assess-
ment of complex ovarian masses [7, 8] that are indeter-
minate on either palpation or ultrasonography because of
MR’s superb soft-tissue resolution and lack of radiation.
The MR diagnostic criteria for ovarian malignancies are
based on morphology: thick septum, vegetations, ascites,
lymphadenopathy, and vividly enhancing solid compo-
nent, which are features well described in numerous
reports [8, 9]. However, identification of the tumor
tissues at an early stage with available imaging modalities
still possesses a great challenge for both radiologists
and clinicians.
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Recent advances in nanoscience and nanotechnology
have enabled the development of various contrast agents
for MR imaging applications, such as Gd (III)- or Mn
(IT)-based T; MR contrast agents [10, 11] and magnetic
iron oxide nanoparticle (Fe;O, NPs)-based T, MR
contrast agents [12—14]. The Fe;O, NPs are the most
commonly used magnetic materials for various biomedical
applications [15-18]. But, few reports on the application
of Fe;O, NPs for the diagnosis of ovarian cancer have
been published.

Folic acid (FA) receptors as single-chain glycoproteins
with high specific affinity for FA are highly overex-
pressed on various malignant tumors, including human
ovarian cancer [19]. The over-expression of FA receptors
on malignant tumor tissues can be exploited as a specific
targeting ligand since most healthy tissues have little FA
receptors expression [20]. This targeting strategy has the
potential for diagnostic and therapeutic application in a
wide variety of cancers [21, 22].

In this research, we used FA-targeted Fe;O, NPs as
T,-negative contrast agents for in vivo MR imaging of
ovarian cancer in an intraperitoneal xenograft tumor
model. To the best of our knowledge, this is the first
reported application of FA-targeted Fe;O, NPs in MR
imaging diagnosis of ovarian cancer.

Methods

Synthesis and characterization techniques

FA-targeted Fe;O, NPs were synthesized and character-
ized according to our previous work [23]. Non-targeted
FesO4, NPs were synthesized by the same methods,
except for the use of mPEG-COOH in the PEGylation
step instead of FA-PEG-COOH.

Branched polyethyleneimine (PEI, Mw = 25,000)-coated
Fe3s0, NPs (Fe3O0,@PEI NPs) were synthesized via a
reduction route. FeCl;-6H,O (1.3 g) was dissolved in
20 mL water, and placed into a 250 mL three-necked flask.
Under vigorous stirring, the solution was bubbled with
nitrogen atmosphere for 15 min, then 10 mL freshly
prepared sodium sulfite solution (0.2 g) was added slowly
into the flask. 30 min later, 5 mL PEI (0.5 g) and 2 mL
ammonia (25 %) was added into the flask successively.
The reaction mixture was vigorously stirred for 30 min at
60 ~70 °C, and then at room temperature for another
1.5 h. The product (Fe;0,@PEI NPs) was magnetically
collected and washed 3 times with water. Finally, the
sample was centrifuged (8000 rpm, 10 min) to remove the
aggregation and larger particles.

An aqueous solution of Fe;O,@PEI NPs (110 mg,
35 mL) was precipitated by virtue of an external magnet
and re-dispersed in 20 mL DMSO. Another solution of
38.5 mg activated FA-PEG-COOH or mPEG-COOH in
2 mL DMSO was added dropwise into the above DMSO
solution of Fe;O,@PEI NPs and kept shaking for 3 d.
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The formed products were collected by magnetic separ-
ation and washed with DMSO for 3 times to remove
excess reactants. Finally, the amino groups on the
surface of the particles were acetylated by reaction with
acetic anhydride. Briefly, triethylamine (493 pL) was
added into the aqueous solution of raw product of
FesO,@PEI-PEG-FA NPs or Fe;O,@PEI-mPEG NPs
under vigorous shaking using a shaker at room
temperature. After 30 min, acetic anhydride (402 pL)
was dropwise added into the above mixture solution
and the reaction was continued for 1 d. After several
times magnetic separation/washing/dispersion steps to
remove excess reactants and by-products, the final
products (FA-targeted Fe;O, NPs and non-targeted
Fe3O, NPs) were obtained, re-dispersed in water and
stored under 4 °C for further use.

