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Abstract

the survival of ovarian cancer patients.

Background: This study aimed to screen multiple genes biomarkers based on gene expression data for predicting

Methods: Two microarray data of ovarian cancer samples were collected from The Cancer Genome Atlas (TCGA)

database. The data in the training set were used to construct Reactome functional interactions network, which then
underwent Markov clustering, supervised principal components, Cox proportional hazard model to screen

significantly prognosis related modules. The distinguishing ability of each module for survival was further evaluated
by the testing set. Gene Ontology (GO) functional and pathway annotations were performed to identify the roles of

genes in each module for ovarian cancer.

mediated signaling pathways.

Prognosis

Results: The network based approach identified two 7-gene functional interaction modules (31: DCLRETA, EXOT,
KIAA0101, KIN, PCNA, POLD3, POLD2; 35: DKK3, FABP3, IRF1, AIM2, GBP1, GBP2, IRF2) that are associated with prognosis
of ovarian cancer patients. These network modules are related to DNA repair, replication, immune and cytokine

Conclusions: The two 7-gene expression signatures may be accurate predictors of clinical outcome in patients with
ovarian cancer and has the potential to develop new therapeutic strategies for ovarian cancer patients.

Keywords: Ovarian cancer, Reactome functional interactions, Markov clustering, Supervised principal components,

Background

Ovarian cancer is the most common lethal gynecologic
malignancy in women worldwide, with an estimated
22,280 newly diagnosed cases and approximately 14,240
deaths in 2016 in the United States [1]. Due to the lack
of specific symptoms and effective screening tests, ap-
proximately 70 % of ovarian cancer patients have been
in advanced-stage (stage III or IV) when they are firstly
diagnosed, leading to the 5-year survival rate of less than
30 % [2]. By contrast, patients who are diagnosed with
early-stage (stage I or II) have a 5-year survival rate of
up to 70-90 % [2]. These data indicate the importance
to identify the sensitive biomarkers to early distinguish
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the patients with different prognosis, aiming to deter-
mine optimal treatment strategies.

In the past years, remarkable achievements have been
obtained in the investigation of prognostic markers for
ovarian cancer. For instance, a 10-gene signature
(AEBPI, COL11AI1, COL5A1, COL6A2, LOX, POSTN,
SNAI2, THBS2, TIMP3, and VCAN) has been validated
to be associated with poor overall survival in patients
with high-grade serous ovarian cancer [3]. The presence
of a BRCAI or BRCA2 mutation is associated with a bet-
ter prognosis in patients with invasive ovarian cancer
[4]. A recent study has found that suppression of
ABHD2 in OVCA420 cells increased phosphorylated
p38 and ERK, platinum resistance, and side population
cells, promoting a malignant phenotype and poor prog-
nosis in serous ovarian cancer [5]. Furthermore, CD73
enhances ovarian tumor cell growth and expression of
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antiapoptotic BCL-2 family members, indicating a role
of CD73 as a prognostic marker of patient survival in
high-grade serous ovarian cancer [6]. Although the
aforementioned genes have been shown to be correlated
with the prognosis in ovarian cancer, their prognostic
accuracy may be limited because the development of
disease usually involves several genes and the interaction
between them to form a complex pathway. Therefore, it
is necessary to identify gene networks and pathways
including multiple genes and their interactions, which
can be achieved by Reactome functional interaction (FI)
network construction as described previously [7, 8].

In the present study, we aimed to construct the Reac-
tome FIs network to analyze the gene signatures that
was significantly related to ovarian cancer patient sur-
vival based on gene expression profiling data extracted
from The Cancer Genome Atlas (TCGA) database.

Methods
As the paper did not involve any human or animal, the
ethical approval was not required.

Gene expression data

Two gene expression datasets with their corresponding
clinical data (including survival status and time) for
ovarian cancer samples were downloaded from TCGA
database (https://tcga-data.nci.nih.gov/tcga). Data of one
gene expression dataset were produced from the BI-HT-
HG-U133A platform, in which 536 samples were in-
cluded and 12042 genes were expressed in each sample
(defined as BI). The other gene expression profiling from
559 ovarian cancer patients was produced from the
UNC-AgilentG4502A-07-3 microarray platform, in
which 17814 genes were included (defined as U3). These
two datasets were randomly divided into training (BI) or
testing sets (U3).