A JEOL 2010 F transmission electron microscopy
(TEM, JEOL, Tokyo, Japan) was used to characterize the
morphology of the FA-targeted Fe;O, NPs and non-
targeted Fe3O4 NPs at an operating voltage of 200 kV. A
dilute particle suspension of the sample in water (10 pL)
was deposited onto a carbon-coated copper grid and dried
in air before measurements. The effect of MR imaging for
FA-targeted and non-targeted Fe;O, NPs was evaluated
with a 1.5 Tesla MR imaging machine (Siemens Avanto,
Erlangen, Germany). Samples were diluted with water to
have different Fe concentrations in the range of 0.005—
0.08 mM before measurements. The T,-weighted imaging
parameters with turbo spin echo sequence were set as
follows: point resolution=156 mm x 156 mm, section
thickness = 1.5 mm, TR =4000 ms, TE = 85 ms, band-
width (Hz) = 260, number of excitation =1, and voxel
size=1.1 x 1.1 x 4.0 mm.

Cell culture

Skov-3 cells was obtained from the Shanghai Key
Laboratory of Female Reproductive Endocrine Related
Diseases (Shanghai, China). Skov-3 cells were grown in
FA-free RPMI-1640 medium supplemented with 10 %
fetal bovine serum (FBS), penicillin (100 U/mL) and
streptomycin (100 pg/mL) at 37 °C and 5 % COs,.

Cytotoxicity of FA-targeted Fe;04 NPs and non-targeted
Fe;04 NPs

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) viability assay was carried out to
evaluate the cytotoxicity of the FA-targeted Fe;O, NPs
and non-targeted Fe;O4 NPs. Briefly, 1 x 10* Skov-3 cells
were seeded into each well of 96-well cell culture plates
with 200 pL regular RPMI-1640 medium and cultured at
37 °C and 5 % CO, overnight to bring the cells to
confluence. Next, the medium in each well was dis-
carded carefully and 200 pL of fresh medium containing
phosphate-buffered saline (PBS), FA-targeted Fe;O, NPs
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or non-targeted Fe3O, NPs at the Fe concentration of
0.5 to 1.0 mM was added. After 24 h incubation at 37 °C
and 5 % CO,, 20 pL MTT solution (5 mg/mL in PBS
buffer) were added to each well to reveal the viable cells.
After further incubation for 4 h at 37 °C and 5 % CO,,
the medium was carefully removed, and DMSO (200 pL)
was added to dissolve the formazan grains. The absorb-
ance value of each well was measured with a microplate
reader at 450 nm wavelength.

Cellular uptake of FA-targeted Fe;0,4 NPs and non-targeted
Fe304 NPs

To qualitatively confirm the cellular uptake of Fe3O,
NPs by Skov-3 cells, the cells was stained with Prussian
blue. In brief, 5 x 10° cells were seeded into each well of
24-well cell culture plates. After overnight incubation at
37 °C and 5 % CO, to bring the cells to 80 % confluence,
the medium was replaced with fresh medium containing
PBS buffer (control), FA-targeted Fe;O, NPs, or non-
targeted Fe3O, NPs at the Fe concentrations of 0.2 and
0.4 mM. The cells were continuously incubated for another
4 h. The cells were then washed three times with PBS,
fixed with p-formaldehyde solution at 4 °C for 15 min, and
stained with Prussian blue reagent (potassium ferrocyanide
[1 g] dissolved in water [9 mL] mixed with 36-38 % HCl
[1 mL]) at 37 °C for 30 min. The cells were imaged with a
Leica DMIL LED inverted-phase contrast microscope.

The Leeman Prodigy inductively coupled plasma-optical
emission spectroscopy (ICP-OES, Hudson, NH, USA) also
was used to quantify the cellular uptake of the Fe;O, NPs
by Skov-3 cells. The Skov-3 cells were seeded into 12-well
plates with a density of 1 x 10° cells/well. After overnight
incubation to bring the cells to confluence, the medium
was discarded carefully, and 1 mL fresh medium contain-
ing PBS buffer (control), FA-targeted Fe;O, NPs or non-
targeted Fe;O, NPs at Fe concentrations of 0.2 and
0.4 mM was added. The cells were further incubated at
37 °C and 5 % CO, for 4 h. The medium was then
removed. The cells were washed with PBS buffer four
times, trypsinsized, collected, and suspended in 1 mL PBS
buffer. The cell numbers in each sample were estimated
with a hemocytometer. For the cellular uptake assay, the
cells were centrifuged (1000 rpm, 5 min), collected, and
lysed with an aqua regia solution (0.5 mL) for 12 h. The
Fe content was determined by ICP-OES after the samples
were diluted 2 times with PBS.

In vivo targeted MR imaging of tumors

Four-week-old female BALB/c nude mice (Shanghai
Cancer Institute, Shanghai, China) were treated according
to protocols approved by the Ethical Committee of
Obstetrics and Gynecology Hospital ([2007]-No. 6), Fudan
University. The nude mice (three mice in each group)
were injected intraperitoneally with 1 x 10°® Skov-3 cells/
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mouse at a site 1 cm left of the midline. Two weeks later,
the mice were anesthetized with an intraperitoneal injec-
tion of pentobarbital sodium (40 mg/kg). After that,
200 pL of FA-targeted Fe3O, NPs or non-targeted Fe;O,
NPs (0.6 mg Fe) were delivered into the mice via the tail
vein. MR scans were performed before injection and
0.5, 1, 2, and 4 h after injection of the particles. A
1.5 T clinical MR system was used with a custom-built
rodent receiver coil (Chenguang Med Tech, Shanghali,
China). The sequence parameters were set as following:
Axial fat-suppressed T2WI (FS T2W1), point resolution =
156 mm x 156 mm, TR/TE: 8000/83 ms, thickness: 2 mm,
field of view: 50 mm, voxel size: 1.4 x 1.4 x 1.9 mm, flip
angles: 150 °. Signal intensity in the tumors at each time
point was measured and recorded.

Statistical analysis

Quantitative data were expressed as mean * standard de-
viation (SD). Means were compared by use of unpaired
two-sided Student’s ¢-test. The data are indicated with
(*) for p <0.05, (**) for p <0.01 and (***) for p < 0.001.

Results

Synthesis and characterization techniques

The morphology of the FA-targeted Fe;O, NPs and non-
targeted Fe;O, NPs was characterized by TEM (Fig. 1). It
can be seen that the NPs with a spherical or quasi-
spherical shape have a quite uniform size distribution and
a polymer shell on their outer surface. The mean size was
measured to be 8.7 £ 1.9 nm for non-targeted Fe30, NPs
(Fig. 1a) and 9.2+1.7 nm for FA-targeted Fe;O, NPs
(Fig. 1b), respectively. The T,-weighted MR effect of the
NPs was evaluated by use of a 1.5 T MR system. Fe;0,
NPs decreased the MR signal intensity in relation to
increasing Fe concentration for both FA-targeted Fe;O,
NPs and non-targeted Fe;O, NPs (Fig. 2). The T, signal
intensities of FA-targeted Fe;O, NPs at the given Fe
concentrations were 1851 +14, 1808 +18, 1648+ 30,
1628 £ 71, and 1395+ 73. The T, signal values in non-
targeted Fe;O, NPs at each given Fe concentration were
2094 + 28, 1838 + 14, 1742 + 10, 1667 +2 and 1487 + 26,
respectively (Fig. 3). Based on the measured T, relax-
ation time, the r, relaxivity of FA-targeted Fe;O, NPs
and non-targeted Fe;O, NPs was calculated to be
475.92 and 545.70 mM s, respectively according to
our previous works [23].