Construction of Reactome FI network

The annotated FIs were extracted from five pathway da-
tabases, including Reactome [9], kyoto encyclopedia of
genes and genomes (KEGG) [10], protein annotation
through evolutionary relationship (Panther) [11], The
Cancer Cell Map (http://cancer.cellmap.org/), and NCI
Pathway Interaction Database (NCI-PID) [12]. The pro-
tein FIs were predicted by physical protein-protein inter-
actions (PPIs) in human organisms (catalogued in the
Biological General Repository for Interaction Datasets
(BioGrid) [13], the Human Protein Reference Database
(HPRD) [14] and IntACT [15]), model organisms (from
IntAct [15] based on Ensembl Compara [16]), and pro-
tein domain—domain interactions (from PFam [17]). The
naive Bayes classifier, a simple machine learning method
[18], was used to score the probability that a protein
pair-wise relationship reflects a functional pathway
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event, during which the annotated FIs were selected as
positive training sets, whereas the predicted FIs were
defined as negative training sets. Subsequently, the gene
expression data of BI from the TCGA were mapped into
the constructed Reactome FIs via co-expression relation-
ships (calculated by Pearson correlation) to distribute
the weight of each edge.

Markov clustering (MCL)

The gene/protein correlations in the Reactome FI network
were input into the Reactome FI Cytoscape plugin (MCL)
[7] to generate a sub-network for a list of selected network
modules based on module size (>7) and average correl-
ation (Pearson correlation coefficient >0.25). To control
the size of network modules generated from the MCL
clustering, the inflation coefficient was set as 5.0.

Analysis of prognosis-related modules

The prognosis-related modules were further predicted
based on the supervised principal components (superpc)
[19] using the Superpc V1.05 software package under
the programming environment R (http://statweb.stanfor-
d.edu/~tibs/superpc/). A module-based gene expression
matrix was generated by using mean expression level of
genes in each module across 536 ovarian cancer sam-
ples, and then underwent the superpc analysis. A 10-fold
cross-validation curve was performed for estimating the
best threshold. In addition, Cox proportional hazard
(PH) model was also performed to correlate each mod-
ule with survival data (p<0.05), followed by Kaplan-
Meier analysis to demonstrate the distinguishing ability
of each module for survival.

Gene Ontology (GO) functional and pathway annotations
The genes in prognosis-related modules were subjected
to the GO and pathway enrichment analyses to identify
their roles in ovarian cancer. GO and pathway functional
annotations were conducted for the survival-associated
genes using the Reactome FI plug-in of Cytoscape [20].
False discovery rate (FDR) < 0.05 was used for a thresh-
old to assess the statistical significance.

Results

Data information

Two datasets [BI-HT-HG-U133A (BI), and UNC-
AgilentG4502A-07-3(U2)] were obtained from TCGA.
The BI dataset contained 536 samples, and expression
data of 12042 genes were included in each sample. The
U2 dataset contained 559 samples, and expression data
of 17814 genes were included in each sample. In this
study, BI was used as the training dataset, and U2 was
used as the test dataset (Fig. 1).
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Fig. 1 The flow chart of the whole analysis in this study

Analysis of the Fl network and modules

Based on the BI dataset, a weighted FI network includ-
ing 710 proteins and 9516 interactions were constructed.
Subsequently, using MCL network clustering, a total of
41 modules were obtained, and the number of genes in
each module ranged from 7 to 118. Furthermore, using
the Superpc package with a threshold value of 0.73, 14
prognosis-related modules were identified from the 41
modules (Table 1). Afterwards, 6 significant modules
(modules 6, 8, 20, 26, 31 and 35) with the p-value < 0.05
were identified from the 14 modules based on the Cox
PH analysis (Table 2). These 6 modules were validated

Table 1 Superpc analysis for prognosis related modules
according to 10-fold cross-validation method

Modules Threshold Cross-validation scores
1 0.050 9.667
6 0.119 9.096
8 0.187 7.953
12 0.255 7.146
14 0324 8551
19 0392 7.371
20 0.460 6.903
25 0529 8.649
26 0597 8.848
27 0.665 9.558
28 0.734 10394
31 0.802 10177
35 0.870 7.547
36 0.939 7414

by the U2 dataset, and two modules (modules 31 and 35)
were also significant in the U2 dataset. Thus, modules 31
and 35 were further analyzed.

Analysis of modules 31 and 35

A set of 7 genes (DCLREIA, EXOI, KIAA0101, KIN,
PCNA, POLD3, POLD?2) were included in the module 31
(Fig. 2a), and 7 genes (DKK3, FABP3, IRF1, AIM2, GBP1,
GBP2, IRF2) were included in the module 35 (Fig. 2b).
Kaplan-Meier plot demonstrated that the gene expression
in these two modules can significantly distinguish the
patients with longer and shorter survivals (Fig. 3).

To further investigate the biological functions of the
genes in modules 31 and 35, GO and pathway annota-
tions were performed. The genes in module 31 were
mainly related to the functions of DNA repair, DNA
replication and cell cycle (Fig. 4). The genes in module
35 were significantly associated with functions about
immune and cytokine or interferon mediated signaling
pathways (Fig. 5).

Table 2 Cox proportional hazard analysis for prognosis related
modules using the training (Bl) and test datasets (U3)

Module  Size Bl U3
Likelihood ratio  p-value  Likelihood ratio  p-value

26 9 941 0.002 032 0.574
20 10 6.91 0.009 358 0.058
31 7 743 0.006 445 0.035
35 7 6.19 0.013 6.25 0.012
6 22 5.96 0015 2.57 0.109
8 21 6.22 0.013 0.67 0414
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Fig. 2 Kaplan-Meier survival plot for the module 31 (a) and 35 (b). All samples were divided into two groups based on the median value of gene
expression in modules. The green curve is for samples having lower expression, while the red curve for samples having higher expression

Time

Discussion

In this study, a total of 41 modules were obtained from
the FI network based on the expression data in the BI
dataset. Using MCL network clustering, superpc model-
ing and Cox PH analysis, two modules, modules 31 and
35, were identified to be significantly associated with
prognosis of ovarian cancer patients. Seven genes were
included in the two modules (31: DCLREIA, EXOI,
KIAA0101, KIN, PCNA, POLD3, POLD2; 35: DKK3,
FABP3, IRF1, AIM2, GBP1, GBP2, IRF2). Furthermore,
the genes in module 31 were related to DNA repair or
replication, whereas the genes in module 35 were associ-
ated with immune and cytokine interferon mediated
signaling pathways.

DCLRE1, also known as SNMIA, belongs to a member
of a small gene family that is characterized by a metallo-
[B-lactamase fold and an appended B-CASP domain that
together are proposed to function as a DNA endonucle-
ase to participate in DNA inter-strand cross-link repair
[21]. DNA cross-link repair is beneficial to maintain
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Fig. 3 Genes and interaction relationship in the module 31 (a) and
35 (b). The arrow indicates the co-expression relationship and known
pathway regulatory relationship; the dotted line indicates the newly
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predicted interaction; the full line indicates the common complex

genomic stability and enables cells to survive DNA dam-
age, contributing to less risk of tumorigenesis [22]. How-
ever, recent studies indicate that the high efficiency of
DNA cross-link repair may also promote the excessive
proliferation of cells, driving tumor initiation and pro-
gression [23-25]. Thus, down-regulation of DNA repair
genes may be a promising target for anticancer therapy
[26], which has been demonstrated by the study of Wu
et al. [27]. Wu et al. have found that DCLREIA is signifi-
cantly decreased by bufalin, which promotes lung cancer
apoptosis [27]. In addition, inhibition of DNA cross-link
repair was also proved to reverse treatment resistance
and improve the therapeutic efficacy [28].