Cytotoxicity assay of FA-targeted Fe3O, NPs and
non-targeted Fes0, NPs

It is important to assess the potential cytotoxicity of
Fe;O, NPs before their biomedical applications. After
incubation of Skov-3 cells with FA-targeted Fe;O, NPs
or non-targeted Fe3O, NPs at the Fe concentrations of
0.25, 0.50, 0.75 or 1.00 mM for 24 h, cell viability was
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Fig. 1 TEM micrographs and size distribution histograms of non-targeted FesO4 NPs (@) and FA-targeted FesO4 NPs (b)
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assessed with the MTT assay (Fig. 4). The cell viability
did not change significantly after treatment with either
kind of Fe;O, in the studied concentration range when
compared with cell viability of control cells treated with
PBS (n =3). The results of MTT assay indicated the low
cytotoxicity of the prepared Fe;O, NPs, which is very
important for their further in vivo applications.

Cellular uptake of FA-targeted Fe;0,4 NPs and non-targeted
Fe304 NPs

Prussian blue staining was carried out to assess the cel-
lular uptake of FA-targeted Fe;O4 NPs and non-targeted
Fe304 NPs by Skov-3 cells. The results showed that the
uptake of iron component correlated directly with Fe
concentration, and the cells appeared dark blue com-
pared with the control cells (Fig. 5). The Prussian blue
staining also demonstrated that Skov-3 cells treated with
FA-targeted Fe30, NPs had more obvious blue staining

0.005 0.01 (1X17] 0.05 0.08

(
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Fig. 2 The T,-weighted MR images of the FA-targeted Fe;O4 NPs
and non-targeted FesO, NPs at different Fe concentrations

than the cells treated with non-targeted Fe;O, NPs at
the same Fe concentration. We interpreted these results
as evidence that the FA-targeted Fe30, NPs had a higher
affinity to Skov-3 cells than the non-targeted Fe;O4 NPs.

To further document that FA could facilitate the spe-
cific uptake of FA-targeted Fe;O, NPs by Skov-3 cells,
the cells were incubated with FA-targeted Fe;O, NPs or
non-targeted Fe3O, NPs at the Fe concentrations of 0.2
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Fig. 3 The T, signal values of the FA-targeted FesO, NPs and
non-targeted FesO4 NPs at different Fe concentrations
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Fig. 4 MTT assay of Skov-3 cell viability after treatment with PBS
(control) and the FA-targeted FesO4 NPs or non-targeted FesO, NPs
at the Fe concentration of 0.25-1.00 mM for 24 h

\

and 0.4 mM for 4 h. Then the Fe concentration in the
cells was analyzed by ICP-OES. As shown in Fig. 6, the
cellular uptake increased as a function of Fe concentra-
tion for both Fe;O, NPs. At the same Fe concentration,
the Skov-3 cells treated with FA-targeted Fe;O, NPs
displayed much higher uptake than those treated with
non-targeted Fe3O, NPs (1 =3). These results indicated
that the FA-targeted Fe;O, NPs can be specifically taken
up by the Skov-3 cells overexpressing FA receptors via
ligand-mediated endocytosis pathway.

In vivo targeted MR imaging

After intravenous injection of the FA-targeted Fe;O4 NPs
or non-targeted Fe;O, NPs into the mice bearing intraper-
itoneal ovarian tumors, MR scanning was performed. The
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tumor MR signal for the mice injected with both particles
gradually decreased with time after injection (Fig. 7). In
the MR images, we can see the contrast enhancement was
highest at 2 h post injection. After that, the tumor signal
recovered because of further metabolism. Quantitative
analysis of the T, signal intensity of solid tumors at
various time points revealed that the lowest signal
intensity occurred at 2 h after injection with both the FA-
targeted Fe;O, NPs and non-target Fe;O, NPs (Fig. 8).
The T,-weighted signal intensity of the lesions at 0.5, 1, 2,
and 4 h post injection was 1666 + 152, 1534 + 92, 749 + 56
and 1402 + 102 for the FA-targeted Fe;O, NPs group and
1414+ 42, 1328 +162, 1181 +93 and 1615+ 84 for the
non-targeted Fe;O, NPs group, respectively (Fig. 8). It
should be noted that the T, signals intensity of the mice
treated with FA-targeted Fe;O, NPs was significantly
lower than that of the mice treated with non-targeted
Fe;0, NPs at 2 h post injection (P=0.002, n=3). This
results suggested that the prepared FA-targeted Fe;O,
NPs have a great potential to be used as contrast agents
for targeted MR imaging to diagnosis the ovarian tumors.

Discussion
In this study, we report our preliminary experience in
imaging human ovarian cancer in the xenograft tumor
model by using FA-targeted Fe;O4 NPs as contrast agents.
Owing to the good contrast enhancement and low cyto-
toxicity, the FA-targeted Fe3O, NPs can detect the
ovarian cancer tissues planted in the abdominal cavity
of nude mice at in vivo levels. Our results indicated
that FA-targeted Fe;O, NPs hold promise for being
effective magnetic molecular probes for detecting
tumor tissues in gynecologic cancer.

Ovarian cancer is the most malignant gynecological
tumor and therefore deserves extensive basic and clinical
research in the quest for early diagnostic tests and

d
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Fig. 5 Prussian blue-stained Skov3 cells incubated with PBS (a), non-targeted FesO, NPs (b, ¢) and FA-targeted FesO4 NPs (d, e) in given Fe
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Fig. 6 Cellular uptake assay of the Skov3 cells after treatment with
FA-targeted FesO4 NPs or non-targeted FesO,4 NPs at Fe concentration
of 0.2 and 04 mM

effective treatments [24—27]. Fe3sO, NPs are low-toxic
and eventually biodegrade to form blood hemoglobin
[14], and they have been used for liver imaging since the
1900s [28]. With recent advances in nanotechnology and
nanoscience [29-32], various polymers have been coated
onto the surface of Fe;O, NPs to improve their stability
and decrease their uptake by the reticuloendothelial
system [16, 33, 34]. Numerous studies on application of
NPs in biomedical imaging have been reported in recent
decades [35-40], but few have examined application of
the particles in ovarian cancer.

In our previous work, we demonstrated that FA-targeted
Fe;04 NPs have good water-dispersibility, colloidal stability
and fairly high relaxivity [23]. In addition, the particles
have excellent hemocompatibility and cytocompatibility in
the studied range of concentrations. We found that FA-
targeted Fe;O, NPs had excellent binding specificity to a
human cervical cancer cell line (HeLa cells) overexpress-
ing FA receptors via an active FA targeting pathway. In
the present study, we found excellent lesion targeting
ability of the FA-targeted Fe3;O, NPs to ovarian cancer in
the T,-weighted MR imaging, which may be attributed to

Fig. 7 In vivo MR imaging of intraperitoneal tumor after intravenous
injection of FA-targeted FesO, NPs or non-targeted FesO4 NPs
(0.6 mg Fe) at different time points
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Fig. 8 Measurements of T, signals intensity of intraperitoneal tumor
in nude mice after intravenous injection of FA-targeted FesO, NPs or
non-targeted FesO4 NPs (0.6 mg Fe) at different time points

the following aspects: First, although the mean size of the
FA-targeted Fe3O4 NPs was small (9.2 + 1.7 nm), the parti-
cles had a very high r, relaxivity coefficients (475.92 mM
~!s71), which is much higher than those of other reported
Fe;O,4 NPs [33, 40]. This feature made the particles more
sensitive to magnetic susceptibility effects. Second, the
presence of FA on the surface of the Fe304 NPs increased
their ability to target tumor tissues. Third, the passive en-
hanced permeability and retention effect into solid tumors
may also facilitate the specific MR imaging of tumors [36].