EXO1 encodes exonuclease and plays important roles in
mismatch repair by resecting the damaged strand. Similar
to DCLREIA, Exol is also shown to be higher expressed
in tumor tissues than that in the normal tissues [29, 30]. A
previous study has demonstrated that FOXM1 facilitates
DNA repair through regulating direct transcriptional tar-
get EXOI to protect ovarian cancer cells from cisplatin-
mediated apoptosis, and attenuating EXOI expression by
small interfering RNA augments the cisplatin sensitivity of
ovarian cancer cells [31]. POLD2 or POLD3 are both the
subunits of DNA polymerase delta that possesses both
polymerase and 3" to 5" exonuclease activity and plays a
critical role in DNA replication and repair [32]. POLD2
was found to be increased in average 2.5- to almost 20-
fold in moderately and poorly differentiated serous carcin-
omas of epithelial ovarian cancer, eventually leading to
poor prognosis [33].

Furthermore, proliferating cell nuclear antigen (PCNA)
is a ring-shaped homo-triomeric protein that functions as
a necessary clamping platform to recruit numerous en-
zymes involved in DNA replication and repair, such as
DNA polymerases, endonuclease, and DNA ligase, ultim-
ately responsible for cell proliferation [34]. Therefore,
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Fig. 4 GO functional and KEGG pathway enrichment analyses of the genes in the module 31. MF, CC and BP are the three categories of the GO
functional enrichment analysis. GO Gene Ontology, KEGG Kyoto Encyclopedia Of Genes And Genomes, BP biological process, CC cellular

PCNA is widely considered as a biomarker for cancer pro-
gression and prognosis. A recent study has found that
PCNA was expressed in 52.2 % of gastric cancer patients,
and positive expression of PCNA was significantly associ-
ated with poor 3-year disease-free survival (p = 0.035) [35].
KIAAO0101 is a 15-kDa protein that has a conserved motif
to bind to PCNA via a yeast two-hybrid system and thus
involved in the regulation of DNA repair and cell prolifer-
ation [36]. Similar to PCNA, overexpression of KIAA0101
can promote growth and invasion of cancer cells [37] and
predict poor prognosis in cancer patients [38, 39]. Collect-
ively, these genes in the module 31 may play critical roles
in the prognosis of ovarian cancer via regulation of DNA
repair and cell proliferation.

In the module 35, 7 genes were included. Interferon
regulatory factor 1 (IRFI) is a member of the interferon

regulatory transcription factor (IRF) family, which can
cause the inhibition of cell proliferation and stimulation
of apoptosis [40]. IRF2 is a functional antagonist of IRFI
and may act as an oncogene, promoting the formation
and progression of cancer [41]. A previous study has
demonstrated that increased level of IRFI is associated
with both increased progression-free and overall survival
of patients with ovarian carcinoma, and IRF1 is an inde-
pendent predictor of platinum resistance and survival in
high-grade serous ovarian carcinoma [42]. Furthermore,
IRF1 directly mediates the interferon-y (IFN-y)-induced
apoptosis via the activation of caspase-1 gene expression
in IFN-y-sensitive ovarian cancer cells [43]. However, in
a recent study of ovarian cancer, IRF-1 was identified to
be up-regulated in ovarian cancer samples compared
with healthy ovarian tissue although strong expression
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of IRF-1 predicted improved disease-free survival and
overall survival [44]. This finding may be attributed to a
compensation or adaptation mechanism. Further study
indicated the IRFI seemed to play a key role in the tran-
scriptional activation of interferon-inducible guanylate
binding proteins (GBP1 and GBP2) [45], which subse-
quently induces T-lymphocyte immune response against
the cancer cell spreading and proliferation [46]. There-
fore, GBP1 and GBP2 may be also tumor suppressor
genes and associated with better prognosis [47].

AIM?2 is another human IFN-inducible protein, which
forms the AIM?2 inflammasome with an adaptor protein
ASC upon sensing foreign cytoplasmic double-stranded
DNA [48]. The activated AIM2 inflammasome in macro-
phages promotes the proteolytic cleavage and secretion
of pro-inflammatory cytokines (IL-1p and IL-18)
through the activation of caspase-1, leading to cell sen-
escence, apoptosis and preventing cancer progression
[49]. Thereby, AMI2 may be also correlated with excel-
lent prognosis [50, 51].

Conclusion

Based on gene expression profiling data, two 7-gene
functional interaction modules were identified to be
likely associated with prognosis of ovarian cancer pa-
tients. These network modules were related to DNA re-
pair, replication, immune and cytokine mediated

signaling pathways. However, further experimental stud-
ies are required to confirm these genes in the modules.
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