Human ovarian cancers are located deep in the pelvic
space [41]. An ideal humanized xenograft mouse model of
ovarian cancer would simulate the true microenvironment
for tumor angiogenesis [24, 42—44]. Thus, in the present
study, we implanted the tumor cells in the abdomen
rather than in subcutaneous sites, believing that the
intraperitoneal location would reflect the hemodynamic
condition of ovarian cancer in humans-at least more
accurately than would a subcutaneous site, as has been
often used [10-12, 25]. Our results corroborated this
point: both targeted and non-targeted particles were
evident by T,-weithted MR imaging at 2 h after injection
in abdominal tumors compared with 1 h in subcutaneous
tumors [23], perhaps because more time was needed for
FesO, NPs to reach the deep abdominal tumors in
sufficient concentration to be evident on T,-enhanced
imaging. We must confess that the T, signal intensity in
MR images also achieve the lowest point at 2 h post
injection of non-targeted Fe;0,4 NPs, which may be due to
the enhanced permeability and retention (EPR) effect
(passive uptake) as well documented in solid tumors
[14, 36, 37]. However, both in vitro and in vivo imaging
results (as shown in Figs. 5 and. 7) proved FA-targeted
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ligands can enable the tumor uptake through more active
pathway, thus making the tumors look like more dark
compared with non-FA targeted group.

Further, we also found that, after injection of Fe30, NPs
in the nude mice, the tumor T, signal intensity had
reverted to pre-injection intensity after 4 h, a little earlier
than that we had found previously in subcutaneous
tumors [23]. We also acknowledge that the injection of
suspensions of tumor cells into the mice is different from
the formation of tumors in the natural environment.

Other methods for imaging detection of ovarian can-
cers have been described. Hensley, et al [45] described
a dual MR-fluorescence molecular tomography approach,
with commercially available fluorescent molecular imaging
probes for the detection and quantification of tumor-
associated metabolites in ovarian carcinomas in a trans-
genic mouse model of epithelial ovarian cancer. The
authors concluded that the combination of in vivo
molecular and MR imaging can effectively detect orthoto-
pic ovarian tumors and their response to therapy [25]. In
another study, Satpathy, et al [24] reported that in an
orthotopic human ovarian tumor xenograft model, HER-
2- targeted magnetic NPs labeled with a near infrared dye
(NIR-830) were specifically delivered into primary and
disseminated ovarian tumors, enabling optical and MR
imaging of tumors as small as 1 mm in the peritoneal
cavity. The authors designed the non-conjugated magnetic
NPs with 14 + 3.4 nm diameter and targeted-conjugated
magnetic NPs with 22,9 +4.8 nm diameter, respectively
[24]. However, they did not report the exact MR acquisi-
tion time point, which we believe is crucial for tumor
imaging, especially for magnetic NPs.

Our study also has some limitations. First, by 2 weeks
after injection of ovarian cancer cells into the peritoneal
cavity, the tumors often had become large (average diam-
eter about 5 mm) with isointensity signals on T,-weighted
MR imaging making them easily detectable and distinct
from surrounding tissues, which had mostly hyperinten-
sity signals. However, tumors at an earlier stage or smaller
might not be detected because of overlapping neighboring
organs (such as gut, kidney, or bladder) and background
tissues. Perhaps the specificity and sensitivity could be
improved by the use of bimodal magnetic nanoprobes
with fluorescent materials incorporated into Fe;O, NPs.
Second, since FA receptors are overexpressed in most
malignant tumors, the FA targeting ligand we used may
not be specific for detecting ovarian cancer. Further
studies should be conducted to image ovarian cancer with
targeting motifs that may be more specific.

Conclusion

In summary, this study demonstrated that the prepared
FA-targeted Fe3O0,4 NPs can bound specifically in vitro to
the FA receptors overexpressed human serous ovarian
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cells without inducing cytotoxicity. Used as T,-negative
contrast agents in MR imaging, the particles also local-
ized to intraperitoneal human ovarian cancer tissues in a
xenograft tumor model. Importantly, the tumor can be
detected more obviously after the mice were injected
with FA-targeted Fe;O, NPs than non-targeted FezO,
NPs. Thus, FA-targeted FesO, NPs hold promise that
they may be multifunctional nanoprobes for the diagno-
sis and treatment of ovarian cancer.
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